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Abstract 

Background: The equipments for taking body weights (scales) are more frequent in Cameroon health centres 
than measuring boards for heights. Even when the later exist there are some difficulties inherent in their 
qualities; thus the height measurement is not always available or accurate.  
Objective: To construct statistical models for predicting wasting from weight-for-age. 
Methods: 3742 children a1ged 0 to 59 months were enrolled in a cross-sectional household survey (2004 
Cameroon Demographic and Health Surveys (DHS)) covering the entire Cameroon national territory. 
Results: There were highly significant association between underweight and wasting. For all discriminant 
statistical methods used, the test error rates (using an independent testing sample) are less than 5%; the Area 
Under the Curve (AUC) using the Receiver Operating Characteristic (ROC) is 0.86. 
Conclusions: Weight-for-age can be used for accurately classifying a child whose wasting status is 
unknown. The result is useful in Cameroon as too often the height measurements may not be feasible, thus 
the need for estimating wasted children.  
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Introduction  

Childhood undernutrition is one of the important health problems in developing countries. 

More than 3.6 million mothers and children die each year as a result of undernutrition (1). The 

evaluation of young children’s nutritional status uses the Z-score which measures the distance, 

expressed in standard deviations of the standard (reference) population between the individual‘s 

anthropometry and the median of the standard (reference) population. The most frequent 

anthropometric indicators are height-for-age, weight-for-height and weight-for-age. A Z-score 

greater than 2 would indicate over-nourishment with respect to the corresponding anthropometric 

measurements. Deficits on these indicators (measured by their values less than -2 standard 

deviations below the median based on the 2006 WHO Child Growth Standards (18), i.e. both severe 

and moderate status for each of the above anthropometric measurements) are known as stunting, 

wasting and underweight respectively. Some criticisms have been raised regarding the reliability of 

these indicators. These include the fact that the assumption that the expected weight for a given 

height does not depend on age is unjustified for constructing the weight-for-height index (2-4). For 

instance, Cole (2, 4) proposed an age-standardized version of weight-for-height. For the 2006 WHO 

Child Growth Standards, the standard population is an international sample which is constituted of 
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Brazil, Ghana, India, Norway, Oman and the United States of America (USA), whereas the 

reference one for NCHS/CDC/WHO is constituted solely of the USA sample population (5-7).  

The Millennium Development Goals (MDG) focus on fighting against poverty, mortality, 

morbidity and undernutrition (8). One of the aims is to reduce by half the prevalence of underweight 

among children by 2015. Such an initiative requires the identification of the determinants of 

undernutrition for the design of appropriate policy interventions.  

We are not interested here in the determinants of undernutrition; rather on relationships 

between the anthropometric measurements. From a practical point of view, apart from the data on 

age that are easily obtained from recorded files, equipments are required to perform anthropometric 

assessment. For weight and height, the most common types of equipment used are scales and 

measurement boards. In Cameroon, electronic scales are available in most health centres. However, 

the measurement boards for height are not always available, making it difficult to have data on 

height. Baby balances that are calibrated for length or height are not also available. Given that high 

association has been reported between underweight and wasting (5-6, 16-17, 24), the main objective 

of this paper is to find out statistical discriminant models to predict wasted children from their 

weight-for-age scores without the use of height measurements. 

 

Methodology 

Data for 3742 children aged 0 to 59 months were obtained from the 2004 Cameroon 

Demographic and Health Survey (DHS) that was carried out by Cameroon’s National Institute of 

Statistics and ORC Macro (USA). The sample of Cameroon’s DHS was a nationally representative 

household survey that used a two-stage stratified random sampling design. The first stage was the 

selection of primary sampling units (PSU) within each of the 22 strata and the second was the 

selection of households within each PSU. The survey consisted of a household questionnaire and a 

women's questionnaire. On the average, 22 households were selected in an urban PSU and 28 in a 

rural PSU for a total of 11584 households. Women aged 15-49 years identified in the households 

were interviewed. The women's questionnaire contained information on several topics including: 

background characteristics, contraceptive knowledge and use, maternity and breastfeeding, 

immunization of children, diarrhoea, fever, and cough in children, marriage, fertility preferences, 
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husband's background, work status, age, height and weight of children. A more general description 

of the DHS methodology can be found in Rutstein and Rojas (17). 

