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Abstract
The super-efficiency (SE) model is identical to the standard model, except that the unit under
evaluation is excluded from the reference set. This model has been used in ranking efficient
units, identifying outliers, sensitivity and stability analysis, measuring productivity changes,
and solving two-player games. Under the assumption of variable, non-increasing and
non-decreasing  returns  to  scale  (VRS,  NIRS,  NDRS),  the  SE  model  may  be  infeasible  for
some efficient DMUs. Based on the necessary and sufficient conditions for the infeasibility of
SE,  in  the  current  paper,  we  have  developed  a  DEA  model  with  generalized  orientation  to
overcome infeasibility issues. The DEA model with generalized orientation extends the
orientation of the DEA model from the traditional input-orientation and output-orientation to
the modified input-orientation, input-prioritized non-orientation, modified output-orientation,
and output-prioritized non-orientation. All of the extended orientations are always feasible in
the associated super-efficiency models. In addition, the modified input-oriented and the
modified output-oriented approaches are developed to deal with the problem of infeasibility in
super-efficiency models while keeping the concordance with the traditional oriented models.
The newly developed model is illustrated with a real world dataset.
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1. Introduction
Data envelopment analysis (DEA), originally developed by Charnes et al. (1978)[1], is a linear
programming methodology for evaluating the relative technical efficiency for each member of
a  set  of  peer  decision  making  units  (DMUs)  with  multiple  inputs  and  multiple  outputs.  A
weakness of DEA is that, typically, more than one unit exists that can be evaluated as efficient
when  the  number  of  DMUs  is  not  enough  relative  to  the  number  of  inputs  and  outputs.
Anderson and Petersen (1993)[2] developed the so-called super-efficiency (SE) model, which
is  an approach that  is  used to overcome this  weakness.  The SE model  is  very similar  to  the
standard model, with the exception being the exclusion of the unit under evaluation from the
reference set. SE score is a measure for efficiency assessment of an operational unit relative to
the frontier created by the remaining units of the sample under evaluation. The SE model has
been used in ranking efficient units (Andersen & Petersen, 1993[2];  Xue  &  Harker,  2002[3];
Chen, 2005[4]; Ray, 2008[5]), identifying outliers (Wilson, 1995[6]; Banker & Chang, 2006[7]),
sensitivity and stability analysis(Charnes et al., 1992[8]; Seiford & Zhu, 1998[9, 10]; Zhu, 1996,
2001[11, 12]), measuring productivity changes (Färe et al., 1992[13]; Berg et al., 1992[14]), and
solving two-player games (Rousseau & Semple, 1995[15]).

However broad the applicability of the SE model may be, it may not provide feasible
solutions under certain conditions. Many efforts have been made to explore and justify the
necessary and sufficient conditions for infeasibility in SE DEA models (Thrall, 1996; Zhu,
1996; Dula & Hickman, 1997; Seiford  & Zhu, 1999; Xue & Harker, 2002). To be more
precise, Thrall (1996) pointed out that the SE constant returns to scale or CCR model may be
infeasible.  Zhu  (1996)  showed  that  the  SE  CCR  model  is  infeasible  if,  and  only  if,  certain
zero  patterns  appear  in  the  dataset,  and  that  other  SE  DEA  models  also  may  be  infeasible,
even when such zero patterns are not present in the input/output dataset. Seiford and Zhu
(1999) provided necessary and sufficient conditions for infeasibility of the input-oriented and
output-oriented super-efficiency DEA models. Lovell and Rouse (2003) [16] developed an
equivalent standard DEA model to provide SE scores by scaling up the inputs (scaling down
the outputs) of a DMU under evaluation. According to the equivalent standard DEA model,
the  SE  score  for  an  efficient  unit  that  lacks  feasible  solutions  in  the  standard  SE  model  is
equal to the user-defined scaling factor. In addition, Chen (2005)[4] determined that both the
input-oriented and output-oriented super-efficiency models lead to failure when infeasibility
occurs, especially, when both models are infeasible for an efficient unit. In order to deal with
the infeasibility problem in SE models when the technology of variable returns to scale (VRS)
prevails, Cook et al. (2009)[17] developed a novel formula for computing “feasible” SE scores.
However, it is proved in following section of this study that the results yielded by applying
Cook et al.’s formula are not flawless.

