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Abstract

The recent incremental risk charge addition to the Basel (1996) market risk amend-
ment requires banks to estimate, separately, the default and migration risk of their
trading portfolios that are exposed to credit risk. The new regulation requires the total
regulatory charges for trading books to be computed as the sum of the market risk capi-
tal and the incremental risk charge for credit risk. In contrast to Basel II models for the
banking book no model is prescribed and banks can use internal models for calculating
the incremental risk charge. In the calculation of incremental risk charges a key compo-
nent is the choice of the liquidity horizon for traded credits. In this paper we explore the
e¤ect of the liquidity horizon on the incremental risk charge. Speci�cally we consider a
sample of 28 bonds with di¤erent rating and liquidity horizons to evaluate the impact
of the choice of the liquidity horizon for a certain rating class of credits. We �nd that
choosing the liquidity horizon for a particular credit there are two important e¤ects that
needs to be considered. Firstly, for bonds with short liquidity horizons there is a miti-
gation e¤ect of preventing the bond from further downgrades by trading it frequently.
Secondly, there is the possibility of multiple defaults. Of these two e¤ects the multiple
default e¤ect will generally be more pronounced for non investment grade credits as the
probability of default is severe even for short liquidity periods. For medium investment
grade credits these two e¤ects will in general o¤set and the incremental risk charge will
be approximately the same across liquidity horizons. For high quality investment grade
credits the e¤ect of the multiple defaults is low for short liquidity horizons as the frequent
trading e¤ectively prevents severe downgrades.

�The opinions expressed in the paper are those of the authors and do not necessarily re�ect the view of
SAS Institute.
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1 Introduction

Trading books in banks consist of positions held with intent to trade or hedge other positions
whilst the banking books are usually made of held to maturity items. Therefore market risk
and migration risk are more imminent to the trading books. Banks have been calculating
internal model market based risk capital charges for many years. The Basel Committee
updated its market risk capital requirement in a comprehensive Basel II in 2006 (Basel (2006)).
In addition to the general market risk, speci�c credit spread risk of exposures to idiosyncratic
risk of debt securities or equities was added to the requirement as well. The credit risk -
including default and rating migration risk - contained in banks trading books were not subject
to an internal models approval until 2009 when Basel Committee published a consultation
paper introducing the Incremental Risk Charges (IRC) to banks subject to internal models
for market risk capital (Basel (2009)). The IRC required is due to the amount of credit
exposure in banks trading operations, and, recognizing the fact that credit exposures may
give rise to substantial losses. The IRC must be assessed on weekly basis at a 99.9% Value at
Risk con�dence level using a risk horizon of 1 year. The IRC capital is supposed to complement
the current market Value at Risk framework which measures risk on a 10-day holding period
at the 99% con�dence level. No speci�c model, approach or method is prescribed for banks
in terms of the IRC estimation.
While the IRC requirement of capturing credit default and credit migration risk on a 1

year horizon may be consistent with many banks current internal models for assessing credit
risk capital the IRC also requires banks to assign credits to liquidity or trading horizons. The
liquidity horizon should re�ect the time required to sell or hedge the credit under stressed
conditions. In this paper we apply a portfolio credit risk model that can be used to capture
the credit migration as well as default risk that is consistent with the IRC requirement.
Under this model framework we evaluate the incremental risk charge for corporate bonds with
di¤erent ratings and liquidity horizons using a multi-factor portfolio credit risk model. The
purpose of the paper is to study the sensitivity of the IRC to bond rating and, in particular,
bond liquidity horizon. Our �ndings motivate banks to choose a liquidity horizon for a security
that is consistent with both the regulatory view and the market liquidity.
The paper is organized as follows. In section 2 we give an overview of the incremental

risk charge addition to the Basel amendment for market risk in the trading book. Section 3
introduces the common multi-factor model for portfolio credit risk by �rst giving an overview
of the foundation univariate and multivariate Merton (1974) model and then proceed to discuss
the multi-factor model version we use to model portfolio risk. The multi-factor model was
�rst used in CreditMetrics (1999) and has since then become one of the most popular models
for portfolio credit risk. In section 4 we calculate incremental risk charges and in particular
analyze the e¤ect of the liquidity horizon for a sample of 28 bonds distributed across 7 di¤erent
rating classes with di¤erent liquidity horizons within each class. Finally, in section 5 we
summarize our �ndings.
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2 Incremental risk charge

