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Chaos Detection in Economics. 
Metric versus Topological Tools 

 

1. Introduction 

In the analysis performed with traditional statistician methods irregular behaviour of 
some non-linear deterministic systems is not appreciated and when such behaviour is 
manifested in observations, it is typically explained as stochastic. This awareness has 
lead to powerful new to detect and analyze apparently random phenomena that at a 
deeper level could present chaotic behaviours. 
The discovery of chaotic behaviour in economic models led to its search in data1. 
From forecasting movements in foreign exchange and stock markets, to 
understanding international business cycles there was an explosion of empirical 
work searching for chaos in economic and financial time series. Several chaos 
tests have been developed to try to distinguish between data generated by a 
deterministic system and data generated by a random one, stressing that an accurate 
empirical testing of chaos requires the availability of high quality, high frequency 
data. 
The main and more used tests for chaos in economic time series are: correlation 
dimension; Lyapunov exponent; and BDS test. 
Correlation dimension measures the convergence of all the trajectories towards the 
attractor, that’s the global stability; Lyapunov exponent measures local instability, 
that is, the rate of separation between two initially close trajectories, and finally BDS 
test is only a test for non-linearity. 

                                                      
 

1 Some first examples are Brock and Sayers (1986), Sayers (1986), Barnett and Chen (1988a, 1988b), 
Ramsey (1989), Chen (1993). 
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Empirical chaos testing have been applied either in macroeconomics and finance. 
Nevertheless the analysis of financial time series has led to results which are, as a 
whole, more reliable than those of macroeconomic series. Financial time-series are a 
good candidate for analyzing chaotic behaviour. The reason is the much larger 
sample sizes available and the superior quality of that of financial data. Little or no 
evidence for chaos has found in macroeconomic time series. That is due to the 
small samples and high noise levels for most macroeconomic series; they are 
usually aggregated time series coming from a system whose dynamics and 
measurement probes may be changing over time. Therefore none of those studies has 
delivered solid evidence of chaos in economics data. Investigators have found 
substantial evidence for nonlinearity but relatively weak evidence for chaos per se. 
An example in this direction could be the paper by Frank et al. (1988). They tested 
with correlation dimension and Lyapunov exponent quarterly macroeconomic data 
from 1960 to 1980 for Italy, Japan, the United Kingdom and West Germany. Strong 
nonlinearity but not deterministic chaos has been found. The idea of our paper is to 
test the same data using a new tool, visual recurrence, more appropriate than 
traditional ones to discovery chaos in short and noisy time series and to compare the 
different results, if any. 
The paper is set up as follows. In section 2 metric tools features are described 
comparing them with topological ones. In section 3 an alternative tool to overcome 
the problems of metric tools is presented. Finally in section 4 we describe the 
application of VRA to macroeconomic time series analysed by Frank et al. in their 
paper “International chaos?” In section 5 we report the conclusion of our work. 

2. Metric and Dynamical versus Topological Tools 

The methods to analyse time series for detecting chaos could be classified in metric, 
dynamical, and topological ones (Belaire-Franch et al. (2001). Generally the tools 
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used for economic analysis was: correlation dimension2, metric tool; Lyapunov 
exponent3, dynamical tool and BDS test. 
The correlation dimension test was developed in physics by Grassberger and 
Procaccia, (1983). A pure stochastic process will spread all space as evolving, but 
the movements of a chaotic system will be restricted by an attractor. The chaotic 
trajectories converge in the long term on the attractor, showing a global stability that 
is a characteristic of chaotic motion. The correlation dimension is based on 
measuring the dimension of a strange attractor. Its major advantage is the simplicity 
of calculating.  
This analysis provides necessary but not sufficient conditions for testing the 
presence of chaos. In fact, designed for very large, clean data sets, it was found to be 
problematical when applied to short time series. Data sets with only few hundred or 
even a few thousand observations may be inadequate for this procedure 
(Ruelle,1991). 
Lyapunov exponent, based on the evolution in the time between two very close 
points initially, measures the rate of separation between trajectories starting from 
those points. Positive Lyapunov exponent is generally regarded as necessary but not 
sufficient to presence of chaos. As for correlation dimension, the estimate of 
Lyapunov exponent requires a large number of observations. Since few economic 
series of such a large size are available, Lyapunov exponent estimates of economic 
data may not be so reliable. 
One other of the most commonly applied tool is BDS4 test by Brock, Dechert, and 
Scheinkman (1996). It is not a test for chaos but tests the much more restrictive null 