The objective of the research described in this paper was to develop a modified model with
generalized orientation to resolve the infeasibility problem in SE models under VRS on the
basis  of  Cook et  al.’s  idea.  In addition,  we discuss special  cases of  the generalized model  in
contrast with its equivalent, traditional-oriented models. It is shown that the new approach
yields standard efficiency scores and SE scores that are identical to those determined by its
counterpart traditional models, and it also yields optimal solutions and scores for efficient
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DMUs  that  are  regarded  as  infeasible  by  the  traditional  models.  This  study  presents  the
modified SE model  for  VRS only,  but  it  easily can be extended to non-increasing returns to
scale (NIRS) and non-decreasing returns to scale (NDRS).

This paper unfolds as follows. In Section 2, we identify the problems associated with the
traditional SE VRS models and analyze the properties of the new (general-oriented) model. In
Section 3 we analyze the transformation of the non-linear programming models, initially
developed to express the suggested general-oriented SE approach, into linear-programming
models. Section 4 provides a comparison between the general-oriented SE model and Cook et
al.’s approach for overcoming the infeasibility problem in SE variable returns to scale models.
Finally, Section 5 concludes.

2. The new model with generalized orientation
2.1 Infeasibility for input-oriented SE-BCC model
The input-oriented VRS model, or, in brief, the input-oriented BCC model for the evaluated
DMUk can be formulated as shown:
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For an efficient DMUk, the SE-BCC model is:
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In the input-oriented SE-BCC model, infeasibility occurs when an efficient DMUk cannot
reach the frontier formed by the remaining sample DMUs through increasing inputs. Since the
constraint for inputs in (2) is always feasible, the necessary and sufficient condition for

infeasibility  is  that  the  constraint  for  outputs  in  (2)  be  infeasible,  i.e.
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infeasible.

A sufficient but not necessary condition for infeasibility of the input-oriented SE-BCC models
is that there exists at least one output that has a value for the evaluated DMUk greater than the
values of any other DMUs.
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2.2 Infeasibility for output-oriented SE-BCC model
The output-oriented BCC model can be formulated as shown:
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For an efficient DMUk, the SE-BCC model is:
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In the output-oriented SE-BCC model, infeasibility occurs when an efficient DMUk cannot
reach  the  frontier  formed  by  the  rest  of  the  DMUs  through  decreasing  outputs.  Since  the
constraint for outputs in (4) is always feasible, the necessary and sufficient condition for

infeasibility is that the constraint for inputs in (4) be infeasible, i.e.
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A sufficient but not necessary condition for infeasibility of the output-oriented SE-BCC
models is that there exists at least one input that has a value for the evaluated DMUk smaller
than the values of any other DMUs.

Proof: If  ( 1, 2, ..., ; )ik ijx x j n j k< = ¹ , then
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2.3 Solutions for infeasibility of SE-BCC model
In case of infeasibility, both input-increasing and output-decreasing decisions must be made
for the efficient DMUk to reach the frontier. In order to tackle the problem of infeasibility, a
non-oriented model should be developed in which both input-increasing and
output-decreasing options are allowed for an efficient DMU to reach the frontier constructed
by the remaining sample DMUs.

In this context, consider the following model for DMUk:
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where both input-decreasing and output-increasing strategies are permitted for an inefficient
DMU  to  reach  the  frontier,  and  the  efficiency  score  is  defined  as (1-α*)/(1+β*),  with  the
numerator (1-α*) indicating the degree of input shrinkage and the denominator (1+β*)
denoting the output expansion.

If DMUk is efficient in model (5), its SE model is expressed as:
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where both input increasing (α ≤ 0) and output decreasing (β ≤ 0) are allowed for an efficient
DMU to reach the frontier formed by the rest of the DMUs, and the SE score is defined as the
ratio: (1-α*)/(1+β*), in which the numerator (1-α*) indicates the degree of input expansion and
the denominator (1+β*) indicates the output shrinkage.