The incremental risk charge addition, Basel (2009), to the market risk amendment, Basel
(1996), seeks to estimate the migration and default risk of traded credit products using a
risk horizon of 1 year and the con�dence level 99.9%. The 99.9% con�dence level and the
one year horizon is consistent with the con�dence level used in Basel II advanced approaches
for traditional banking book credits estimates of capital charges. However, in contrast to
Basel II models for banking book, where the advanced model is set to a one-factor model that
every bank uses, the incremental risk charge model is an internal model - allowing banks the
�exibility to decide which model to use for calculating the portfolio credit risk.
The incremental risk charge includes positions that are subject to risk charges for speci�c

interest rate risk such as corporate bonds however the incremental risk charge captures the
exposure migration and default risk holding �xed any market variations such as interest rate
risk and spread risk within a rating class. The incremental risk charge is not allowed to capture
any diversi�cation e¤ects between market and credit risk. This means that the incremental
risk charge is added to the total market risk charge to yield a total market and credit risk
charge for items in the trading book.
A key feature of the incremental risk charge is that banks are allowed to capture the fact

that traded credits - in contrast to the banking book positions - may be actively traded during
the 1 year risk horizon. The trading horizon is speci�ed by the bank although restrictions
on the speci�cation is given. Speci�cally, the trading horizon or liquidity horizon is subject
to a �oor of 3 months. Moreover, investment grade credits are expected to be more liquid
than non-investment grade and hence have a shorter liquidity horizon. In this setting the
liquidity horizon represents the time required to sell the position or to hedge all material risks
covered by the incremental risk charge model in a stressed market. The liquidity horizon
must be measured under conservative assumptions and should be su¢ ciently long that the
act of selling or hedging, in itself, does not materially a¤ect market prices. Moreover, the
liquidity horizon is expected to be greater for positions that are concentrated, re�ecting the
longer period needed to liquidate such positions. This longer liquidity horizon for concentrated
positions is necessary to provide adequate capital against two types of concentration namely
issuer concentration and market concentration.
When trading credits at their liquidity horizon the requirement is that the credit is re-

placed by a credit with the same risk pro�le such that the initial risk level of the portfolio is
maintained. In practice this means that the newly traded credit should have the same initial
rating as the original credit but also that the new credit should not change the portfolio fea-
tures such as concentration. Therefore, in order to preserve the initial risk level from both an
exposure and portfolio perspective the newly traded credit should have the same stand-alone
characteristics as well as correlation with the rest of the portfolio. That is, concentration and
diversi�cation risk is not changed by trading credits.
A bank that applies incremental risk charge to its trading book positions must seek to

validate the model as far as possible empirically using back-testing. However, because of the
limited availability of the historical loss data, other means of testing the model may be used
such as stress testing and scenario testing. The speci�cation of the exposure correlation -
driving the concentration risk - is one of the key parameters that needs to be validated.
Currently many banks employ a corporate-wide portfolio credit risk model to evaluate the

3



potential losses in banking and trading book due to credits deteriorating. This means that
banks have already speci�ed a portfolio credit risk model that de�nes the concentration and
diversi�cation of the portfolio. It is reasonable to expect that the same model is used in the
regular evaluation of banks IRC. However, in banks standard portfolio credit risk model the
concept of liquidity horizon and trading of credits is usually not considered. The assumption
of a 1 year buy and hold portfolio is frequently used even for traded credits. Therefore, in
banks application of the portfolio credit risk model to IRC one of the most crucial parameters
is therefore the choice of the liquidity horizons, and hence, there is a need to understand the
e¤ect the choice of the liquidity horizon has on the required IRC. Below we employ a multi-
factor portfolio credit risk model to a sample of bonds with the purpose of evaluating the
e¤ect the choice of the liquidity horizon has on the required capital for default and migration
risk.

3 The portfolio credit risk model

In our analysis of incremental risk charge for default and migration risk we use a multi-factor
version of the Merton (1974) model. The multi-factor version of a multivariate Merton model
was �rst used in CreditMetrics (1999). The model is in popular use by many banks to estimate
portfolio credit risk. Key aspects of the model are its calibration of sensitivity parameters
to the systematic factors driving default and migration risk as well as the assessment of the
level the unexplained idiosyncratic portion. Another important feature of the model is that
it provides a structural explanation to not only default but also credit migrations. All these
features together make this class of model especially suitable to meeting the IRC requirement.
Below we �rst introduce the univariate and multivariate Merton model and then proceed

to discuss the multi-factor model version.

3.1 The classical Merton (1974) model

In the Merton (1974) structural bond pricing model the objective is to provide the price of a
zero-coupon bond granted to a defaultable �rm for a given period of time. That is, to develop
a theory of the structure of credit risky discount rates. In the original version of the model
there is no market risk involved and the obtained di¤erentials in discount rates are hence
solely due to credit risk. In the setup of the model it is supposed that the �rm has only two
classes of claims

� A single homogenous class of debt.

� The residual claim, equity.

In this simple setup, V (t), the value of the assets of the �rm, follows a geometric Brownian
motion,

dV (t) = �V (t) dt+ �V (t) dW (t)

and on the liability side of the balance sheet of the �rm, the total value is �nanced by equity,
S (t), and one representative zero-coupon (non-callable) debt contract, maturing at time T ,
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with face value K. This gives the identity

V (t) = P (t; T ;R) + S (t)

where P (t; T ;R) is the credit risky bond value. We now note the following: If V (T ) � K
the zero-coupon bond is worth V (T ) whereas if V (T ) > K the zero-coupon bond is worth
K. Hence, the value of the risky debt at time T is

