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Generalisation of Samet’s (2010) agreement theorem

Bassel Tarbush0

February 23, 2011

Abstract We develop a framework that allows us to reproduce the generalised
agreement theorem of Samet (2010), and extend it to models with a non-
partitional information structure, while highlighting the features that distinguish
the result from the classic theorems found in the literature. Furthermore, we
produce results that are similar to Samet’s with some modified assumptions.

Keywords Agreeing to disagree, knowledge, common knowledge, belief, informa-
tion, epistemic logic.
JEL classification D80, D83, D89.

1 Introduction

The agreement theorem of Aumann (1976) states that if agents have a common prior
on some event, then if their posteriors are common knowledge, these posteriors must be
equal, even if the agents’ updates are based on different information. This was proved
for posterior probabilities in the context of a partitional information structure.
This result was extended by many authors to generalised decision functions, instead of
posterior probabilities (see Cave (1983), Bacharach (1985), Moses and Nachum (1990),
Bonanno and Nehring (1998), Aumann and Hart (2006)). However, all these generali-
sations have relied on the imposition of some version of the Sure-Thing Principle as a
condition on the decision functions. Informally, all versions of this principle attempt to
capture the following intuition: “If I would perform some action when I know that p is
the case, and I would perform the same action when I know that p is not the case, then
I should also perform that same action when I do not know whether p is the case".

Samet (2010) also derives an agreement theorem in a partitional information struc-
ture with generalised decision functions. However, his approach differs significantly from
the classic examples in the literature in that he does not use a standard version of the
Sure-Thing Principle. Rather, Samet assumes an “interpersonal" Sure-Thing Principle
(ISTP ) which can informally be stated as: “If I have some information, but I know
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that whatever information I have about something, you will be better informed about
it than me, then if I know your action, I should perform that same action". So, unlike
the standard versions of the principle, which are conditions over the decision function
of a single agent, the ISTP is a condition imposed on the decision functions across agents.

We develop a framework which allows us to reproduce Samet’s result in a partitional
information structure. However, we are also able to keep track of some more subtle
features of the result. For example, we show that Samet’s result allows for decision
functions to be based on interactive knowledge, whereas standard results require decision
functions to be independent of such information. Furthermore, we extend Samet’s result
to a non-paritional information structure. Partitional information imply that agents can
only know what is the case; in other words, agents cannot base their decisions on false
information. But surely, it is perfectly plausible for rational agents to do so. So our
extension effectively states that agents cannot agree to disagree even when their decision
functions can based on interactive knowledge (or belief) and possibly false information.
Finally, Samet’s results depend on the existence of an agent who is less informed than
all other agents, called the dummy. We provide agreement theorems that replace this
assumption with alternative ones.

2 Epistemic Logic

This section introduces standard concepts from epistemic logic.

Definition 1 (Basic syntax). Define a finite set of atomic propositions, P, which consists
of all propositions that cannot be further reduced. Let denote N the set of all agents.
We then inductively define how to formulate all other formulas in our language, L, via
the following Bachus-Naur Form:

ψ ::= P|¬ψ|(ψ ∧ φ)|(ψ ∨ φ)|(ψ → φ)|(ψ ↔ φ)|�i∈Nψ|CG⊆Nψ

Note that �i and CG are modal operators, while ¬,∧,∨,→,↔ are the standard
Boolean operators.

Definition 2 (Modal depth). The modal depth md(ψ) of a formula ψ is the maximal
length of a nested sequence of modal operators. This can be defined by the following
recursion on our syntax rules:

md(p) = 0 for any p ∈ P
md(¬ψ) = md(ψ)

md(ψ ∧ φ) = md(ψ ∨ φ) = md(ψ → φ) = md(ψ ↔ φ) = max(md(ψ),md(φ))

md(�iψ) = 1 +md(ψ)

md(CGψ) = 1 +md(ψ)

So far, we have pure uninterpreted syntax. However, we can now introduce our
semantics, to determine the truth or falsity of formulas.
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Definition 3 (Kripke semantics). A frame is a pair 〈Ω, Ri∈N 〉, where Ω is a finite, non-
empty set of states (or “possible worlds), and Ri ⊆ Ω × Ω is a binary relation for each
agent i, also called the accessibility relation for agent i. A model on a frame 〈Ω, Ri∈N 〉,
is a tripleM = 〈Ω, Ri∈N ,V〉, where V : P × Ω→ {0, 1} is a valuation map.