In model (6), it is possible that an efficient DMU increases its inputs and decreases its outputs
simultaneously to reach the reference set determined by the rest of the sample DMUs under
evaluation. Consequently, model (6) is always feasible.

Proof: Acknowledging the constraint α≤0，
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model (6) is always feasible.

By taking into account the solutions provided for the infeasibility problem of the SE-BCC
model we extend models (1) and (2) to a generalized form:

i.e. for DMUk
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where Iw and Ow are user-defined non-negative numbers, with at least one of them being

positive. The superscripts I  and O  denote the distinction between the user-defined values
attached to the inputs and the outputs respectively. The efficiency score is defined by the ratio:
(1-α)/(1+β).

If DMUk is efficient in model (3), its generalized SE model is expressed as:
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where Iw and Ow are user-defined non-negative numbers imputed to the inputs and outputs,

respectively, and at least one of the user-defined values is positive. The SE score is defined as



8

(1-α)/(1+β).

In model (7) and model (8), Iw and Ow denote the priority of orientation. The generalized SE

model  (8)  is  always  feasible  when  both Iw and Ow have non-zero values. The proof of the

feasibility statement for model (8) is based on the proof of all-time feasibility for model (6).

Table 1 lists seven special cases of the generalized model and their definitions for (super-)
efficiency score.

Table 1 Special cases of the standard and the generalized super-efficiency models and their definitions

for computing efficiency scores

Case Model Standard efficiency model  Super-efficiency model

wI wO Score  wI wO Score

1 Input-oriented 1 0 *1 a-  1 0 *1 a-

2 Output-oriented 0 1 *

1
1 b+  0 1 *

1
1 b+

3 Non-oriented 1 1
*

*

1
1

a
b

-
+

 1 1
*

*

1
1

a
b

-
+

4 Input-oriented (modified) 1 ε *1 a-  ε 1 *1 a-

5 Non-oriented (input-prioritized) 1 ε
*

*

1
1

a
b

-
+

 ε 1
*

*

1
1

a
b

-
+

6 Output-oriented (modified) ε 1 *

1
1 b+  1 ε *

1
1 b+

7 Non-oriented (output-prioritized) ε 1
*

*

1
1

a
b

-
+

 1 ε
*

*

1
1

a
b

-
+

ε is the non-Archimedean infinitesimal

Case  1: The generalized model is equivalent to the traditional input-oriented model, so the
(super-) efficiency score 1  –  α* in the generalized model is equal to θ* in the traditional
input-oriented model.

Proof: In case 1, 1Iw =  and 0Ow = , the standard efficiency model can be expressed as:
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If (1-α) is replaced by θ, model (9) becomes the traditional input-oriented BCC model (1).

In case 1, the SE model can be written as:

1

1

1

min  (1 )

. . (1 ) ,  1, 2, ...,

     ,  1, 2, ...,

     1

     0, 0, 0,  1, 2, ...,  ( )                    (10)

n

j ij ik
j
j k

n

j rj rk
j
j k

n

j
j
j k

j

s t x x i m

y y r s

j n j k

a

l a

l

l

a b l

=
¹

=
¹

=
¹

-

£ - =

³ =

=

£ £ ³ = ¹

å

å

å

If (1-α) is replaced by θ, model (10) becomes the traditional input-oriented SE-BCC model (2).

Case  2: The generalized model is equivalent to the traditional output-oriented model, and the
(super-) efficiency score 1/(1  +  β*) in the generalized model is equal to 1/φ* in the traditional
output-oriented model. This can be proved as case 1.