P (T; T ;R) = min (V (T ) ; K)

or,

P (T; T ;R) = K �max [K � V (T ) ; 0]
where we recognize the last term as the terminal value of a standard Black and Scholes (1973)
European put option on the �rms assets with strike price K and maturity T . By the no
arbitrage principle we have, for t < T , that a risk-free debt position K exp (�R (T � t)) is
equivalent to a risky debt position, P (t; T ;R), with paying interest rate R as the non-credit
risky debt, and a long position in a put on the value of the �rm, p. We can therefore write

K exp (�R (T � t)) = P (t; T ;R) + p

and
P (t; T ;R) = K exp (�R (T � t))� p (1)

The holders of the risky debt have hence, with paying rate R, issued a put option on the �rms
assets with strike K. The price of the put option can therefore be interpreted as the cost of
eliminating the credit risk, or, the required premium on R for taking on credit risk.
Disregarding the fact that in practice �rms assets are in general not tradable we apply

standard Black and Scholes reasoning to obtain the value of (1). We arrive at

P (t; T ;R) = K exp (�R (T � t))
�
N (d2) +

V (t)

K exp (�R (T � t))N (�d1)
�

(2)

where N is the cumulative distribution function of the stochastic variable Z � N (0; 1) and

d1 =
ln(V (t)K )+

�
R+�2

2

�
(T�t)

�
p
T�t , d2 = d1 � �

p
T � t. Clearly P (t; T ;R) � K exp (�R (T � t)). The

above analytical expression of the value of credit risky debt expressed in prices is however
simpler to interpret when expressed as an interest rate spread on R, denoting the resulting
credit risky interest rate by eR. Consider therefore the credit risky equivalent bond value,

P
�
t; T ; eR� = K exp�� eR (T � t)� (3)

with,

eR = � ln
�
P
�
t; T ; eR� =K�
T � t
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enabling us to solve for the required eR in (3) yielding
eR = R� 1

(T � t)

�
ln

�
N (d2) +

V (t)

K exp (�R (T � t))N (�d1)
��
: (4)

The required credit spread, in excess of R, is then a function of:

� The leverage ratio, V (t)
K exp(�R(T�t)) or inversely of the quasi-debt ratio,

K exp(�R(T�t))
V (t)

� The volatility of the �rms assets � (i.e., the �rms business risk)

� Maturity of the debt issue (i.e., (T � t))

By declaring a �rm to be in default at time T if V (T )�K < 0 and using the corresponding
risk-neutral asset process

dV (t) = RV (t) dt+ �V (t) dWt

we can �nd

P (V (T ) < K) = P

�
V (t) exp

��
R� �

2

2

�
(T � t) + �Z

p
(T � t)

�
< K

�
where Z � N (0; 1), and hence

P (V (T ) < K) = P

0@Z < ln K
V (t)

�
�
R� �2

2

�
(T � t)

�
p
(T � t)

1A = N (�d2)

is the risk-neutral probability of default (PD). By rearranging (2) as follows

P (t; T ) = K exp (�R (T � t))� exp (�R (T � t)) PD (1� r)

where PD = N (�d2) is the probability of default, K is the exposure at default (face value of

debt) and (1� r) =
h
1� V (t)

K exp(�R(T�t))
N(�d1)
N(�d2)

i
is one minus the recovery rate, r. Hence, we

can now interpret the value of risky-debt as the value of secure debt minus the risk-neutral
expected loss due to default. We note the following regularities

� PD and Loss Given Default (LGD) are not constant through time.

� PD and LGD are codependent.

By approximating the spread equation (4) as follows

eR � R� 1

(T � t)

�
V (t)N (�d1)

K exp (�R (T � t)) �N (�d2)
�

= R +
1

(T � t) PD (1� r) = R +
1

(T � t) PD�LGD :

We can now price risky debt using the equation

P (t; T ) � exp (� (R + �) (T � t))K;

where � = PD�LGD is the �added particle�due to credit risk1.
1The common approximation ln (1 + x) � x is valid here since PD(1� r) � PD is usually very small.
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3.2 The multivariate Merton model

In the previous section we derived the Merton bond pricing model which provided us with
structural estimates of the bond issuer PD as well as the ultimate losses, should default occur.
The probability of default of a single issuer was obtained as,

PD = � (�d2)

where d2 =
ln(VtB )+

�
R+�2

2

�
(T�t)

�
p
T�t � �

p
T � t, B being the nominal debt value, Vt

B
the leverage

ratio with Vt the value of assets. Further R and � are respectively the short-rate of interest
and the volatility of the asset process.
For a portfolio of N bond issuers we are now concerned with the probability that the sum

of N Bernoulli loss indicators, fLigNi=1 attain the value of n � N i.e.,

P

 
NX
i=1

Li = n

!
: (5)

As an extension of the univariate case consider therefore anN -dimensional geometric Brownian
motion process for the asset values, fVitgNi=1

dVt = D [Vt]�dt+D [Vt]�dWt (6)

where � =(�1; : : : ; �N)
0, � is an N by N square root matrix (i.e., ��0 = � the covariance

matrix) given by

� =

26664
�11 �12 � � � �1N
�21 �22 � � � �2N
...

...
...