Definition 4 (Truth). A formula ψ is true at state ω in model M = 〈Ω, Ri∈N ,V〉,
denotedM, ω |= ψ, in virtue of the following inductive clauses:

M, ω |= p iff V(p, ω) = 1

M, ω |= ¬ψ iff notM, ω |= ψ

M, ω |= (ψ ∧ φ) iffM, ω |= ψ andM, ω |= φ

M, ω |= �iψ iff ∀ω′ ∈ Ω, if ωRiω′ thenM, ω′ |= ψ

M, ω |= CGψ iff ∀ω′ ∈ Ω accessible from ω in a finite sequence
of Ri (i ∈ G ⊆ N) steps,M, ω′ |= ψ

The truth of formulas involving the other Boolean operators are similarly defined. Fur-
thermore, note that ifM, ω |= CGψ, then one can generate any formula of finite modal
depth of the form �i�j ...�rψ with i, j...r ∈ G, and this formula will be true at ω in
modelM.1

Definition 5 (Component). For any ω ∈ Ω, we will denote the set of all states that are
accessible from ω in a finite sequence of Ri (i ∈ G) steps, by ΩG(ω). We will call this
set the component of ω.

Definition 6 (Validity). Formula ψ is valid in a modelM, denotedM |= ψ iff ∀ω ∈ Ω in
M, ω |= ψ. Formula ψ is valid in a frame 〈Ω, Ri∈N 〉, denoted 〈Ω, Ri∈N 〉 |= ψ, iff ∀M over
〈Ω, Ri∈N 〉, M |= ψ. Formula ψ is T -valid (or valid), denoted |= ψ, iff ∀〈Ω, Ri∈N 〉 ∈ T
(T , a collection of frames), 〈Ω, Ri∈N 〉 |= ψ.

We can identify collections of frames by the restrictions that we impose on the acces-
sibility relations.

Definition 7 (Conditions on frames). We say that a frame 〈Ω, Ri∈N 〉 is,

Reflexive if ∀i ∈ N, ∀ω ∈ Ω, ωRiω

Symmetric if ∀i ∈ N, ∀ω, ω′ ∈ Ω, if ωRiω′ then ω′Riω
Transitive if ∀i ∈ N, ∀ω, ω′, ω′′ ∈ Ω, if ωRiω′ and ω′Riω′′ then ωRiω′′

Euclidean if ∀i ∈ N, ∀ω, ω′, ω′′ ∈ Ω, if ωRiω′ and ωRiω′′ then ω′Riω′′

Serial if ∀i ∈ N, ∀ω ∈ Ω, ∃ω′ ∈ Ω, ωRiω
′

1Note that the definition of the operator CG is drawn from van Benthem (2010), where it is also
mentioned that a more precise definition can be given: One can define a new accessibility relation R∗G
for the whole group G as the reflexive transitive closure of the union of all separate relations Ri (i ∈ G),
and then simply letM, ω |= CGψ if and only if ∀ω′ ∈ Ω, if ωR∗Gω′ thenM, ω′ |= ψ.
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The system S5 consists of all frames that are reflexive, symmetric and transitive; and
the system KD45 consists of all frames that are serial, transitive and Euclidean. The
following formulas are validities in the respective frames, and in fact, the systems can be
axiomatised in the sense that if the validities are assumed then they imply the desired
restrictions on the accessibility relations:

S5 axioms KD45 axioms Axiom names
�i(ψ → φ)→ (�iψ → �iφ) �i(ψ → φ)→ (�iψ → �iφ) Distribution