Case  4: Input-orientation is given priority with output-orientation retained. This means that the
output is allowed to decrease, and furthermore, this decrease should be minimized for the evaluated
DMUk to  reach  the  frontier  formed  by  the  rest  of  the  DMUs.  The  (super-)  efficiency  score  is
defined as (1  –  α*) omitting the denominator (1  +  β*), which means that the efficiency score is
measured by movements of inputs only. Case 4 expresses a modified input-orientation with the
following properties:
1) the standard efficiency score (1 – α*) is equal to θ* in the traditional input-oriented model;
2) the SE score is equal to θ* in the traditional input-oriented SE-BCC model when the traditional

input-oriented SE-BCC model is feasible; and
3) when the traditional input-oriented SE model is infeasible, this modified input-oriented model

will still yield an optimal solution.

These properties assume that the modified input-oriented model overcomes the problem of
infeasibility while keeping the concordance with the traditional input-oriented model.
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Proof: In case 4, the SE model is written as:
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In model (11), the objective function is minimizing (1-α) and maximizing (1+εβ). In its solutions, a
larger β will result in a smaller α. Increasing β makes essentially no contribution to the reduction of
the objective function, because of the effect of the coefficient ε (Non-Archimedean infinitesimal),
so β will be minimized to zero in the optimal solution. When this occurs, model (11) is equivalent
to the traditional input-oriented BCC model and property 1 is proven.

In case 4, the SE model can be expressed alternatively as:
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In model (12), the objective function is to minimize (1-εα) and to maximize (1+β). In its solutions,
both α and β have non-positive values, and the larger the absolute value of β, the smaller the
absolute value of α. An increase in the absolute value of β will result in an increase in the objective
function, but an increase in the absolute value of α will  not  result  in  an  increase  in  the  objective
function because of the effect of the coefficient ε (Non-Archimedean infinitesimal). So, the
absolute value of β will be minimized to zero in the optimal solution if β=0 is  a  solution.  If β=0,
model (12) can be formulated as:
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Because ε is a small positive number, the optimal solution will not change after the replacement of
the objective function with “min (1-α)”. After replacement, the model is equivalent to the
traditional input-oriented SE-BCC model. If β=0 is a critical value in model (12), the traditional
input-oriented SE-BCC model is feasible. Then, property 2 is proved.

When the traditional input-oriented SE-BCC model is infeasible, it means that β cannot  be  0  in
model (12). In such cases, model (12) still can yield an optimal solution in which the absolute value
of β is minimized. Property 3 is proved.

Case  6: Output-orientation is given priority while input-orientation is retained. This assumption
means that increase in the input is allowed, but it must be minimized for the evaluated DMUk to
reach  the  frontier  constructed  by  the  remaining  sample  DMUs.  The  (super-)  efficiency  score  is
defined as 1/(1  +  β*) omitting the numerator (1 +α*), which means that the efficiency score is
measured by the movements of outputs only. This is a modified output-orientated model with the
following properties:
1) the standard efficiency score, 1/(1  +  β*),  is  equal  to 1/φ* in the traditional output-oriented

model;
2) the SE score is equal to 1/φ* in the traditional output-oriented model as well when it is feasible;

and
3) when the traditional output-oriented SE model is infeasible, this modified output-oriented

model will still yield an optimal solution.

These properties can be proved by the same procedure that was used in case 4. They mean that the
modified output-oriented model overcomes the problem of infeasibility, and, at the same time, it
keeps the concordance with the traditional output-oriented model.

3. Solving the new model
3.1 Transformation of non-linear programming
The equations of the DEA model with generalized orientation are based on non-linear
programming. However, they can be transformed into linear programming equations by applying a
method similar to the Charnes et al. (1978) transformation.

