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Abstract

This paper estimates for 28 product groups a characteristic parameter that re-

flects the topological structure of its trading network. Using these estimates, it then

describes how the structure of international trade has evolved during during the 1980-

2000 period. Thereafter, it demonstrates the importance of networks in international

trade by explicitly accounting for their scaling properties when testing the prediction

of the Heckscher-Ohlin model that factor endowment differentials determine bilat-

eral trade flows. The results suggest that differences in factor endowments increase

bilateral trade in goods that are traded in “dispersed” networks. For goods that are

traded in “concentrated” networks, factor endowment differentials are less important.
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1 Introduction

The Heckscher-Ohlin (H-O) model, in its most basic version, relates bilateral trade flows

between two countries to differentials in their factor endowments. It predicts that countries

will specialize in the production of such goods that require factors with which they are

abundantly endowed. Consequently, they will tend to export these goods, and import

those which contain factors with which they are poorly endowed.

Because of its intuitive appeal, the H-O model continues to be one of the workhorse

models of international trade. However, both anecdotal evidence and empirical tests tend

to reject it. Negative empirical results have been obtained as early as in the fifties of the

last century (Leontief, 1953), they have been reaffirmed more recently by Maskus (1985),

Bowen et al. (1987), and Trefler (1995).1

In response to these negative findings, several contributions have tried to reconcile the

H-O model with the data. In general, it is argued that the assumptions underlying the

basic H-O model are either too strict or altogether inappropriate. First, the assumption

of identical production technologies, which is implicit in the original H-O model, is often

questioned (Hakura, 2001). Second, it is argued that a more disaggregated concept of

factor endowments than the simple dichotomy between capital and labor is appropriate

(Nishioka, 2006). Third, it is found that once the assumption of universal factor price

equalization is relaxed, the H-O model performs well in empirical tests (Davis et al., 1997).

In this paper, we contribute to the literature trying to reconcile the data with the

predictions of the H-O model. We argue that one explanation for the poor empirical

performance of the basic H-O model is that previous empirical studies generally neglect

the fact that international trade takes place in complex networks, i.e. through bilateral

interactions and negotiations between well-defined exporters and an importers, and not

1With regard to anecdotal evidence, consider for example the stylized fact that most trade takes place
among OECD countries– all of which are comparatively well endowed with capital.



on anonymous markets with infinitely many agents who are faced with exogenous product

prices and characteristics.

The reason why the properties of trading networks tend to be neglected in the empir-

ical literature on the H-O model is presumably that the networks that were traditionally

analyzed in mathematics are inappropriate for describing economic phenomena. However,

recent developments in network theory derived from the physical sciences can be adapted

to economics (Baskaran and Brück, 2005; Blöchl et al., 2010; Schweitzer et al., 2009). Sem-

inal contributions that demonstrate the usefulness of applying network theory in economics

are (Arthur, 1999) and (Wilhite, 2001).

Our approach in this paper is related to that of Rauch (1999), who is one of the first to

seriously consider a network/search view of trade. He argues that “differentiated” prod-

ucts are, contrary to theory, not traded on markets but in networks. He incorporates this

argument into a standard gravity model by classifying products according to their differ-

entiability into three distinct groups, and estimates the model for each groups separately.

Broadly speaking, Rauch (1999) uses the term network as a proxy for the costliness of

the matching process, where “differentiated” products are traded in networks and “ho-

mogeneous” products on organized markets. However, Rauch (1999) does not explicitly

consider the structure of a trading network with its topological properties. Attempts to

formally analyze these properties have been made by several authors, including Serrano

and Boguñá (2003), Garlaschelli and Loffredo (2005), Fagiolo et al. (2010), and Kali and

Reyes (2007). But while these contributions are in this respect more sophisticated than

Rauch (1999), they focus only aggregated trade and do not distinguish between different

product categories. Hidalgo et al. (2007) and Hidalgo and Hausmann (2009), on the other

hand, use disaggregated trade data to explain specialization patterns and production capa-

bilities between countries. However, these authors do not study the implications of these

patterns for bilateral trade flows.
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The aim of this paper is to build upon and extend these contributions to better under-

stand the determinants of trade flows. First, from a theoretical point of view, we offer

an adaption of the physical sciences approach to network theory in the field of economics.