�iψ → ψ �iψ → ¬�i¬ψ Veracity; Consistency
�iψ → �i�iψ �iψ → �i�iψ Positive introspection
¬�iψ → �i¬�iψ ¬�iψ → �i¬�iψ Negative introspection

It is standard to take the axioms of S5 as describing properties of (a rather strong notion
of) knowledge. Thus, in S5, �iψ is interpreted as “agent i knows that ψ". In KD45
however, since veracity is dropped in favour of consistency, we are in a system in which
to “know" that something is the case does not imply that it is true. The axioms of KD45
are thus rather seen as describing properties of a belief operator, so �iψ is interpreted as
“agent i believes that ψ". These two systems mirror the patitional and non-partitional
structures mentioned in the introduction.2

Similarly, the operator CGψ is interpreted as “it is common knowledge to all the agents
in G that ψ" in S5, and as “it is common belief to all the agents in G that ψ" in KD45.

3 Models with information and decisions

Let P be the set of all propositions which can describe “facts" about a state. If P is finite,
then its closure under the standard Boolean operators, denoted P ∗, is tautologically
finite.3 Let Ψr

0 be the set of all formulas of modal depth 0 up to r for an arbitrary
r ∈ N0. Since P ∗ is finite, so is Ψr

0, so |Ψr
0| = m, for some m ∈ N; and note that

Ψ0
0 = P ∗.4

Definition 8 (New operators). For each agent i ∈ N create a set of modal operators,
Oi = {�i, �̂i, �̇i}, where for every formula ψ, �̂iψ := �i¬ψ and �̇iψ := ¬(�iψ ∨ �̂iψ).
The interpretation, for example in S5, is that �̂iψ stands for “agent i knows that it is
not the case that ψ", and �̇iψ stands for “agent i does not know whether it is the case
that ψ". There are similar counterpart interpretations in KD45.

Definition 9 (Kens). Order the set Ψr
0 into a vector of length m: (ψ1, ψ2, ..., ψm), and

for each agent i ∈ N , create the sets

Ui = {(ν1
i ψ1 ∧ ν2

i ψ2 ∧ ... ∧ νmi ψm)|∀n ∈ {1, ...,m}, νni ∈ Oi}
2The philosophical grounds for these systems originated in Hintikka (1962), and for an extensive

formal treatment, see Chellas (1980).
3In the sense that there is only a finite number of inequivalent formulas.
4If P = {p, q}, then one can generate 20 inequivalent formulas: 2 from p alone, 2 from q alone and

16 out of p and q together, so |P ∗| = 20.
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Vi = {νi ∈ Ui| |= ¬(νi ↔ (p ∧ ¬p))}

So, νi ∈ Vi is a ken for agent i, describing i’s information concerning every formula in Ψr
0.

So, calling νni ψn the nth entry of i’s ken, νni ψn states whether i knows that the formula
ψn is the case, or knows that it is not the case, or does not know whether it is the case.
Note that Vi is a restriction of Ui to the set of kens that are not logically equivalent to
a contradiction; so only the logically consistent kens are considered.

The following lemma shows that at each state, there exists a ken for each agent which
holds at that state, and moreover, that any two different kens must be contradictory at
any given state.

Lemma 1. (i) ∀ω ∈ Ω,∃νi ∈ Vi, ω |= νi, (ii) ∀ω ∈ Ω,∀νi, µi ∈ Vi, if νi 6= µi then
ω |= ¬(νi ∧ µi).

By the above lemma, there is a unique ken in Vi that holds at a given state. So for
any νi ∈ Vi, if ω |= νi, we can index the ken by the state, denoting it, ν(ω)i.

Definition 10 (Informativeness). Create an order %⊆ Vi × Vj for all i, j ∈ N . We say
that the ken νi is more informative than the ken µj , denoted νi % µj , if and only if
whenever i knows that ψ then j either also knows that ψ or does not know whether ψ,
and whenever i does not know whether ψ, then so does j.5

Note that % is not a complete order on kens. For example, consider any two kens νi and
µi for agent i, in which the nth entry is νnj ψn = �iψn and µnj ψn = �̂iψn. These two kens
would not be comparable with %.
Finally, note that νi ∼ µj denotes νi % µj and µj % νi; which is interpreted as νi
and µj carrying the same information, but seen from the perspectives of agents i and j
respectively.