                                                      
 

2 The correlation dimension is metric methods because it is based on the computation of distances on 
the system's attractor. 
3 Lyapunov exponent instead, is a dynamical method because it is based on computing the way near to 
where orbits diverge. 
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hypothesis that the series is independent and identically distributed. It is useful 
because it is a well defined, easy to apply test, and powerful against any type of 
structure in a series. It has been used most widely to examine a variety of economic 
and financial time series5. The application to such data presents numerous problems. 
The first problem is that noise of economic time series may render any dimension 
calculation useless; then, to obtain a reliable analysis, large data sets are required 
(Brock and Sayers 1986). 
Therefore the techniques traditionally used to test the presence of chaos in time series 
show that data quantity and data quality are crucial in applying them but the main 
obstacle in empirical economic analysis is short and noisy data sets.  
In order to facilitate the testing of deterministic chaos and to improve our 
understanding of modern economies, it is worthwhile to develop numerical 
algorithms that work with small data sets, and are robust against noise. This goal 
seems to be reached by topological tools, like recurrence analysis.  
Topological tools are characterised by the study of the organisation of the strange 
attractor, and they include close returns plot and recurrence plot. They exploits an 
essential property of a chaotic system, i.e. the tendency of the time series to nearly, 
although never exactly, repeat itself over time. This property is known as the 
recurrence property.  
The topological method provides the basis for a new way to test time series data for 
chaotic behaviour (Mindlin et al. 1990). It has been successfully applied in the 
sciences to detect chaos in experimental data, but can also provide information about 
the underlying system responsible for chaotic behaviour (Mindlin et al. 1990; 
Mindlin and Gilmore, 1992). In fact, as the topological method preserves time 

                                                                                                                                          
 

4 “Details of which may be found in Dechert (1996). Subsequent to its introduction, the BBS test has 
been generalised by Savit and Green (1991) and Wu, Savit, and Brock (1993) and more recently, 
DeLima (1998) introduced an iterative version of the BBS test” MacKenzie (2001). 
5 For a survey see Faggini 2008, 2009. 
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ordering of the data, where evidence of chaos is found, the researcher may proceed 
to characterise the underlying process in a quantitative way. Thus, one is able to 
reconstruct the stretching and compressing mechanisms responsible for generating 
the strange attractor. It works well on relatively small data sets, is robust against 
noise, and preserves time-ordering information (Gilmore,1993). 

3. Recurrence Analysis: VRA 

Recurrence Analysis, based on topological approach, was used to show recurring 
patterns and non-stationarity6 in time series (Zbilut et al., 2000). It was applied to 
study chaotic systems because recurring patterns are among the most important 
features of chaotic systems(Cao and Cai, 2000). In this way has been possible to 
reveal correlation in the data that is not possible to detect in the original time series 
and is particularly suitable to investigate the economic time series that are 
characterised by noise and short data sets, output of high dimensional systems 
(Trulla L. et al., 1996, p. 255). Recurrence Analysis software7 used for our analysis 
is VRA8 – Visual Recurrence Analysis by Eugene Kononov9. It is based on 
Recurrence Plot, graphical analysis and Recurrence Quantifications Analysis, 
numerical analysis. 

                                                      
 