Let us reformulate the objective function of model (8) as:
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Let us multiply both the left-hand side and the right-hand side of the constraints by t in model (8).
The multiplication does not affect the inequalities of the constraints as long as t > 0.  Then, let us
define Λ=tλ, Α=tα and Β=tβ in order to transform the non-linear programming model (8) into the
following linear programming model:

1

1

1

min

. . ( ) ,  1, 2,..., (if 0)

      ,  1, 2, ..., (if 0)

      ( ) ,  1, 2, ..., (if 0)

      ,  1, 2, ..., (if 0)

I

n
I

j ij ik
j
j k

n
I

j ij ik
j
j k

n
O

j rj rk
j
j k

O

j rj rk

t w

s t x t x i m w

x tx i m w

y t y r s w

y ty r s w

=
¹

=
¹

=
¹

- A

L £ - A = >

L £ = =

L ³ + B = >

L ³ = =

å

å

å

1

1

      0, 0, 0, 1, 2, ...,  ( )                       (14)

n

j
j k

n

j
j
j k

j

t

j n j k

=
¹

=
¹

L =

A £ B £ L ³ = ¹

å

å

Let an optimal solution of model (14) be (t*, A*, B*, Λ*).Then, the optimal solution of model (8) is
defined by:

α=A/ t*, β=B/ t*, λ*=Λ*/t*

3.2 Non-Archimedean infinitesimal
To deal with infeasibility both output decrease and input increase are permitted. However, the
objective towards the attainment of the reference set by the rest of the sample DMUs is the
minimization of the output decrease and of the input increase for the evaluated DMUk in the
input-oriented and the output-oriented SE-BCC model, respectively. To achieve such an idea, the
non-Archimedean  infinitesimal  is  used  in  the  programming  (cases  4,  5,  6  and  7).  In  practice,  a
small positive number, for example 10-5, can be used instead.

The four special cases presented in sub-section 2.3 also can be resolved through a two-stage
method as follows. To be more precise, by taking the SE programming model developed for case 4,
i.e.  model  (12),  as  an  example,  at  stage  1,  the  first  programming  is  resolved  to  get  a  maximal
non-positive β*, namely:
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And at stage 2, a second programming is solved
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The two-stage method has two advantages i.e. 1) it can avoid numerical error caused by
approximation of the non-Archimedean infinitesimal, and 2) the problems in both stages relate to
linear programming, hence the transformation is not needed.

4. Comparison of the generalized-oriented SE-BCC model with the approach proposed by
Cook et al. (2009)
Cook et al. (2009) proposed an approach to deal with the problem of infeasibility in the SE-BCC.
Model (17) describes the concept of the approach put forth by Cook et al. to deal with infeasibility
yielded by the input-oriented SE-BCC model.

Consider the following model for an efficient DMUk:
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where M is  a  user-defined  large  positive  number,  and  the  SE  score  is  defined  by  Cook  et  al.  as:
1+τ*+1/(1-β*).  Model  (17)  is  always  feasible.  The  proof  of  this  statement  relies  on  the  steps
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followed in model (6) for proving its feasibility. Regardless of the feasibility of model (17), two
defects have been identified:

Defect 1: The definition of SE score 1+τ*+1/(1-β*) may result in contradictions.

Let’s discuss two special instances first.

Instance 1: τ*=β*=0
In model (17), τ indicates SE attributed to input increase, and β indicates SE attributed to output
decrease. If both τ and β are null, which indicates that neither inputs nor outputs show SE, the
super-efficiency score should be equal to unity. Obviously, the super-efficiency score calculated by
applying the definition: 1+τ*+1/(1-β*) is not equal to unity in the case of τ*=β*=0, which
contradicts the above statement. Such a case easily can be easily constructed by adding a DMU to
the sample that has exactly the same input and output values as DMUk.

Let’s assume that the absolute value of both τ* and β* are very small numbers slightly greater than
zero, like DMU 1 (MITSUI & CO., Table 3 in Cook et al.’s paper) with τ*=0.0104 and β*=0.0057,
alternatively, Hospital A in Table 3 in the current paper with α*=-0.051 and β*=-0.099. Then, the
SE score is expected to be a number slightly greater than unity. However, the calculated SE score,
according to the definition of SE associated with model (17), is a much larger number, i.e. 2.0161.
This result also contradicts with the general statement of Instance 1.