Definition 11 (Decision function). For each i ∈ N , Di : Vi → A, is the decision function
of agent i, where A is a set of actions.

Definition 12 (Action function). For all νi ∈ Vi, |= νi → d
Di(νi)
i

The action function di selects the action that is actually chosen at each state.6

“Di(νi) = x" is read as “if i’s ken is νi, then i’s decision is to do x", whereas “dxi "
is read as “i performs action x". So although the decision function, Di, determines what
the agent would do over all possible kens, dDi(νi)

i is the proposition describing the agent
performing the action that her decision function requires her to take given the ken she
has at each particular state.7

5Formally, (i) if νni ψn = �iψn then (µn
j ψn = �jψn or µn

j ψn = �̇jψn), (ii) if νni ψn = �̂iψn then
(µn

j ψn = �̂jψn or µn
j ψn = �̇jψn), and (iii) if νni ψn = �̇iψn then (µn

j ψn = �̇jψn).
6Lemma 1 guarantees that the action function is well-defined.
7Technically, we let all propositions of the form “Di(νi) = x" live in a set D, and all propositions of

the form “dxi " live in a set Q. Then the set of a propositions is P = P ∪D∪Q, so the valuation function
is V : P × Ω→ {0, 1}.
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3.1 Main assumption

We will assume that the Interpersonal Sure-Thing Principle is a formula, ISTP , that is
valid in every model that we will consider.

Assumption 1 (Interpersonal Sure-Thing Principle).

|= IntSTP :=
∧
i,j∈N

∧
νi∈Vi

∧
νj∈Vj

[�i(νi → νj % νi)→ (�i(d
x
j )→ dxi )]

The above states that for any agents i and j, if i knows (believes) that her having
ken νi implies that j’s ken is more informative than hers, then if i knows (believes) that
j performs action x, then i performs action x.

4 Samet’s (2010) result in S5

In S5, the accessibility relation Ri is an equivalence relation for each i ∈ N . Let
Ii(ω) = {ω′ ∈ Ω|ωRiω′} be the information cell of i at ω. One can verify that the
set Ii = {Ii(ω)|ω ∈ Ω} is a partition of the state space Ω.

The following lemma states that at any state in which the information cell of agent
i is a subset of agent j’s cell at that state, then j’s ken is more informative than i’s ken
at that state.

Lemma 2. For any ω ∈ Ω such that Ii(ω) ⊆ Ij(ω), if ω |= νi ∧ νj then ω |= νi % νj.

We will require two further lemmas.

Lemma 3. ∀i ∈ G,
⋃
ω′∈ΩG(ω) Ii(ω

′) = ΩG(ω).

Lemma 4. If for some ω′ ∈ Ii(ω), ω′ |= νi, then for all ω′′ ∈ Ii(ω), ω′′ |= νi.

Samet (2010) assumes that there always exists an “epistemic dummy": An agent
whose information cell is equal to the entire component ΩG(ω).

Assumption 2 (Epistemic dummy). ∃h ∈ G, Ih(ω) = ΩG(ω).

Theorem 1. Suppose that assumptions 1 and 2 hold, and that the system is S5. Let
G = {i, j, h} with h the epistemic dummy. Then, |= CG(dxi ∧ d

y
j ∧ dzh)→ (x = y = z).

4.1 Discussion

The intuition driving the result is that by assuming that there exists an epistemic dummy,
one is assuming that there is an agent h whose performed action is based on a ken that
is less informative than every other agents’. However, h knows the performed actions of
the other agents, and knows that those actions are based on information that is more
informative than her ken. She therefore models her choice on the performed actions of
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each of the other agents. But if those more informed agents were taking different actions
then she would have to simultaneously copy two different actions, which is impossible,
thus the actions of the more informed agents must be the same.