6  “system properties that cannot be observed using other linear and non linear approaches and is 
specially useful for analysis of non stationarity systems with high dimensional and /or noisy dynamics", 
see Holyst et alt. (2000). 
7 For a survey see Belaire-Franch et al. (2001) 
8 Among the free tools of non-linear time series used for this kind of analysis, VRA is more complete 
and easier to use. It works under Windows and it is possible to obtain both graphical analysis, the RP, 
and the analysis statistics with RQA. Moreover, while in others tools such as Tisean, RQA, Dataplore, 
Santise, REc Plot we have to insert the value of delay and dimension calculated with different 
algorithms, VRA provides also the technique used for calculating delay(MIF) and dimension (FNN). 
Moreover, differently from RQA (http://homepages.luc.edu/~cwebber/) VRA allows to split the time 
series into epochs, so it is possible to know its behaviour (stationary, non-stationarity and chaos) and 
ratios at local level. Vice versa, RQA shows global behaviour and ratios. 
9 http://home.netcom.com/~eugenek/download.html 
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Recurrence Plot (RP) is a graphical tool that evaluates the temporal and phase space 
distance. It is a method by Eckmann et al. (1987) designed to locate hidden recurring 
patterns, non-stationarity and structural changes.  
The RP, based on the Space State Reconstruction10, is a two dimensional 
representation of single trajectory. It is formed by a 2-dimensional M x M (matrix) 
where M is the number of embedding vectors Y(i) obtained from the delay co-
ordinates of the input signal. In the matrix the point value of coordinates (i, j), is the 
Euclidean distances between vectors Y(i) and Y(j). In this matrix, horizontal axis 
represents the time index Y(i) while the vertical one represents the time shift Y(j). A 
point is placed in the array (i,j) if Y(i) is sufficiently close to Y(j). This closeness is 
measured by a critical radius and a point is plotted as a coloured pixel only if the 
corresponding distance is below or equal to this radius. Generally dark colour shows 
the short distances and a light colour the long one. 
To explain how to interpret this graphical tool we will use the samples of VRA. We 
start by considering a random time series (White noise). The plot (fig. 1b) has been 
built using delay 1 and dimension 12 as selected respectively from mutual 
information function and false nearest neighbours. As we can see in fig.1b, the plot 
of random time series shows recurrent points distributed in homogenous random 
patterns. That means random variable lacks of deterministic structures. Always in 
Fig.1 it is possible to characterize stationary and non-stationary processes. If the 
texture of the pattern within such a block is homogeneous, stationarity can be 
assumed for the given signal within the corresponding period of time; non-stationary 

                                                      
 

10  This approach is founded on flow of information from unobserved variables to observed variables 
and is widely used to reduce multivariate data to a few significant variables. The basic idea is that the 
effect of all the other (unobserved) variables is already reflected in the series of the observed output and 
the rules that govern the behaviour of the original system can be recovered from its output. Kantz and 
Schreiber (2000). 
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systems cause changes in the distribution of recurrence points in the plot which is 
visible by brightened areas.  
 

 
 
 
 
 
 
 
 
 
 
 
 

(a)        (b) 
 

  
(c) 

Fig. 1.Examples by VRA. (a) Periodic time series; (b) White Noise; (c) Henon equation 

Diagonal structures show (fig. 1c) the range in which a piece of the trajectory is 
rather close to another piece of the trajectory at different times. The diagonal length 
is the length of time how long they will be close to each other and can be interpreted 
as the mean prediction time. 
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From the occurrence of lines parallel to the diagonal in the recurrence plot, it can be 
seen how fast neighboured trajectories diverge in phase space. The line segments 
parallel to main diagonal are points close to each other successively forward in time 
and would not occur in a random as opposed to deterministic process. So if the 
analysed time series is deterministic, then the recurrence plot shows short line 
segments parallel to the main diagonal; on the other hand, if the series is white noise, 
then the recurrence plot does not show any structure. Chaotic behaviour causes very 
short diagonals, whereas deterministic behaviour causes longer diagonals (fig.1a vs 
fig.c). Therefore, the average length of these lines is a measure of the reciprocal of 
the largest positive Lyapunov exponent. 
The graphical output of RP is not easy to interpret. The signature of determinism, the 
set of lines parallel to the main diagonal might not be so clear. In fact, the recurrence 
plot could contain subtle patterns not easily ascertained by visual inspection. As a 
consequence Zbilut et alt. (1998, 2000) proposed statistical quantification of RP, 
well-know as Recurrence Quantification analysis (RQA). 
RQA defines measures for diagonal segments in a recurrence plots. These measures 
are recurrence rate, determinism, averaged length of diagonal structures, entropy 
and trend.  
Recurrence rate (REC) is the ratio of all recurrent states (recurrence points 
percentage) to all possible states and is the probability of recurrence of a special 
state. REC is simply what is used to compute the correlation dimension of data. 
Determinism (DET) is the ratio of recurrence points forming diagonal structures to 
all recurrence points. DET11 measures the percentage of recurrent points forming line 
segments which are parallel to the main diagonal. A line segment is a points’ 