...
�N1 �N2 � � � �NN

37775
with i; j : th element �ij. Here

�PN
j=1 �

2
ij

� 1
2
= 1 8i. Further D [x] is an N by N diagonal

matrix with the vector x on the diagonal andWt = (W1t; : : : ;WNt)
0 are independent standard

Wiener processes. HoweverWt = �Wt are N correlated Wiener processes. In particular the
instantaneous correlation between W it and W jt is given by

�ijdt = E
�
dW itdW jt

�
� E

�
dW it

�
E
�
dW jt

�
= E

 
NX
k=1

�ikdWkt

NX
l=1

�jldWlt

!
= E

�
�0idWt

�
�0jdWt

�0�
= �0i�j:

In full analogy with the probability of default in the univariate case we here �nd for an issuer
i

P (ViT < Bi) = P

 
Vit exp

  
�i �

PN
j=1 �

2
ij

2

!
(T � t) +

NX
j=1

�ijZj
p
(T � t)

!
< B

!
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with Zj � N (0; 1) yielding,

P

0@PN
j=1 aijZj

(
PN

j=1 �
2
ij)

1
2

<
ln Bi

Vit
�
�
�i �

(�i)
2

2

�
(T � t)

(
PN

j=1 �
2
ij)

1
2

p
(T � t)

1A (7)

= P

0@eZi < ln Bi
Vit
�
�
�i �

(�i)
2

2

�
(T � t)

(
PN

j=1 �
2
ij)

1
2

p
(T � t)

1A = �
�
�di2

�

where aij =
�ij

(
PN
j=1 �

2
ij)

1
2
and eZi = PN

j=1 aijZj

(
PN
j=1 �

2
ij)

1
2
� N (0; 1).

To estimate the probability de�ned in (5) requires the calibration of the asset process pa-
rameters � and �. However, as in the univariate model, we in practice face the problem that
asset values are non-traded and hence unobserved. In practical implementation of the multi-
variate Merton model one therefore use equity data as a proxy for asset values i.e., assuming
that the correlations and volatilities of asset returns and equity returns are comparable.

3.3 Multifactor model for returns and rating migration

A popular version of the multivariate Merton model (cf. CreditMetrics (1999)) employs a
factor model as an approximation to the issuers vector asset process. That is the standardized
returns for issuer i, eZi, is driven by a multi-factor model. The factors are observed indices
such as country indices, sector indices and other global economic factors. The returns of an
issuer i is described by the following linear multi-factor model

eZi = N�X
j=1

�ijZj + �i"i

where the Zj : s are now interpreted as credit factors i.e., Zj � N
�
�j; �j

�
and with �ij the

sensitivity of issuer i to the j : th index factor. The "i : s are assumed to be independent and
identically distributed standard normal variables which are independent of the Zj : s. Since
the Zj : s are not necessarily standardized we can obtain the standardized eZi : s as

Ẑi = �i

 
N�X
j=1

�ijZj

!
+
p
1� �i"i

�i =

s
�i

���0

where� is the covariance matrix of (Z1; :::; ZN) and � =(�1; :::; �N)
2. In this model the default

threshold, as given by the debt level, Bi, in the Merton model is here obtained empirically

2Note here that the horizon of the covariance matrix, �, must be consistent with the simulation horizon
of the standardized factor, Ẑi. For example if � is calculated on monthly data and the simulation horizon is
yearly then � must be scaled by

p
12 for consistency.
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using the observed default frequency. That is for a given observed default probability, p, the
threshold is obtained as N�1 (p) where N�1 is the inverse normal distribution function. For
di¤erent classes of rating categories we have K̂ distinct transition probabilities to the K̂ classes
i.e., for an issuer belonging to class k we have pk1; pk2; :::; pkK̂ . In this case the K̂ thresholds
are obtained from the K̂ transition probabilities and the realized rating is determined by the
realized return, Ẑi, and the thresholds.
In analogy with the Merton model the value of a zero-coupon credit with face value K is

calculated as
P (t; T; k) = exp (� (� (k)) (T � t))K;

where the interest rate for credits in class k, � (k), is determined exogenously from observed
interest rates in the market for similar rated credits.

4 Calculation of incremental risk charges

The calculation of incremental risk charges for a portfolio of credits involves a portfolio credit
risk model for calculation of losses as well as the capability of trading credits at their corre-
sponding liquidity horizon. For the portfolio credit risk model we use a multi-factor model for
each of the issuers to describe the concentration and idiosyncratic risks of the portfolio. At
the liquidity horizon of a bond, the bond is traded for another bond, with the same risk char-
acteristics i.e., with the same initial rating and multi-factor model. The multi-factor model
remains the same between traded bonds to ensure that portfolio level risk characteristics re-
main constant i.e., concentration risk. At a particular horizon the valuation of the bonds use
a credit discount rate that is contingent on the particular realized rating class and the loss
is measured vs. the corresponding credit holding �xed the initial rating at the same horizon.
This way of measuring loss means that the realized loss is only due to downgrades and de-
faults and not due to discounting e¤ects. This is consistent with the fact that incremental
risk charge should not measure market risk e¤ects.
In our analysis of incremental risk charges we simulate losses at the horizons 3, 6, 9 and

12 months and the bonds with liquidity horizon less than 12 months are traded for a bond
with the same risk characteristics as the original bond had at initially. This means that if the
bond had a rating of k at the start of the analysis the bond is replaced by a bond with rating
k at each of the liquidity horizons.