More specifically, by formally analyzing the mathematical properties of the international

trading network, we go beyond Rauch (1999) in incorporating network properties into an

empirical analysis of bilateral trade. Second, from a descriptive point of view, we demon-

strate that the network structure of international trade for 28 distinct product categories

has witnessed significant change during the 1980-2000 period. In analyzing product groups

at a disaggregated level, we go beyond the current literature which primarily focuses gross

trade flows (Serrano and Boguñá, 2003; Garlaschelli and Loffredo, 2005; Fagiolo et al.,

2010). Third, from an empirical point of view, we test in the context of a gravity model

whether factor differentials explain the volume of bilateral trade as predicted by the basic

H-O model once we control for the network structure of trade, and thus for a potentially

important source of omitted variable bias that could contaminate the estimates.

The remainder of this paper is organized as follows: Section 2 provides an overview of

network theory as developed in the physical sciences and discusses networks in international

trade, Section 3 calculates for each of the 28 product groups considered in this paper a

parameter that characterizes the connectivity distribution of its trading network. In Section

4, we estimate an extended gravity model to test the predictions of the H-O model. Section

5 concludes.

2 Network Theory

In mathematics, the term network is used to describe a set of elements, called vertices or

nodes, which are connected to each other through interactions, called edges (Vega-Redondo,

2007). More formally, a network is a pair G = (V,E) consisting of a set of nodes V and
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a set of edges E ⊂ V × V . Each edge (i, j) ∈ E is directed and can be assigned a non-

negative real edge weight aij. The number of nodes is denoted by n. Such a network can

be represented by its n× n adjacency matrix A = (aij), where the element (i, j) represents

the weight aij of the edge from node i to node j. Missing edges correspond to zeros in the

adjacency matrix.

The mathematical analysis of such abstractly defined networks is non-trivial; it is com-

plicated by interactions that posses an intricate topology (e. g. edges between nodes appear

to have no ordered structure), by diversified nodes (e. g. more or less wealthy agents) and

edges (e. g. the volume of an interaction), and by dynamic network evolution (Strogatz,

2001). Due to these complexities, one of two simplifying assumptions is usually adapted

to proceed in the analysis. Either a simplistic topology of the network is assumed. Or

the interactions are assumed to be binary (i.e. of relevance is only whether a connection

between nodes exist or not). In the following, we use the second approach since it has

proven to be appropriate for analyzing trade relations (Garlaschelli and Loffredo, 2005).

2.1 Random Networks

On a fundamental level, the most important distinction between different types of networks

is whether a network is structured or random. That is, if a network exhibits some kind

of regularity, it is called a structured network; if it describes a structure that has evolved

through a process of uncoordinated actions, it is referred to as a random network.

In a structured network such as a crystal lattice each node has the same number of neigh-

bors, forming a tightly connected local pattern. Such networks are highly clustered, i.e.

two neighbors of a node also tend to be linked with each other, too. Compared to random

networks, they have large average path length, i.e. two arbitrarily chosen nodes must use in

general a large number of intermediary nodes to connect to each other. While structured

networks are useful for analyzing homogeneous systems, e.g. in solid-state physics, they
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are inappropriate for representing heterogeneous and complex phenomena such as social

interactions.

The classical mathematical model for the evolution of random networks has been formu-

lated by Erdös and Rényi (1959). In their model, a network is constructed by connecting

nodes randomly: They start with a set of nodes and connect each pair of nodes with a

fixed probability p. The presence or absence of any two distinct edges is independent of

the connectivity of other nodes. It can be shown that for such networks, the probabil-

ity distribution of each node’s number of connections, the so-called degree distribution, is

Poissonian.

The mathematical properties of the Poisson distribution imply that most of the nodes

in random networks exhibit the same characteristic number of connections. Thus, despite

the fact that the emergence of edges is random, a typical Erdös-Rényi graph tends to

be homogeneous, i.e. the majority of nodes have similar connectivity. Also, path lengths

between nodes are typically small, but with the edges being present independently, random

networks completely lack local topological structure. Therefore, the Erdös-Rényi model

describes very few real-world networks adequately.