                                                      
 

11 “This is a crucial point: a recurrence can, in principle, be observed by chance whenever the system 
explores two nearby points of its state space. On the contrary, the observation of recurrent points 
consecutive in time (and then forming lines parallel to the main diagonal) is an important signature of 
deterministic structuring” Manetti et al. (1999) 
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sequence equal to or longer than a predetermined threshold (Giuliani et alt. 1998). 
These line segments show the existence of deterministic structures, the absence, 
instead of randomness. 
Maxline (MAXLINE) represents the averaged length of diagonal structures and 
indicates longest line segments which are parallel to the main diagonal. It is claimed 
to be proportional to the inverse of the largest positive Lyapunov exponent. A 
periodic signal produces long line segments, while the noise doesn't produce any 
segments. Short segments indicate chaos. 
Entropy (ENT) (Shannon entropy) measures the distribution of those line segments 
which are parallel to the main diagonal and reflects the complexity of the 
deterministic structure in the system. This ratio indicates the time series structurness, 
so high values of ENT are typical of periodic behaviours while low values of chaotic 
behaviours ones. The high value of ENT means a large diversity in diagonal line 
lengths, slow values instead small diversity in diagonal line lengths (Trulla et alt., 
1996). “[...] short line max values therefore are indicative of chaotic behaviours” 
(Iwanski and Bradley, 1998; Atay and Altintas, 1999). 
The value trend (TREND) measures the paling of the patterns of RPs away from the 
main diagonal (used for detecting drift and non-stationarity in a time series).  
In the fig. 1b the visual features are confirmed by the ratios calculated with RQA. 
We can see that the REC and DET assume values equal to zero, so, in time series 
there are no recurrent points and no deterministic structure. These features are more 
evident if we compare REC and DET of time series with one of sine function 
(fig.1a). The plots of sine function are more regular and REC shows not only the 
recurrent point in each epoch but also that this value is the same. DET values are 
high meaning strong structure in the time series confirmed by the MAXLINE values 
which are also high, so deterministic rules are present in the dynamics. Comparing 
the fig. 1a and fig. 1c it is possible to see that if the analyzed series is generated from 
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a determinist process in the RP there are long segments parallels to the main 
diagonal. If the data are chaotic these segments are short. 

4. International chaos analysis 

In their paper Frank, Gencay, and Stengos, (1988) analyze the quarterly 
macroeconomic data from 1960 to 1988 for West Germany, Italy, Japan and 
England. The goal was to check for the presence of deterministic chaos. To ensure 
that the data analysed was stationary they used a first difference then tried a linear 
fit. Using a reasonable AR specification for each time series their conclusion was 
that time series showed different structures. In particular non linear structure was 
present in the time series of Japan. Nevertheless the application of typical tools for 
detecting chaos (correlation dimension and Lyapunov exponent) didn’t show 
presence of chaos in any time series. Therefore none of the countries’ income 
appeared to be well interpreted as being chaotic.I applied VRA to these time series 
with purpose to verify if the analysis performed by a topological tool could give 
results different from ones obtained using a metric tool  
The time series12 chosen are GNP of Japan and GDP of United Kingdom. The choice 
is based on the fact that Japan is considered among four of the most dissimilar ones. 
In fact, in order to filter this series, the authors used an Ar-4, while for the others an 
Ar-2 was used. For this series they refuse the hypothesis IID and the correlation 
dimension value calculated for various values of M, (the embedding dimension), 
grows less compared to the growth of the value of the embedding dimension. There 
is a saturation point. 
In fact for calculated values of M, 5, 10, 15, the dimension of correlation is 
respectively, 1.3, 1.6, 2.1, against values of 1.2, 3.8, 6.8 of the series shuffled.The 
rejection of the IID hypothesis, the value of correlation dimension and the 

                                                      
 