In Tarbush (2011) it is shown that previous agreement theorems require the assump-
tion that decision functions only be based on kens where Ψr

0 is such that r = 0. That
is, decisions cannot be based on interactive information.8 So, in previous results, agents
can agree to disagree if say i bases her decision on what she knows about what j knows.
However, one of the main distinguishing features of Samet’s result is that this restriction
does not need to be imposed.
Furthermore, when the “Disjoint Sure-Thing Principle" is imposed on decision functions
in previous results (which emulates Bacharach’s (1985) original condition), the language
must be assumed to be “rich" enough to guarantee that information (or kens) are, in
a sense, “disjoint".9 The implication is that whether or not the agreement results hold
depends on the way in which the states are described! However, again, Samet’s result
requires no such condition.

Alternatively, we can derive an agreement theorem that is similar to Samet’s but that
does not require the assumption of an epistemic dummy.

Definition 13. Condition A: |= ¬CG¬(νi ∼ µj).
Condition B: |= ¬CG¬(νi % µj) ∨ ¬CG¬(µj % νi).

Condition A states that in every component there is some state at which i and j
have equally informative kens; while condition B states that in every component, either
there is some state in which i is more informed than j or there is a state in which j is
more informed than i.10 Clearly condition A implies condition B. However, condition A
neither implies nor is implied by the existence of an epistemic dummy.

Theorem 2. Suppose that assumption 1 and condition B hold, and that the system is
S5. Let G = {i, j}. Then, |= CG(dxi ∧ d

y
j )→ (x = y).

5 Samet’s (2010) result in KD45

We can now analyse the consequences of using a model for belief rather than knowledge.
So we impose a KD45 frame rather than an S5 frame.
Essentially, the only difference between knowledge and belief that we will consider is
that belief is not infallible. In S5, agents cannot know something that is false, be-
cause reflexivity implies that if one knows that p at some state, then p must be true

8As explained in the paper, this is in response to the criticism (Moses and Nachum (1990)) of the
like-mindedness assumption of Bacharach (1985).

9The language in a component ΩG(ω) is said to be rich if and only if for all i ∈ G and any pair
(νi, µi) ∈ {(ν(ω′)i, µ(ω′′)i)|ω′, ω′′ ∈ ΩG(ω)} there is n ∈ {1, ...,m} such that νni = �i and µi = �̂i.

10Note that Condition A is in fact condition (1.b), and condition B is implies by (2.b) in Tarbush
(2011).
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at that state (Veracity). On the other hand, KD45 allows agents to believe what is
false, and thus to base decision on false information, by dropping reflexivity. In fact,
S5 = KD45 + reflexivity.

We can provide a description of the links between states in a KD45 frame: Some
sets of states within Ω are “completely connected", in the sense that the accessibility
relation over states within such sets in an equivalence relation, so these sets have the same
properties as information cells in S5; and, for each one of these completely connected
sets there exists a (possibly empty) set of “associated" states that have arrows pointing
from them to every state in the completely connected set, but with no arrow (by the
same agent) pointing towards them. The set of all completely connected sets and their
set of associated states exhaust the state space.
Formally, let Si(ω) = {ω′ ∈ Ω|ωEiω′}, where Ei is an equivalence relation. We call this
set of completely connected states the information sink of state ω for player i. Note, that
this way of defining the sink guarantees that if Si(ω) 6= ∅ then ω ∈ Si(ω). Furthermore,
we define ω’s set of associated states as Ai(ω) = {ω′′ ∈ Ω|∀ω′′′ ∈ Si(ω), ω′′Fiω

′′′}, where
Fi is now a simple arrow. So, note that now, for any agent i, we have that Ri = Ei ∪Fi.
Finally, we can define Ji(ω) = Si(ω)∪Ai(ω), and note that Ji = {Ji(ω)|ω ∈ Ω} exhausts
the entire state space.

Proposition 1. The above is a complete characterisation of the KD45 state space.

We now use lemmas that are analogous to the ones used in S5.

Lemma 5. For any ω ∈ Ω such that Si(ω) ⊆ Sj(ω), if ω |= νi ∧ νj then ω |= νi % νj.