2.2 Small-world Networks

A more appropriate model of network evolution has been proposed by Watts and Strogatz

(1998). This model leads to so called small-world networks which can be understood as an

interpolation between random and structured networks. The Watts-Strogatz small-world

network model is based on a rewiring procedure: initially, they start with a regular ring

lattice of N nodes, where each node is connected to its first K neighbors. Then they

randomly rewire each edge of the lattice with a probability p such that self-loops and

multiple edges are excluded. This process introduces in expectation p · N ·K long-range

connections that connect nodes that were initially far apart. By varying p, they can control
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the degree of randomness between zero (completely ordered) and one (completely random).

The shape of the degree distribution of Watts-Strogatz networks looks similar to that of

random graphs: It has a pronounced peak at K degrees and decays exponentially for larger

number of connections.

The small-world network model is the first that is able to reproduce two key properties

regularly observed in real-world networks (Amaral et al., 2000): (a) preservation of local

neighborhood (clustering), and (b) a logarithmic increase of the average distance between

all possible pairs of nodes in the number of nodes.

Due to the seminal role of the Watts-Strogatz model, all networks exhibiting the prop-

erties (a) and (b) are usually referred to as small-world networks (and not only the ones

generated by the original Watts-Strogatz model). For the rest of the paper, we follow this

convention.

2.3 Scale-free Networks

Small-world networks can be further distinguished according to their degree distribution.

There are two main categories: Single-scale networks are characterized by a connectivity

distribution with a maximum at some characteristic connectivity and an exponentially

decaying tail (they are therefore often called exponential distributions). In contrast, scale-

free networks are characterized by a connectivity distribution that follows a power-law

(Amaral et al., 2000).

Most research in the field of small-world networks has been traditionally devoted to

single-scale networks because researches – in lack of real-world data and computational

resources – believed that the overwhelming majority of networks displayed their properties.

In a seminal article, Barabási and Albert (1999) analyze the structure of the World

Wide Web. Their findings led them to introduce the concept of scale-free networks. The

degree distribution of scale-free networks follows a power-law, that is, P (x) ∼ ax−γ, with x
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denoting the number of connections per node. Scale-free networks derive their name from

the fact that power-laws do not exhibit a ”characteristic” connectivity, i.e. they do not

have a peak value around which the distribution is centered.

If the degree distribution follows a power-law, there exist a statistically significant num-

ber of nodes with a large number of connections. For example, most of the web sites on

the Internet have only a few outgoing and incoming links. However, a small number of

sites, such as Google or Yahoo, act as “hubs” and tend to be extremely well connected. A

similar pattern can be observed with the pool of all actors. In many movies a large number

of unknown actors are cast with a few famous actors. These few famous actors are usually

well connected. The supporting actors, despite forming the overwhelming bulk of the ac-

tors’ pool, tend to be poorly connected. With more and more large-scale data available,

it became evident that power-laws seem to be the typical distribution for connectivities in

complex networks. Various examples from the physical, biological and social sciences are

reviewed by Albert and Barabási (2002), Newman (2003), or Vega-Redondo (2007).

Clearly, modeling the process that leads to the emergence of a scale-free network has to

differ in some important aspects from that of an exponential network. Barabási and Al-

bert (1999) identified two important mechanisms that are responsible for the emergence of

power-law degree distributions: preferential attachment and a growing network. Whereas

the exponential models assume that the number N of nodes remains fixed, scale-free net-

works require that their number must be growing by adding new nodes. This implies

that scale-free networks can be modeled by starting with a small number m0 of nodes and

then adding at each period a new node with m ≤ m0 edges. These new edges have to be

connected to the network, but whereas the connection procedure for exponential networks

is characterized by choosing a node with uniform probability, scale-free networks require

that the probability Π that a node i will receive an edge of a new node is proportional to

its connectivity xi, that is, Π(xi) = xiP
j xj

. It is possible to show that after t periods this
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network has N = t+m0 nodes and mt edges and for t→∞ the degree distribution follows

a power-law (Albert and Barabási, 2002).

2.4 Scale-free Networks and Power-law Functions

With the analysis of scale-free networks, power-laws have gained prominence in network

theory. If the degree distribution of a graph follows a power-law, its functional form is

given by P (x) ∼ ax−γ, with x denoting the number of links, γ a constant exponential

parameter and a representing a multiplicative normalization factor.