The methodology for computing anthropometric indicators was based on the 2006 WHO 

Child Growth Standards. Statistical models used include the following discriminant analysis: Linear 

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbour 

(KNN), Epanechnikov Kernel Discriminant (EKD), Normal Kernel Discriminant (NKD), Logistic 

Discriminant Analysis (LDA), Support Vector Machine (SVM), Neural networks (NNET), Mixture 

Discriminant Analysis (MDA), Flexible Discriminant Analysis (FDA), Multivariate Adaptive 

Regression Splines (MARS) and Adaptive Backfitting (BRUTO). The K-nearest neighbour (K-NN) 

discriminant uses K=3. The method is relatively insensitive to the choice of K, especially for large 

samples (19). This was the case in our application; different values of K did not lead to substantial 

differences. Kernel nonparametric discriminant method such as Epanechnikov and normal were 

used with radius 0.3. Varying the radius did not substantially modify the result. Other kernel 

methods such as uniform, biweight and triweight yield similar results. Logistic regression was used 

to model the probability of being wasted. A description of these methods can be found in Hastie et 

al. (20). 

Discriminant Analysis (DA) is a multivariate technique designed to find boundaries that 

separate items belonging to two or more known groups (19). It provides a different perspective of 

viewing wasting as a one-dimensional summary of weight-for-age (underweight). The coding was: 

wasting =underweight=1; not-wasting= =not-underweight=0. The response variable was wasting 

status whereas the predictor was weight-for-age. The sensibility measures the ability of the 

technique to correctly classify wasted children. It is the percentage of wasted children that the 

technique correctly classifies as such. The specificity measures the ability of the technique to 

correctly classify not wasted children. It is the percentage of not wasted children that the technique 

correctly classifies as not wasted children. True positive (TP) is the number of wasted children 
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correctly classified; False negative (FN) is the number of wasted children incorrectly classified; 

True negative (TN) is the number of not wasted children correctly classified and False positive (FP) 

is the number of not wasted children incorrectly classified. 

Ideally, one would like the sensibility and specificity to be 1. However it is not uncommon 

to have higher sensitivity but lower specificity (or the reverse). A receiver-operator characteristic 

(ROC) curve helps to visualize and understand the magnitude of the tradeoff between sensitivity 

and specificity, especially when the technique involves making a choice between continuum cut-off 

values. Because of the tradeoff between sensitivity and specificity, the Area Under the Curve 

(AUC) and the error rate are common tools for measuring the quality a discriminant model. A 

perfect model has AUC of 1 and no error rate. 

In order to determining the test error rate, we randomly split the data (3742 children) in two, 

two thirds (2495) for estimating the discriminant model and one third (1247) for prediction. This 

avoided using the same data for estimation and prediction. 

 Statistical analyses were performed with the Statistical Analysis Systems statistical software 

package version 6.12 (SAS Institute, Cary, NC, USA) (21) and R (version 2.7.1) (22). 

 

 Results 

Wasting was observed in 5.5% of children and underweight in 12.9%. As expected, Figure 1 shows 

that the predicted probability of being wasted (using logistic regression) decreases as the weight-

for-age score increases. Pearson’s correlation between weight-for-age and weight-for-height was 

0.6. Underweight status was associated with wasting (Pearson's chi-squared = 534.4, P=0). 

Table 1: Discriminant analysis methods for Wasting as function of weight-for-age  

Discriminant Method 

   

Estimated parameters 

TP FP FN TN Se Sp Test error rate 

 Linear Discriminant Analysis (LDA) 13 8 45 1181 0.224 0.993 0.043 

Quadratic Discriminant Analysis (QDA) 13 9    45 1180 0.224 0.992 0.043 
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 K-Nearest Neighbour (KNN) 17 16 41 1173 0.293 0.987 0.046 

 Epanechnikov Kernel Discriminant (EKD) 13 8 45 1181 0.224 0.993 0.043 

 Normal Kernel Discriminant (NKD) 9 2 49 1187 0.155 0.998 0.041 

Logistic Discriminant Analysis (LDA) 13 9 45 1180 0.224 0.992 0.043 

Support Vector Machine (SVM) 9 3 49 1186 0.155 0.997 0.042 

Neural networks (NNET) 11 8 47 1181 0.190 0.993 0440 

Mixture Discriminant Analysis (MDA) 15 13 46 1176 0.259 0.989 0.045 

Flexible Discriminant Analysis (FDA) 13 8 45 1181 0.224 0.993 0.043 

Multivariate Adaptive Regression Splines (MARS) 14 12 44 1177 0.241 0.990 0.045 

Adaptive Backfitting (BRUTO) 13 9 45 1180 0.224 0.992 0.043 

 

The comparison between true wasting status (from data) and the predicted wasting status (using 

DA) shows that the agreement is excellent between both as evidenced by low error rates in Table 1. 