Lemma 6. ∀i ∈ G,
⋃
ω′∈ΩG(ω) Si(ω

′) ⊆ ΩG(ω) ⊆
⋃
ω′∈ΩG(ω) Ji(ω

′).

Lemma 7. If for some ω′ ∈ Ji(ω), ω′ |= νi, then for all ω′′ ∈ Ji(ω), ω′′ |= νi.

We now require an assumption that is analogous to the epistemic dummy assumption.

Assumption 3 (Doxastic dummy). ∃h ∈ G,∃ω′ ∈ ΩG(ω),
⋃
i∈G

⋃
ω′′∈ΩG(ω) Si(ω

′′) ⊆
Sh(ω′) and Jh(ω′) = ΩG(ω) ∪ {ω}.

This assumption requires that some agent’s (the dummy’s) unique information sink
be a superset of the union of the information sinks of every other agent in the component.

Theorem 3. Suppose that assumptions 1 and 3 hold, and that the system is KD45. Let
G = {i, j, h} with h the doxastic dummy. Then, |= CG(dxi ∧ d

y
j ∧ dzh)→ (x = y = z).

5.1 Discussion

The only substantial difference between theorem in S5 and the one is KD45 is the
assumption made about the dummy. Note that the epistemic dummy assumption in
S5 could have been stated as follows: ∃h ∈ G, ∪i∈G ∪ω′∈ΩG(ω) Ii(ω) ⊆ Ih(ω) and
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Ih(ω) = ΩG(ω).11 This provides a sense of how the doxastic dummy assumption is
more general: Since the kens of any agent anywhere in the component essentially only
depend on the kens in the sinks of that agent, it is enough for the dummy’s sink to be a
superset of the union of the sink of all other agents for the dummy to become the least
informed agent.
Note that a different assumption could have been: ∃h ∈ G, Sh(ω) = ΩG(ω) ∪ {ω}. One
can verify that this implies the doxastic dummy assumption. However, we see it as being
unreasonably strong: It implies that if the “actual" state ω is not in the sink of any of the
agents other than the dummy’s, then it must at least be in the dummy’s sink. In such a
case, the dummy would be somewhat of a “wise fool" in the sense that all other agents
would be deeming ω impossible, whereas the dummy does not rule out any possibility,
including ω itself. This implication does not necessarily hold when the doxastic dummy
assumption is taken as it is originally stated.

One rather worrying feature of Theorem 3, however, can be illustrated by the follow-
ing example. Consider model M in Figure 1 with ω |= p and ω′ |= ¬p. At every state
of this model, i believes that ¬p and at every state, j believes that p. In this model,
the condition of “heterogeneity" fails, so all the agreement theorems mentioned in the
introduction would concede that i and j can agree to disagree (see Tarbush (2011)).12

Now, consider adding an epistemic dummy h to this model, to obtain model M′. Het-
erogeneity would again fail, so the agents can again agree to disagree according to all the
agreement theorems other than Samet’s. However, according to Theorem 3, the agents
cannot agree to disagree. But what drives the result in this case?
Agent i must surely perform his action as though he were certain that ¬p is the case,

since ¬p is the only proposition that i believes, regardless of the state. Similarly, agent
j must surely perform her action as though she were certain that p is the case. However,
by the presence of h, the agents i and j must perform the same action. So the existence
of the dummy must collapse the action that one would perform when p and when ¬p to
the same action.
One can interpret this in one of two ways: (i) The existence of the dummy can be seen as
a constraint on the decision functions, requiring them to be independent of one’s informa-
tion regarding p. But this then makes agreement trivial. Or, (ii) the decision functions
do depend on p, but the existence of the dummy implies that the more informed agents

11Of course, by Lemma 3, this is equivalent to ∃h ∈ G, Ih(ω) = ΩG(ω).
12Here, if G = {i, j, h}, heterogeneity can be stated as: |= CG(νi ∧ νj ∧ νh)→ (νi ∼ νj ∼ νh).
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must nevertheless perform the same action. However, this must be the action that the
agents would perform when they do not “know" whether p is true, even though, in this
example, the more informed agents are effectively certain of their information regarding p.