Dealing with probability distributions, we can calculate a as the inverse of the sum∑∞
x=1 x

−γ, which is by definition the Riemann Zeta-function ζ (γ). The sum is finite only

for γ > 1, hence we only allow exponents larger than one. We therefore have

P (x) =
x−γ

ζ (γ)
,where γ > 1. (1)

From Equation (1), we can see that for an analysis of a particular scale-free network, the

parameter γ is crucial. In particular, it fully characterizes the degree distribution (i. e., the

distribution of the number of connections), the most important topological characteristic

of a scale-free network. We discuss further below in more detail how to interpret the γ

parameter in the context of the international trade network. But we can state in a nutshell

that if γ is large, countries with a large number of trade connections for a particular

product group will become rarer, and vice versa. In this sense, γ reflects the “evenness” of

the network in which a product is traded.
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2.5 The Trading System as a Scale-free Network

Every product is traded in a network. Countries can be interpreted as the nodes of these

networks, and trade volume as weighted directed edges. Network theory can therefore be

used to good effect in the analysis of the trading network.

The question to answer at this point is which of the classes of networks surveyed in the

last section are appropriate for describing the trading network. Given our prior knowledge

of the international trading system, we hypothesize that international trade takes place

within a scale-free small-world network. In other words, the number of trading links of

a country with respect to a particular good, i.e. the degree distribution for the good in

question, is expected to follow a power-law.

In the following, we will motivate this hypothesis both from a theoretical and an empirical

point of view. In this section, we discuss informally why the distribution of trading links

should follow a power-law and address concerns regarding the divergences of the scale-free

network model from actual trading networks. After introducing the trade data used in this

paper in Section 3.1, we also confirm the scale-free assumption empirically in Section 3.2.

Why should the distribution of trading links follow a power-law? First, according to the

H-O model it is intuitively plausible that countries export those goods in which they are

specialized. This implies that for a given good only a few countries export heavily whereas

the majority is rather poorly connected. Consider for example the product group crude

oil. There are only a handful of countries that produce oil. However, these few countries

supply oil to almost every other country.

Moreover, a large amount of international trade is intra-industry trade. A good example

is butter, which is produced all over the world. Still a significant amount of trading is

taking place because, for instance, the French buy butter from Ireland and the Irish buy

French butter. Therefore, a more complex but also more even pattern of trade might be

observed in the case of butter. There are more countries than in the case of crude oil
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exporting to a significant number of other countries and there are fewer countries with a

negligible number of export links.

Our hypothesis that the trading network can be modeled as a scale-free network is further

supported by the fact that it evolves through a process of preferential attachment. That

is, countries tend to import a certain good from countries that are already established

exporters of that good.

There are, nonetheless, some potential divergences between the characteristics of scale-

free networks and of the world trading system which should be addressed. First, a scale-free

network should be growing while in the world economy the number of countries remains

largely fixed. However, this is, in our view, not a hindrance for our empirical analysis

because the aim of this requirement is to ensure that not every node is connected to the

whole network after a large number of time periods. In our case we may consider the time

periods to be quite large, new links between countries are added in years rather than in

days.2

Another criticism is that bilateral trade largely takes place without intermediating coun-

tries, which would mean that countries with many trading links do not necessarily act as

hubs as would be predicted by the scale-free network model. However, this is not always

true. There are obvious exceptions such as the trade in diamonds which revolves around

the Netherlands, and countries like Singapore and Hongkong which act as trading hubs.

Furthermore, even though there are no intermediating countries, there are indeed many

intermediating distributors, traders etc., that is nodes which have to be passed before a

good reaches its destination.

Empirically, Kali and Reyes (2007) find that the the number of trading links is distributed

at the aggregated level according to a power-law. They state: “The international trade

2Note also that during the time span that is covered by our empirical analysis (1980-2000) the number
of countries has actually grown significantly with the disintegration of the USSR and the Federal Republic
of Yugoslavia, the partition of Czechoslovakia, the independence of Eritrea and East Timor etc.
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network is thus scale-free at higher levels of trade” (Kali and Reyes, 2007). Even though

it is a reasonable conjecture that if the scale-free assumption is correct “at higher levels of

trade”, it will be true a the disaggregated product level as well, we should nonetheless test

the assumption explicitly at the disaggregated level. We do this in the next section, after

introducing the trade data used in this paper.