The grouping of children given in the data is almost identical to that obtained using DA, using an 

independent sample of children. The predictive ability of various discriminant analysis methods is 

demonstrated by their test error rate less than 5%. Figure 2 shows an AUC of 0.86, providing 

evidence of a good classification. 
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Figure 1: Predicted probability of being wasted using logistic regression as function of weight-for-age.  
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Figure 2 ROC Curve for Wasting Status 

 

Discussion 

According to WHO classification, the 5.5% observed for wasting and 12.9% for 

underweight are both considered medium. These figures are slightly different from the 5.0% and 

13.2% respectively for wasting and underweight that were obtained using the NCHS/CDC/WHO 

international reference standard worldwide used prior to year 2006. 

The results of these studies only apply to this sample and associations may change 

depending on sample's settings, age range, and prevalence rates. Thus a multi-country study could 

be carried out to find out how the results would vary across countries. One can also perform an 

ecological study across selected countries (or all countries with similar available data). However, 

the drawbacks of such studies are well known. The results may be very different at the individual 

level. It is well known that ecological correlation studies should be interpreted with caution (23). De 
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Onís et al. (24) performed an ecological correlation analysis of 22 African countries and found that 

the prevalence of underweight was positively associated with wasting and stunting and there was a 

very low correlation between wasting and stunting. Victora (25) showed similar results for others 

African countries. Similar results can also be found in CDC (26). Blössner et al. (27) also in an 

ecological study using 122 countries developed a simple regression model using least squares 

method to predict the prevalence of stunting from the prevalence of underweight. Their models 

performed well only for the region of Asia and the prediction was not reliable for other regions. In 

related studies with thirty-eight anthropometric surveys of Brazilian children aged up to 5 years, 

Victora et al. (28) used the prevalence of weight deficits to estimate that of height deficits with a 

linear model and concluded that anthropometric surveys as conducted in Brazil, in the context of 

health services, can be simplified by measuring weight only, instead of both weight and height. 

Various factors can affect undernutrition: inadequate intake of vitamins and minerals, sub-

optimal breastfeeding and complementary feeding practices, socioeconomic factors, demographic 

and environmental characteristics, food intake that is continuously insufficient to meet dietary 

energy requirements, poor absorption and/or poor biological use of nutrients consumed may affect 

undernutrition. There is a sizeable literature on the determinants of undernutrition using 

anthropometric indicators as dependent variables (9-15). It is important to note that two other (less 

popular) methods for evaluating the children’s nutritional status are the percentage of the median 

and the percentile methods. WHO Child Growth Standards can serve as a diagnostic tool to assess 

unhealthy trends. In addition, the standard could help in monitoring the nutritional status of 

communities and alert practitioners and policymakers to unhealthy trends in the population. 

Stunting status, usually referred as chronic (past) undernutrition (growth retardation) represents a 

measure of long term effects of malnutrition in a population and does not vary significantly 

according to the season of data collection (16). Wasting status, usually referred to as acute (current) 

undernutrition (emaciation) is appropriate for examining short-term effects such as seasonal 

changes in food supply or short-term nutritional status due to a factor like an illness. Underweight 

takes into account both chronic and acute undernutrition and is usually used to monitor nutritional 

status on a longitudinal basis. This suggests that the choice of a particular anthropometric indicator 

depends on the goal of the policy maker, i.e. no single index is to be used for all situations.  

 
 
 
 
 
 
 



9 

 

Conclusions 
 

In Cameroon, measuring boards for height measurements of children are not always 

available in some health centres. The weight-for-age scores can be useful for predicting the wasting 

status of children in these centres. This will help to start a nutrition intervention immediately. 

Malnutrition complications that could lead to morbidity and mortality can be greatly arrested and 

this will go a long way in reducing the cost of health care in Cameroon. 
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