4.1 Bond data and model

The sample data consists of 28 zero-coupon bonds that are distributed across 7 non-default
categorical rating classes corresponding to Moody�s categories of ratings i.e., Aaa, Aa, A,
Baa, Ba, B, and, Caa. A particular bond in a rating class can belong to the di¤erent liquidity
horizons of 3, 6, 9 and 12 months respectively. A bond with liquidity horizon 3 months is traded
at all the possible horizons i.e., 3, 6 and 9 months while a bond with 6 months liquidity horizon
is traded at 6 month horizon. Similarly a bond with 9 month liquidity horizon is traded at
9 month horizon and a bond with 12 month liquidity horizon is a buy and hold bond under
the risk horizon of 1 year. In our sample portfolio all bonds have a face value of 100 units
of currency and the maturity term is set to 4 years. In the valuation of the bonds we use a
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discounting rate that is contingent on the rating of the bond. In particular the 7 non-default
rating classes have associated a credit adjusted interest rate that is used for discounting. Since
all the bonds have a maturity term of 4 years and the analysis horizon is con�ned to one year
it su¢ ces to specify the interest rates used for discounting between 3 and 4 years. Table 1
displays the discounting interest rates used at 3 and 4 years maturity horizon respectively.
Discounting rates between 3 and 4 years are obtained using linear interpolation. In case
of default we assume a recovery of 25% of the exposure amount3. The exposure amount is
here measured as the value holding �xed the initial rating at that particular horizon. The
analysis of the incremental risk charges for the 28 bonds use a transition matrix to describe
the probabilities of migrating from one class to another. Our base transition matrix is the
Moody�s average one year transition matrix between 1920-1996, Moody�s (1997), displayed in
Table 2. The transition matrix has empirical transition probabilities for the Moody�s rating
classes Aaa, Aa, A, Baa, Ba, B and Caa, as well as the default state, D. The matrix has been
estimated conditional on no withdrawal of rating and hence contains no category attributed
to non-rated exposures as is usually the case. We refer to Moody�s, (1997) for details on the
construction of the empirical transition probabilities. In our analysis though we need the 3
month transition matrix to evaluate the transition probabilities for all the 3 month liquidity
horizons i.e., 0-3 months, 3-6 months, 6-9 months and 9-12 months. We therefore construct a
generator matrix from the Moody�s transition matrix (cf. Israel, Rosenthal and Wei, 2001).
The generator matrix, Q, is obtained from the transition probability matrix, A, such that

Q =
nX
k=0

(�1)k D
k+1

k + 1

where D = A� I, with I the identity matrix. The required power, r, of the initial transition
matrix A is then calculated as B = exp (rQ) using the Taylor expansion

B = I+
nX
k=1

(rQ)k

k!
:

In this way we obtain transition probabilities for the 3 months horizon as well as longer
liquidity horizons such as 6 months and 9 months from the generator matrix Q. Table 3
displays the generator matrix, Q, obtained from the Moody�s one year average transition
probability matrix for the Moody�s rating classes Aaa, Aa, A, Baa, Ba, B and Caa, as well as
the default state, D.
In the simulation of the standardized return of an issuer for each of the bonds 1 to 28 we

use the same multi-factor model. The model is a four-factor model with factors, Z1; Z2; Z3 and
Z4 respectively. The four systematic variables are jointly normally distributed with monthly
covariance matrix given in Table 4. The systematic factor parameters or so-called loadings
are given by 0:6231; 0:33; 0:0268; and, 0:0201 for the factors Z1; Z2; Z3 and Z4 respectively.
The idiosyncratic normal random variable has parameter 0:9. This gives a multi-factor model
R2 of 1 � 0:92 = 0:194. In the application of the model we simulate 100,000 samples of the

3We intentionally set the recovery rate low so to ensure that the default state is the maximum loss state
for all bonds. The choice of a low recovery rates will simplify the interpretation of the results.

4In this paper we do not study the portfolio e¤ects of IRC calculations. We have therefore choosen a
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Table 1 Credit adjusted interest rates for the 7 non-default Moody�s rating classes, Aaa, Aa,
A, Baa, Ba, B, and, Caa respectively, for maturity terms 3 and 4 years

Rating Category Interest Rate (3 Years) Interest Rate (4 Years)
Aaa 0.02651775 0.02934361
Aa 0.02687823 0.02990976
A 0.02784931 0.03124889
Baa 0,02933442 0.03306486
Ba 0.03176641 0.03581472
B 0.05451719 0.05929989
Caa 0.12388839 0.12019516

Table 2 Moody�s 1920-1996 average one-year transition matrix for the non-default rating
grades Aaa, Aa, A, Baa, Ba, B and Caa, and, the default state, D