Instance 2: τ*>0 and β*=0
If τ* is  a  positive number and β* is zero, there a feasible optimal solution must be yielded by the
traditional  SE model  (according to theorem 1 in Cook et  al.’s  paper),  and the SE score calculated
with the new model should be equal to that calculated with the traditional SE model, just as stated
in  Cook  et  al.’s  paper.  However,  the  super-efficiency  score  in  this  case  calculated  with  (17)  is
1+τ*+1/(1-β*)=1+τ*+1. It should be noted that 1 + τ* is  the SE score in the traditional  SE model
(i.e. θ*). This paradox should have been uncovered by the comparison of the SE scores associated
with feasible DMUs calculated using the two models. However, the SE scores cited in Cook et al.’s
paper  were calculated with the traditional  model  rather  than with the new model,  so the flaw that
was previously pointed out failed to become explicit.

Even if the definition of SE score, i.e. 1+τ*+1/(1-β*), is used solely when the standard SE-BCC
model is infeasible, it still can produce unreasonable results. Namely, let both τ* and β* to be very
small numbers, slightly greater than 0; for example, τ*=0.0104 and β*= 0.0057  (this  case  can  be
found in Table 3 of Cook et al.’s paper). Since τ and β indicate the input “super part” and the output
“super part”, respectively, and since both “super parts” are small enough, it is obvious that the
calculated SE score should be slightly greater than unity. Nevertheless, the SE score determined by
the definition formula put forth by Cook et al. is equal to: 1+0.0104+1/(1-0.0057) = 2.0161, which
is a much larger number than was expected. Furthermore, we elaborate on an extreme example by
assuming that τ*=0.00000001 and β*= 0.00000001. In solving the problem, although both τ and β
are rounded to zero and the SE score should be equal to unity, the calculated score based on the
definition formula is about 2.
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In fact, the relationship between the two components in the model for the determination of the SE
score should be multiplicative, not additive. In other words, the SE score should be defined as: (1 +
τ*)/(1 - β*). By applying this definition the aforementioned inconsistencies disappear.

Defect 2: In model (17), both τ and β should have positive values.

Since DMUk is  an efficient  unit,  and τ indicates the input increase needed for DMUk to  reach the

frontier, τ must be a non-negative value. If τ<0,  there  will  exist
1 1
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which contradicts the precondition that DMUk is an efficient unit. Therefore, τ > 0 must be added to
model (17) as a constraint. Using the multiplicative definition (1 + τ*)/(1 - β*), if the constraint τ >
0 is omitted, the SE score of an efficient DMU may be less than unity.

Similar defects exist in Cook et al.’s approach for output-oriented SE-BCC models.

The essence of Cook et al.’s approach for dealing with infeasibility was that output decrease is
permitted but must be minimized for the evaluated DMUk to reach the frontier formed by the rest
of the DMUs involved in the input-oriented SE-BCC model.

The  model  that  we  developed,  described  in  this  paper,  mainly  uses  Cook  et  al.’s  idea  for  dealing
with infeasibility, and we introduced some modifications in order to overcome the drawbacks
associated with Cook et al.’s approach. Cases 5 and 7 in Table 1 are equivalent to Cook et al.’s
approach for input- and output-oriented SE-BCC models, respectively, provided that the previously
discussed  defects  are  rectified.  We  recommend  that  case  4  be  used  for  infeasibility  in  the
input-oriented SE-BCC model, because the efficiency measure doesn’t incorporate output decrease,
which is in accordance with the meaning of input-orientation; and, for same reason, case 5 should
be used for infeasibility in the output-oriented SE-BCC model.

5. Conclusions
Based on the necessary and sufficient conditions for the infeasibility issue of SE and the study of
Cook  et  al.  (2009)  for  dealing  with  infeasibility  in  SE-BCC  models,  in  the  current  paper,  we
develop a DEA model with generalized orientation to overcome infeasibility problems. The DEA
model with generalized orientation extends the orientation of the DEA model from the traditional
input-orientation and output-orientation to modified input-orientation, input-prioritized
non-orientation, modified output-orientation and output-prioritized non-orientation. All the
extended orientations always are feasible in their SE models. In addition, the modified input- and
output-oriented models address the problem of infeasibility in SE models, while keeping the
concordance with the traditional-oriented models.
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