12 the analysis performed by Frank et al. (1988) the data are for the Japan Real GNP seasonally 
adjusted, quarterly from 1960 to 1988 and for United Kingdom from 1960 to 1988. Source Datastream 
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comparison with value of shuffled series, and the presence of nonlinearity pushed the 
authors to suspect that time series could be chaotic. However, tested with the 
Lyapunov exponent, the conclusion was that data didn’t manifest chaotic behaviour. 
In fact the value of the Lyapunov exponent test was negative13. They shown that 
Japan’s economy is the most stable of the analysed countries. 
Therefore, although the presence of nonlinearity and correlation dimension values 
pushed to admit chaotic behaviour in the time series, Lyapunov exponent test has not 
supported this hypothesis. Probably, as admitted by the same authors, this conclusion 
could be given by the shortness of series. “With longer time series matters could 
change” (Frank et alt., 1988, p. 1581). 
The GDP time series of United Kingdom has been chosen because, as emphasized by 
the authors, for it as for Germany time series is not rejected by the hypothesis IID. 
The behaviour of correlation dimension is the same for all three European 
countries14.  
The increase of the embedding dimension corresponds to sustained increase of the 
dimension of correlation.Such increase is also characterised in time series shuffled 
obtained from the time series fits with Ar-2. From this conclusion and considering 
that the values of Lyapunov exponent test were negative the authors conclude that 
European time series didn’t show non-linearity and in particular chaotic behaviour.  

Japan and United Kingdom data and VRA 

The Recurrence Plot (RP) of Japan GNP is shown in the Fig.2a. This was built using 
a delay-time and embedding dimension respectively equal to 2 and 7. The analysis of 
VRA using the shuffled series of Japan is described in Fig. 2b. 
Comparison between RP of the original time series (Fig.2a) and RP of the shuffled 
series (Fig. 2b) allows to highlight that the first is non-stationary. The different and 

                                                      
 

13 See “Table 4” p. 1580, in Frank et alt., (1988). 
14 Table 2, p. 1579 in Frank et alt., (1988). 
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diversified colours allow us to support that the more homogenous coloration from 
the shuffled series (Fig. 2b) is typical of stationary data.  

            

(a)                                                 (b) 
Fig. 2 (a) RP of Japan GNP; (b) shuffled time series 

In table 1, RQA results are indicated for both time series: shuffled and not. For the 
original series REC is positive meaning that the data are correlated.  
DET is also positive indicating that roughly 43% of the recurrent points are 
consecutive in the time, that is, form segments parallel to the main diagonal. This 
indicates that in the data there is some type of structure. As we saw in the (fig. 1a) 
long segments indicate that the series is periodic, short segments that the series is 
chaotic (fig. 1c). The value of MAXL is 28. This value indicates length of the longer 
segment  in terms of recurrent points of the longer segment and allows to say that the 
data are non-linear and it is not possible to exclude the presence of chaotic behaviour 
The statistics of the RQA (Tab.1) indicate that the shuffled series has lost all 
information, there are no recurrent points (REC), or segments parallel to the main 
diagonal (DET). Therefore, no type of deterministic structure is present. This 
consideration is confirmed by the fact that the value of the MAXL is negative. 
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From comparison between original time series and its shuffling we can conclude that 
the data of Japan GNP are characterised by non-linearity, confirming the result 
performed by Frank et al. (1988), and they are non stationary.  

 
 Japan  

GDP 1960-1988 Shuffled 

Delay 2 2 
Dimen

sion 
7 8 

REC 2.314 0.0 
DET 48.485 -1 
ENT 1.00 0.0 
MAX
L 

28 -1 

TREN
D 

-87.39 0.0 

Table 1. RQA Statistics of original and shuffled time series 

Our conclusion regarding the presence of chaotic behaviour is different15: the data 
can be chaotic. Therefore, if the authors ascribe the result of their analysis to the 
shortness of the time series highlighting that with longer time series it could be 
possible to reach a contrary result16, the VRA analysis, that can be applied and gives 
reliable results also with short data sets, shows presence of chaotic behaviours in 
those data. 
In the Fig. 3 we can see the RP of the United Kingdom GDP. This was built with 
delay-time and embedding dimension respectively equal to 1 and 8. By comparing 

                                                      
 

15 “[…] None of these countries’ national income would appear to be well interpreted as being 
chaotic.”, Frank et al. (1988), p. 1581. 
16 “[…] When interpreting the findings one must be cautions given the shortness of the series. With 
longer time series matters could change”, Frank et al. (1988), p. 1581. 
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the RP of the original time series (Fig. 3a) and its shuffling (Fig.3b) we deduce that 
the time series is non-stationary: the economy of the United Kingdom is 
characterised by a period of structural change.  