Aaa Aa A Baa Ba B Caa D
Aaa 0.9218 0.0651 0.0104 0.0025 0.0002 0 0 0
Aa 0.0129 0.9162 0.0611 0.007 0.0018 0.0003 0 0.0007
A 0.0008 0.025 0.9135 0.0511 0.0069 0.0011 0.0002 0.00014
Baa 0.0004 0.0027 0.0422 0.8916 0.0525 0.0068 0.0007 0.0031
Ba 0.0002 0.0007 0.0044 0.0511 0.8708 0.0557 0.0046 0.0125
B 0 0.0004 0.0014 0.0069 0.0652 0.852 0.0354 0.0387
Caa 0 0.0003 0.0004 0.0037 0.0145 0.06 0.783 0.1381
D 0 0 0 0 0 0 0 1

factor model for each of the issuers. This is done for all the liquidity horizons of 3, 6, 9 and 12
months using an arithmetic Brownian motion model for the systematic factors Z1; Z2; Z3 and
Z4, and, a normal idiosyncratic variable that is speci�c to each issuer. The realized loss of
the 28 bonds is aggregated across the liquidity horizons such that for a bond with a 3 month
liquidity horizon the loss is aggregated at horizons 3, 6, 9 and 12 months whereas for a bond
with liquidity horizon 12 months the loss is measured as the loss at the 12 month horizon.

4.2 Analysis results

For our 28 sample bonds we calculate the IRC at the 99.9% Value at Risk level by aggregating
the loss across the liquidity horizons. The incremental risk charge results are presented in

stylized model of correlation such that all issues share the same multi-factor model for the systematic factors.
At the same time the multi-factor model for the issuers have been choosen such that it is empiricially realistic
on the issue level - ensuring that the issue level results are realistic.

Table 3 The transition generator matrix obtained from Moody�s 1920-1996 average one-year
transition matrix for the non-default rating grades Aaa, Aa, A, Baa, Ba, B and Caa, and, the
default state, D

Aaa Aa A Baa Ba B Caa D
Aaa -0.081773619 0.07560427 0.006003093 0.00013346 3.0173E-07 2.63646E-05 1.53069E-06 4.59901E-06
Aa 0.01156699 -0.088779698 0.072929533 0.002030102 0.002208302 0 8.70017E-06 3.607E-05
A 0.000972872 0.026312935 -0.090179981 0.055385913 0.005357302 0.002076315 0 7.46447E-05
Baa 0 0.001712761 0.055737266 -0.12446407 0.058023925 0.006935059 0.001059708 0.000995352
Ba 1.30434E-06 0.001087549 0.003450218 0.053100269 -0.155604472 0.079932231 0.003861997 0.014170903
B 0 0.001080588 0.001060703 0.004323729 0.064858352 -0.187323273 0.02646484 0.089535061
Caa 0 0.004971885 0.004650809 0.009388565 0.027274856 0.070929805 -0.360754688 0.243538769
D 0 0 0 0 0 0 0 0
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Table 4 Covariance matrix for the systematic factors in the multi-factor model for the bonds
Z1 Z2 Z3 Z4

Z1 0.007191 0.004117 0.003889 0.002926
Z2 0.004117 0.004845 0.003942 0.003037
Z3 0.003889 0.003942 0.006162 0.002911
Z4 0.002926 0.003037 0.002911 0.002469

Table 5. Table 5 displays the obtained incremental risk charge, the maximum potential loss
and the realized loss ratio for each liquidity horizon, for the bonds in rating classes Aaa to
Caa. While the absolute IRC level in Table 5 is of immediate interest it is also interesting
to focus on the realized loss percentage of the IRC loss to maximum loss. The ratios show
the true risk percentage that is realized, at the 99.9% Value at Risk level, in the IRC model
for the bonds rating grade and liquidity horizon. Because of our choice of a low recovery
rate of 25% in case of default the maximum loss is interpreted as the loss obtained when the
maximum number of defaults that can happen is realized. This means that a bond with a
liquidity horizon of 3 months can default up to 4 times whereas a bond with liquidity horizon
of 6 or 9 months can default up to 2 times and, �nally, a buy and hold bond, having liquidity
horizon 12 months can only default once during the risk horizon of 1 year5.
For the investment grade credits in Table 5 i.e., bonds 1-12 belonging to rating class Aaa,

Aa or A we observe that the incremental risk charge is smallest for the shortest liquidity horizon
of 3 months. For the bonds in rating grade Aaa the IRC is seen to increase substantially when
going from 3 months liquidity horizon to a 6 month liquidity horizon. However, for the 9 and
12 month horizon the IRC decreases signi�cantly compared to the 6 month liquidity horizon,
although not being as low as for the 3 month liquidity horizon. For bonds rated in class Aa
the IRC increase when moving from liquidity horizon of 3 months to 6 and 9 months. But
in contrast to the bonds in rating class Aaa the maximum IRC is achieved for the bonds in
rating class Aa when the bond is a buy and hold bond. The bonds rated in rating category
A have the smallest IRC level with the shortest liquidity horizon of 3 months and is then
constant on a higher level for liquidity horizons of 6, 9 and 12 months. We also observe for
the investment grade bonds that the realized loss ratio increases with decreasing bond rating
quality, and, in general with increasing liquidity horizon.
To understand the obtained results for the investment grade bonds it is useful to consider

the two e¤ects that are involved in the determination of the IRC for a particular bond. Firstly,
for a bond which trade frequently one expects a multiple default risk e¤ect since the newly
traded bond is exposed to default and migration risk. However, for the high investment grade
credits which have a relatively small probability of default we should expect this e¤ect to be
rather small even for high loss quantiles such as at the 99.9% IRC level. The second e¤ect,
working in opposite direction to the multiple defaults e¤ect, is the positive e¤ect of frequent
trading to prevent further downgrades and hence trading frequently in general mitigates the
losses for investment grade credits.
Returning to the analysis of the premium rated bonds i.e., the bonds in rating class Aaa

we observe that the incremental risk charge increase as we move from the liquidity horizon