3 Data and Estimation

3.1 Trade Data

The trade data is from the Trade and Production Database of the CEPII3. This dataset

contains, inter alia, the bilateral trade flows for 28 product groups, classified according to

the International Standard Industrial Classification (ISIC) at the 3-digit level (revision 2),

for a large number of countries (222 countries/territories). The product groups and their

respective codes can be found in Table 1. The database is based on data from the CEPII’s

BACI database, which in turn is based on the UN’s COMTRADE Database.

Given that we only consider the existence of bilateral trading links but not the volume of

bilateral trade, describing the trading network is straightforward: We start with a matrix

in which for every product group the exports Fij of country i to county j are denoted

in the respective cells. Then we apply the following algorithm: A new matrix is created

with the same number of rows and columns. If there is non-zero trade in the original

matrix, an entry is replaced by 1 in the new matrix, otherwise by 0. This is repeated for

all cells. The sum of each row then denominates the number of outgoing trading links per

country. Hence, by a nodes degree we always mean the out-degree, i.e. number of countries

it exports to.

3http://www.cepii.fr/anglaisgraph/bdd/TradeProd.htm
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3.2 Verification of the scale-free assumption

On the basis of this matrix, the scale-free assumption can be verified empirically. Unfor-

tunately, a quantitative test on whether the degree distribution for a particular product

group follows a discrete power-law is meaningless with so few observations (recall that the

number of countries, and thus observations, is limited). Generally, the empirical detection

and characterization of discrete power-laws is difficult, which is a consequence of the large

fluctuations that occur in the tail of the distribution (Clauset et al., 2009). Moreover, finite

sample size effects also disturb the distribution for small values. We therefore rely, as Kali

and Reyes (2007), on descriptive evidence for the existence of power-law distributions.

The tool most often used in this context are log-log plots of observed frequencies (Barabási

and Albert, 1999; Clauset et al., 2009). The reason for this is the following. Recall that

a power-law distribution in a variable x is given by P (x) = x−γ

ζ(γ)
. Taking the logarithm on

both sides of this equation, we find

logP (x) = −γ log x− log(ζ (γ)) .

This implies that on a double-logarithmic plot, a power-law distribution follows a straight

line with a slope of −γ. Hence, a simple check whether a given set of observations stems

from a power-law distribution is to construct a histogram of the observed frequencies,

and then to plot it on doubly logarithmic axes. Finding a linear relationship in this plot

provides evidence that the observations were generated by a power-law distribution.

We have constructed these plots for all product categories in 1980. For brevity, we only

report a limited number of plots in Figure 1. All plots are, however, available from the

authors.

Of course, some deviations from a perfect linear are expected for very small and very

large degrees, for example due to finite size effects. Figure 1 suggests that the magnitude
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Figure 1: Empirical degree distributions for the trade networks of different product cat-
egories in 1980. Due to the small number of countries, the histograms are binned. We
observe linear relationships in the double-logarithmic plots, with small deviations for small
and large degrees due to finite size effects. Overall, these plots provide sufficient evidence
that the studied networks are scale-free.
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of these deviations various between product groups. For example, the log-log fit is almost

perfectly linear for Tobacco, while deviations seem to be somewhat larger for the product

group ”Printing and publishing”. Overall, however, we observe that for the majority of

products, the fits appear to be reasonably linear. Therefore, we conclude that these plots

largely confirm the scale-free assumption and proceed to the estimation of the network

parameter γ. We note, however, that it would be an interesting task for future research

to explore in more detail the extent to which the trading network of individual product

groups conform or deviate from a perfect scale-free behavior.

3.3 Estimation of the Network Parameter γ

In addition to the well known economic determinants identified by the H-O model, social,

political and institutional factors are crucial, albeit often unobservable, determinants of

international trade. The γ variable in Equation (1), however, can be understood as a

pooled measure for the various unobservable product and production characteristics that

co-determine the structure of a good’s trading network.

For example, if some good is produced by a large number of countries, then the γ variable

for this good will tend to be small. Conversely, if some good is so differentiated that trading

it requires a large amount of social interaction, and only a small number of countries have

such well established ties, then the γ variable will tend to be large. Different goods will

tend to absorb these countervailing effects differently, and thereby produce unique trading

structures.

One major advantage of working with the γ parameter is that, unlike Rauch (1999),

we do not have to classify goods first with regard to their differentiability into discrete

classes but are able to provide a continuous measure for capturing its trading structure.