          
(a)  (b) 

Fig. 3. (a) RP of UK GDP; (b) shuffled time series 

Table 2 summarises the statistics of RQA for original time series and its shuffling. 
The statistics of original time series indicate that in the data there are recurrent points 
(REC positive), that is, more than 8% of the points that compose the area of the RP’s 
triangle are correlated.  
Of this 8%, 32% (DET) shapes segments parallels to the main diagonal, indicating 
the presence of determinist structures. This conclusion is confirmed by the presence 
of a positive value of the MAXL. The same ratios of shuffled series are characterised 
by zero values or negative. 
 

 United 
Kingdom 
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GDP 1960-1988 Shuffled 

Delay 1 1 
Dimen

sion 
8 9 

REC 8.458 0.0 
DET 32.009 -1 
ENT 1.972 0.0 
MAX
L 

26 -1 

TREN
D 

77.803 0.0 

 
Table.2. RQA Statistics of original and shuffled time series 

Comparing our analysis with that performed by Frank M., et al. (1988) it is possible 
to highlight some points of difference. While they do not refuse hypothesis IID, the 
analysis led with VRA induces us to refuse this hypothesis and to emphasize the 
presence of structure. The data of the United Kingdom are non-linear and this 
nonlinearity can be interpreted as chaos. 
The MAXL and DET value, in fact, confirm that. Also for the United Kingdom as 
for Japan, Frank M., et al. (1988) emphasized that the analysis carried out on longer 
series could have obtained different results, that we reached. A different conclusions 
concern also the fact that, while for Frank M., et al. the economy of Japan seems 
more stable than that of the European countries our analysis (also if limited just to 
the United Kingdom) is performed from a different point of view. While in Frank 
M., et al. the comparison was made between stable economies, our analysis is based 
on unstable economies. The economy of Japan in these years (60-88) is less unstable 
than that of UK. 
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5. Conclusions 

To examine chaotic behaviour of time series a variety of methods have been 
invented. Their importance in examining the chaotic structure lies not only in their 
usefulness in analysing the non-linear structure but also in their relevance and 
potential utility to distinguish between stochastic behaviour and deterministic chaos 
(Pasanu and Ninni, 2000). These ones was widely used in physics to detect chaos.  
However, not all of the approaches developed by physicists are applicable in 
economics because most of those methods require a large amount of data to ensure 
sufficient precision. There are, therefore advantages and disadvantages to each of 
these tools.  
A recent development in the literature has been the introduction of the tools based on 
topological invariant testing procedure (close return test and recurrence plot). 
Compared to the existing metric class of testing procedures including correlation 
dimension, the BBS test, and Lyapunov exponent these tools could be better suited 
to testing for chaos in financial and economic time series.  
Therefore, after a description and comparison between metric and topological tools 
we tested some macroeconomic time series already analysed with traditional test for 
chaos (Frank et al. 1988).  
The application of typical tools for detecting chaos (correlation dimension and 
Lyapunov exponent) didn’t show the presence of chaos in any time series. The 
conclusion of authors is that none of the countries’ income appeared to be well 
interpreted as being chaotic. The authors ascribe their result to shortness of time 
series highlighting that with longer time series it could be possible to reach a 
contrary result.Testing these time series with Visual Recurrence Analysis based on 
the topological approach has provided different conclusions. Our analysis, although 
performed using a short time series  indicates the presence of chaotic behaviour in 
Japand and United Kingdom time series. From our analysis compared with the more 
conventional one by Frank et al. (1988) it is possible to conclude that topological 
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approach can be more useful for economic analysis performed on short time series, 
typical of economy. 
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