5In general the loss ratio increases with the liquidity horizon because the longer a bond is held the more
likely it defaults and hence the maximum loss is realized. The worse the rating grade of the bond the closer
the loss ratio is to 100% as the probability of realizing the maximum loss is high.
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of 3 months to 6 and, then, decrease as we move from liquidity horizon 6 months to 9 and
12 months. This result can be interpreted in the context of the two o¤setting e¤ects of short
liquidity horizons yielding a positive probability of multiple defaults (or severe migrations)
and, at the same time, potentially mitigating default by frequent trading. The bond with
liquidity horizon 3 months bene�t from the mitigating e¤ect of frequent trading as the short-
term 3 month default probability is e¤ectively null. However, at the 6 month horizon, as the
IRC increase as well as the realized loss ratio, it seems that there is indeed a multiple defaults
e¤ect. This is because the 6 months liquidity horizon involves two 3 month periods and hence
the 6 months liquidity horizon can e¤ectively give rise to multiple defaults by �rst migrating
in the �rst 3 months and then defaulting at the second 3 month period that is within the 6
months horizon. The bond with liquidity horizon 9 months bene�t from the second trading
period being relatively short at 3 months and hence a default in both the 9 month and 3 month
horizon bond is not possible since the 3 month default probability is e¤ectively null. For the
bond with liquidity horizon 12 months i.e., the buy and hold bond the IRC is the same as
for the bond with a 9 months liquidity horizon. However, the realized loss ratio has increased
from the 9 months bond. On absolute level though, since the 9 months liquidity horizon bond
has the same IRC as the corresponding 12 months buy and hold bond, the second liquidity
period of the 9 months liquidity horizon bond of 3 months contributes very little to IRC.
For the bonds in rating class Aa we note that IRC increases as the liquidity horizon

increases and hence the dominating e¤ect is the positive e¤ect of mitigating losses by trading
frequently. We also observe that the realized loss ratio increases as the liquidity horizon
increases such that the bonds in rating category Aa in general bene�ts from frequent trading
- the mitigating e¤ect of frequent trading being stronger than the multiple defaults e¤ect. For
the bonds in rating category A we also see an increasing realized loss ratio as the liquidity
horizon increase though the actual IRC level remains the same across liquidity horizons of 6,
9 and 12 months. The 3 months liquidity horizon bond having the lowest level of IRC for the
bonds rated A.
For the medium investment grade bonds in rating class Baa we note that the incremental

risk charge level is constant over the 3, 6, 9 and 12 month liquidity horizons. However, the
realized loss ratio increase as we increase the liquidity horizon. In particular, the bond with
liquidity horizon 3 months has a realized loss ratio of 25% whereas the bonds with liquidity
horizon 6 and 9 months have a realized loss ratio of 50%, and, the buy and hold bond with
12 months liquidity horizon has a realized loss ratio of 100%. For the bonds in rating class
Baa the constant level of IRC across liquidity horizons can be attributed to the two e¤ects of
multiple defaults and the e¤ect of the trade truncating the possibility of further downgrades
approximately o¤setting each other. The bonds rated in rating category Ba shows an increase
in the realized loss ratios compared to the Baa rated bond. We also note that the bonds rated
Ba is the �rst rating category that has the minimum IRC level at the 12 months liquidity
horizon i.e., for the buy and hold bond. This is consistent with that, on absolute IRC level,
the e¤ect of multiple defaults being stronger than the mitigating e¤ect of frequent trading for
this rating category.
For the speculative grade rating classes i.e., bonds in rating classes B and Caa Table 5

shows that it is always bene�cial to assume a long liquidity horizon if one wants to minimize
the level of IRC. This is due to the fact that for these bonds the probability of default is severe
and hence the probability of multiple defaults and losses if the credit is allowed to trade is
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quite likely - especially at the high 99.9% level Value at Risk at which the IRC is measured.
The realized loss ratio is 100% or close to 100% for all the bonds in rating categories B and
Caa. The preference for a long liquidity horizon for speculative grade credits, to minimize the
IRC level, is also consistent with the guidance set forth by regulators that they do expect that
lower rated bonds should have a longer liquidity horizon than investment grade bonds. Banks
preferred assignment of longer liquidity horizons for non-investment grade bonds is therefore
consistent with regulators view.
To summarize our above analysis �ndings we note that in the calculation of incremental