In the next section, we turn to the task of estimating this network measure for a number

of product categories.
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We estimate the γ parameters for each product group and every year in the 1980-2000

period by applying a maximum likelihood estimation method (MLE). Nicholls (1987) and

later Goldstein et al. (2004) show that other standard fitting methods, such as nonlinear

regression or continuous fits of histograms plotted on double-logarithmic scales, produce

systematically biased estimates and often lead to incorrect conclusions.

MLE is a popular statistical method to make inference on parameters of probability

densities. Its key idea is to interpret a parameter to be estimated as a variable of the

underlying distribution. The maximum likelihood estimate of this parameter then is the

value that maximizes the probability of the observed sample. Given a sample of n values

x1 . . . xn, the probability that exactly these values were drawn from a power law as in

Equation 1 is given by:

L =
n∏
i=1

x−γi
ζ (γ)

.

This is called the Likelihood of the data. It is more practicable to proceed with the

logarithm of this quantity, the log-Likelihood function

logL =
n∑
i=1

[−γ log (xi)− log ζ (γ)] = −γ
n∑
i=1

log (xi)− n log ζ (γ) .

As the logarithm is a monotonous function, this expression can be maximized with respect

to γ in order to maximize the Likelihood. Hence we take the corresponding derivative and

set it to zero:

∂ logL
∂γ

= −
n∑
i=1

log (xi)− n
1

ζ (γ)

d

dγ
ζ (γ) = 0

⇔ ζ ′ (γ)

ζ (γ)
= − 1

n

n∑
i=1

log (xi) .
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Here, the derivative of the Riemann Zeta function with respect to γ is denoted by ζ ′ (γ).

There is no closed form expression for calculating the estimate of γ from this condition.

However, numerical solution is easily possible using Newton iteration. The left hand side of

the condition is monotonously increasing, and we therefore will not fall into local extrema.

A practical implementation of this estimation procedure is available upon request.

3.4 Summary Statistics for γ

In Table 1, we report standard statistics such as the mean, maximum, and minimum

value of the network variable γ for all product groups. This table reveals that there are

noticeable differences in the trading structure of different goods. For example, the product

group referred to as Misc. petrol./coal prod. was on average characterized by a much

more uneven or concentrated trading network then the product group referred to as Food

products. This is a plausible result, as there are far fewer countries that produce petroleum

and coal than countries that produce food.

In Figure 2, the evolution of the network variable is plotted for all goods. This figure

reveals that significant changes have taken place in the trading network of the 28 product

groups during the 1980-2000 period. The most remarkable feature is the continuous de-

cline of the values of γ for all product groups. This feature implies that the distribution

of connectivity has become less concentrated as more and more countries are becoming

better connected for most of the goods. Obviously, the γ parameters reflect the increased

integration of countries in international trade. There is also a noticeable peek around 1992,

which is presumably due to the fall of the iron curtain.
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Table 1: Summary statistics for the scaling exponent γ of the degree distributions in
product-specific trade networks over the different years

Product Mean (SD) Min. Max. N

Food products (311) 1.240 (0.012) 1.219 1.255 21

Beverages (313) 1.278 (0.015) 1.253 1.296 21

Tobacco (314) 1.353 (0.026) 1.304 1.379 21

Textiles (321) 1.243 (0.014) 1.219 1.261 21

Wearing apparel (322) 1.257 (0.020) 1.227 1.284 21

Leather products (323) 1.286 (0.020) 1.254 1.314 21

Footwear (324) 1.293 (0.023) 1.26 1.326 21

Wood products except furniture (331) 1.274 (0.019) 1.242 1.296 21

Furniture except metal (332) 1.285 (0.025) 1.245 1.32 21

Paper and products (341) 1.266 (0.016) 1.239 1.288 21

Printing and publishing (342) 1.267 (0.016) 1.238 1.294 21

Industrial chemicals (351) 1.248 (0.014) 1.224 1.268 21

Other chemicals (352) 1.247 (0.016) 1.222 1.267 21

Petroleum refineries (353) 1.300 (0.012) 1.275 1.315 21

Misc. petrol./coal prod. (354) 1.391 (0.028) 1.337 1.43 21

Rubber products (355) 1.267 (0.016) 1.241 1.292 21

Plastic products (356) 1.263 (0.021) 1.23 1.292 21

Pottery, china, earthenware (361) 1.299 (0.020) 1.263 1.327 21

Glass and products (362) 1.276 (0.016) 1.248 1.297 21

Other non-metal min. prod. (369) 1.276 (0.016) 1.248 1.295 21

Iron and steel (371) 1.269 (0.015) 1.244 1.291 21

Non-ferrous metals (372) 1.287 (0.015) 1.26 1.312 21

Fabricated metal products (381) 1.245 (0.014) 1.222 1.262 21

Machinery, except electrical (382) 1.237 (0.015) 1.214 1.258 21

Machinery, electric (383) 1.244 (0.016) 1.219 1.265 21

Transport equipment (384) 1.250 (0.016) 1.223 1.273 21

Prof. and sci. equipment (385) 1.260 (0.016) 1.233 1.283 21

Other manufactured products (390) 1.259 (0.016) 1.233 1.28 21

1 The ISIC codes for the product groups are in parentheses
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Figure 2: The plots show the temporal evolution of the γ parameter for all product groups.
Data are available for the timespan from 1980 to 2000. A continuous decline of γ can be
observed for all product groups.
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4 Testing the Heckscher-Ohlin Model

In this section, we turn to the task of testing the prediction from the H-O model that factor

endowment differentials determine bilateral trade flows. One way to test the validity of

this prediction is to estimate a gravity model where a measure for factor endowments is

included. Using the gravity model to test the validity of the H-O model (and, in fact,

alternative models of international trade) is fairly standard (Evenett and Keller, 2002).

The gravity model of international trade predicts at its core a relationship for trade flows

based on Newton’s Law of Universal Gravitation; and there are several theoretical models

that are capable of producing ”gravity” between countries, including Anderson (1979),

the monopolistic competition approach and the H-O model. The empirical validity of the

gravity model approach is well established through numerous studies.

4.1 The Empirical Model

One problematic feature of previous tests of the H-O model is that the structure of the

network in which a particular good is traded is rarely if at all accounted for. This might

lead to a omitted variable bias and thus to inaccurate results. We address this criticism

by expanding the standard gravity model with the network parameter estimated in the

previous section. The most general gravity model that we estimate is:

Fijkt =β1GDPit ×GDPjt + β2GDPit p. cap.×GDPjt p. cap.

+ β3Distanceij + β4Common languageij + Colonial relationshipij

+ β5∆cap.-lab. ratioijt + β6γkt

+ β7∆cap.-lab. ratioijt × γkt.

(2)
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In this model, Fijkt denotes the (log of) exports from country i to country j of good k in

period t. On the right hand side of equation 2 we specify typical gravity model predictors,

that is the product of the (log of) GDPs (GDPit×GDPjt) and the product of the (log of)

GDPs per capita (GDPit p. cap.×GDPjt p. cap.) of both countries4, the (log of) distance

between their capitals (Distance) and two dummy variables indicating whether they speak

a common language (Common language) and whether colonial ties are present (Colonial

relationship)5. The last three variables are obviously time constant.

We extend these classic gravity model predictors with three variables. The first variable

is the absolute difference in the capital-labor ratio between the countries i and j, which

is denoted with ∆cap.-lab. ratioijt.
6 We use the absolute difference in the capital-labor

ratio as our proxy for factor endowment differentials. According to the H-O model, the

coefficient for this variable should be positive. That is, exports from country i to country j

should increase in the difference of factor endowments. The second variable is the network

parameter γkt that was calculated in the previous section. This variable varies over product

groups and time, but not over countries. It is used as a proxy for the network structure

of the trading network in which a particular good is traded. By including this variable

we differentiate between determinants that can be attributed to particular goods, thereby

providing an extension to Rauch (1999). Finally, we include in most of the estimated

models an interaction between the difference in the capital labor ratio and the network

variable, i.e. ∆ cap.-lab. ratio× γ. We discuss the reason for including this variable in the

next section.

We estimate model (2) with data for the 1980-2000 period. In addition to the previously

mentioned control variables, time and good fixed effects are included in some models (see

the regression tables below). Time fixed effects are included to control for common shocks

4We use the real gross domestic product in 2000 at purchasing power parities (chain index); data-source:
Extended Penn World Tables 3.0

5Data-source: CEPII datasets.
6Data-source: Extended Penn World Tables 3.0
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that affect all countries in a given year. Good fixed effects are included to control for

unobserved time-constant characteristics of products. In all models, standard errors are

clustered at the country-pair level to control for autocorrelation; they are also robust to

heteroscedasticity.