risk charges there are two important e¤ects that needs to be considered. Firstly, for bonds
with short liquidity horizons there is a mitigation e¤ect of preventing the bond from further
downgrades by trading it frequently. Secondly, there is the e¤ect of the possibility of multiple
defaults. Of these two e¤ects the multiple default e¤ect will generally be more pronounced
for non investment grade credits as the probability of default is severe even for short liquidity
periods and hence incremental risk charges will generally increase the shorter the liquidity
horizon. For medium investment grade credits these two e¤ects will in general o¤set and
the incremental risk charge will be approximately the same across liquidity horizons. For
investment grade credits the e¤ect of the multiple defaults is low for short liquidity horizons
as the frequent trading e¤ectively prevents severe downgrades. Not surprisingly, this �nding
about preferred liquidity horizons for investment grade and non-investment grade credits,
in the context of IRC, coincides with results in the credit spread term structure modeling
literature. For example, Merton (1974), Sarig and Warga (1989), Fons (1994), Longsta¤ and
Schwartz (1995) and especially Jarrow et al. (1997). That is, that the investment grade
credits have increasing credit spreads and the non-investment grades or speculative grades
have downward sloping spreads re�ecting the survival contingent e¤ects.

5 Summary and conclusions

The incremental risk charge calculations required by regulators represent a substantial chal-
lenge for banks in adapting their current portfolio credit risk models for traded credits to
incorporate assumptions about liquidity horizons. The assigned liquidity horizon for any par-
ticular credit represents the banks view on the time required to fully hedge or sell the credit
without any signi�cant negative liquidity e¤ects on the price. Moreover, the assigned liquidity
horizon should, according to regulators, be valid even under stressed conditions. Using the ex-
perience of the recent crisis this requirement has the practical implication that only investment
grade credits can in e¤ect be considered to have relatively short liquidity horizons whereas
medium grade credits should have fairly long liquidity horizons, and, �nally non-investment
or speculative grade credits need e¤ectively be considered as buy and hold securities. As we
have demonstrated in this paper the market and regulatory rationale for assigning stressed
liquidity horizons to credits is aligned with banks desire to minimize the IRC add-on to the
total market and credit risk regulatory capital charge for the trading book. Speci�cally, there
are two important e¤ects at play that determine the IRC for a particular credit rating and
liquidity horizon. That is, the mitigation e¤ect of preventing the bond from further down-
grades by trading it frequently and the multiple default e¤ect obtained from frequent trading.
In case of medium rating grade credits these e¤ects approximately o¤set each other so that
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Table 5 Maximum loss, incremental risk charge and realized loss ratio for the sample bonds
1 - 28 rated in Moody�s categories Aaa, Aa, A, Baa, Ba, B, and Caa with di¤erent liquidity
horizons of 3, 6, 9 and 12 months

Bond Rating Class Liquidity Horizon (Months) Maximum Loss 99.9% IRC Loss Loss Ratio %
1 Aaa 3 266.74 1.52 0.57
2 Aaa 6 133.37 10.05 7.53
3 Aaa 9 133.37 2.27 1.70
4 Aaa 12 66.68 2.27 3.40
5 Aa 3 266.14 9.85 3.70
6 Aa 6 133.07 9.85 7.40
7 Aa 9 133.07 10.96 8.24
8 Aa 12 66.53 26.9 40.4
9 A 3 262.8 25.79 9.81
10 A 6 131.4 65.70 50
11 A 9 131.4 65.70 50
12 A 12 65.70 65.70 100
13 Baa 3 259.9 64.98 25
14 Baa 6 129.96 64.98 50
15 Baa 9 129.96 64.98 50
16 Baa 12 64.98 64.98 100
17 Ba 3 236.6 76.21 32.2
18 Ba 6 118.30 118.30 100
19 Ba 9 118.30 76.21 64.4
20 Ba 12 59.15 59.15 100
21 B 3 185.43 165.70 89
22 B 6 92.72 92.72 100
23 B 9 92.72 92.72 100
24 B 12 46.36 46.36 100
25 Caa 3 105.56 105.56 100
26 Caa 6 52.79 52.79 100
27 Caa 9 52.79 52.79 100
28 Caa 12 26.39 26.39 100

15



the IRC level remains approximately constant across the choice of liquidity horizon. However,
for non investment grade credits the multiple default e¤ect is stronger such that, in general,
one should expect a lower IRC for a conservative assumptions about the liquidity horizon i.e.,
by assuming the credit is a buy and hold. For investment grade credits the mitigation e¤ect
from frequent trading is generally stronger than the multiple defaults e¤ect due to low default
probabilities, and hence, a short liquidity horizon is preferred for high-quality credits as this
assumption in general gives a lower IRC.
While it is noticeable that the interest of regulators to keep liquidity horizons short only

for investment grade credits is aligned with banks incentives of how to allocate the liquidity
horizons across di¤erent credit grades it is not surprising. Indeed, this �nding, in the con-
text of IRC, that the best allocation of the liquidity horizon across credit qualities, with high
quality credits having short liquidity periods and low quality credits having long liquidity
horizons, coincides with the empirical credit spread term structure. That is, that the invest-
ment grade credits have increasing credit spreads and the speculative grades have downward
sloping spreads re�ecting the survival contingent e¤ects.
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