4.2 Results

The results are reported in Table 2. The first two models are estimated without the network

variable, but include all other control variables (including the time and good fixed effects

in the case of the second model). In these models, the traditional gravity model predictors

behave as expected. The estimated coefficient for the product of the GDPs is positive

and highly significant; the estimated coefficient for the product of GDP per capita, too, is

positive and significant; the distance between two countries lowers the trade flow; and a

common language and a common colonial relationship increases trade flows. Overall, these

results are remarkably plausible.

However, the estimated coefficient for the capital-labor ratio is significantly negative,

thereby suggesting that a large factor differential reduces bilateral trade flows. While this

result is not in line with the predictions of the H-O model, it confirms the numerous studies

that reject the H-O model predictions.

Simply including the network variable γ as an additional control variable in model (III)

does not change this result. At first sight, we might thus conclude from this result that

considering the network structure of international trade does not help to reconcile the

H-O model with the data. However, note that while we have controlled for the network

structure of the good in model (III), we have not explicitly analyzed how differentials in

factor endowments interact with the network structure. This is the reason why we include

the interaction between the factor differential and the network variable, i.e. ∆ cap.-lab.

ratio× γ, in subsequent models. By including this variable into the gravity model, we
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can analyze whether the effect of the factor endowment differential on bilateral trade is

amplified or curbed by the trading structure of a particular good.

The results are now much more favorable with regard to the H-O model. The estimated

coefficient for the interaction variable, which is included from model (IV) to (VII), is always

significantly negative, while the linear effect of the factor differential, ∆ cap.-lab. ratio, is

significantly positive. This reveals that the difference in the factor differential increases

bilateral trade when the trading structure is dispersed, i.e. when many countries participate

in the trade of a particular good. On the other hand, when only few countries participate

in the trading network and hence γ becomes larger, differentials in the capital-labor ratio

do not necessarily lead to higher bilateral trade flows.

This is intuitively plausible. Consider, for example, the case of oil. Saudi-Arabia has a

very strong position as a exporter of this good (even though, of course, it has no monopoly).

Hence, whatever the differential in the capital-labor ratio, which we have used as the proxy

for the factor endowment differential, between Saudi-Arabia and other countries, the other

countries have to import oil from Saudia-Arabia (and a few other suppliers). Thus, for

goods that are traded in concentrated networks, the differential in the capital-labor ratio

is less important in determining bilateral trade flows (while differences in other factors,

for which we of course cannot fully control due to unavailable data, are more important).

On the other hand, consider food products. These goods can be produced by considerably

more countries than oil. Since more countries have the ability to produce such goods, a

given country will import these goods only if doing so is cheaper than producing it by itself.

But this means, inter alia, that the factors that are necessary to produce this good have to

be relatively more abundant in the exporting than in the importing country. Hence, factor

differentials will play a larger role for goods that are traded in dispersed networks.
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5 Conclusions

In this paper, we have demonstrated that considering the topological properties of the net-

works in which international trade takes place can lead to interesting insights, for example

when testing the implications of the H-O model. That is, the existing literature provides

little evidence confirming that factor endowment differentials affect bilateral trade flows

as suggested by the basic H-O model. We were able to demonstrate that one reason for

this failure is a possible omitted variable bias that results from neglecting the network

properties of international trade.

We first analyzed the trading network of different product groups using the framework

of scale-free networks. In particular, we investigated the connectivity distribution for

various product groups and calculated a parameter that can be used to describe its scaling

properties. One important result demonstrates that the world economy has become more

integrated in the last three decades, i.e. the number of countries which participate in the

trade network has increased for most goods.

We then inquired how including the network parameter into a standard gravity model

affects the estimates for the effect of the factor endowment differential. We found that the

structure of the networks in which a good is traded interacts with the factor endowment

differential in determining bilateral trade flows. When the trading network is concentrated

and only a few countries participate in the trade of a particular good, differences in factor

endowments play a less important role. When the trading network is more dispersed,

we find, as predicted by the H-O model, that a large factor endowment differential leads

to higher bilateral trade flows. This implies that factor endowments play a role when

countries have no monopoly or monopsony in the trade of a particular good. Once such

market structures are present, factor endowment differentials becomes less important for

bilateral trade flows.
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