As before, we can provide a further theorem without a doxastic dummy.

Definition 14. Condition C: For all ω ∈ Ω, there exists ω′ ∈ ΩG(ω) such that Si(ω) =
Sj(ω).
Condition D: For all ω ∈ Ω, there exists i ∈ G such that for some ω′ ∈ ΩG(ω), Si(ω′) ⊆
Sj(ω

′).

One can see that conditions C and D are effectively the semantic counterparts of
conditions A and B respectively.13 Note that C implies D, and that by Lemma 5, C
implies A while D implies B.

Theorem 4. Suppose that assumption 1 and condition D hold, and that the system is
KD45. Let G = {i, j}. Then, |= CG(dxi ∧ d

y
j )→ (x = y).

Note that this theorem would still imply agreement in modelM′ represented in Figure
1. However, if we had assumed the stronger condition C then such a case would be ruled
out.

13Note that Condition C is condition (1.a) and condition D is implied by condition (2.a) in Tarbush
(2011).
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Appendix

Proof of Lemma 1 (i) Consider an arbitrary i ∈ N and ω ∈ Ω, and suppose that
ω |= ψ, for some formula ψ ∈ Ψr

0. It must be the case that either (i.a) ∀ω′ ∈ Ω, if ωRiω′

then ω′ |= ψ, or (i.b) ∀ω′ ∈ Ω, if ωRiω′ then ω′ |= ¬ψ, or (i.c) ∃ω′, ω′′ ∈ Ω, such that
ωRiω

′ and ωRiω′′, and ω′ |= ψ and ω′′ |= ¬ψ (i.e. neither (i.a) nor (i.b)).
If (i.a) is the case, then ω |= �iψ. If (i.b) is the case, then ω |= �̂iψ, and finally, if (i.c)
is the case, then ω |= �̇iψ. Therefore, in all cases, the operator over ψ belongs to the set
Oi, and since this holds for any ψ ∈ Ψr

0, it holds for each entry of a ken. Furthermore,
|= can only generate consistent lists of formulas, so kens cannot be inconsistent. This
implies that a ken must exist that belongs to Vi.
(ii) Consider an arbitrary i ∈ N and ω ∈ Ω. Let νi, µi ∈ Vi, and consider the nth entry of
each ken such that νni ψn 6= µni ψn. Case (ii.a): Suppose ω |= νni ψn = �iψn. So, ∀ω′ ∈ Ω,
if ωRiω′, then ω′ |= ψn. By definition, this rules out the possibility that also, ω |= �̂iψn,
or ω |= �̇iψn. For cases (ii.b), ω |= νni ψn = �̂iψn, and (ii.c), ω |= νni ψn = �̇iψn, proceed
analogously to (ii.a).

Proof of Lemma 2 Consider some arbitrary state ω ∈ Ω. Suppose Ii(ω) ⊆ Ij(ω)
and ω |= νi ∧ νj . Consider the nth entry of these kens.
(a) Suppose ω |= νni ψn = �iψn, and suppose that ω |= νnj ψn = �̂jψn. Then, ∀ω′ ∈ Ij(ω),
ω′ |= ¬ψn. But if Ii(ω) ⊆ Ij(ω), then ∀ω′ ∈ Ii(ω), ω′ |= ¬ψn, which contradicts the state-
ment that ω |= �iψn. Therefore, ω |= (νnj ψn = �jψn ∨ νnj ψn = �̇jψn).
Cases (b), ω |= νni ψn = �̂iψn and (c) ω |= νni ψn = �̇iψn can dealt with analogously to
case (a).

Proof of Lemma 3 Suppose ω′′ ∈
⋃
ω′∈ΩG(ω) Ii(ω

′). So, ω′′ ∈ Ii(ω
′) for some

ω′ ∈ ΩG(ω). But, ω′Riω′′, and there exists a sequence of Ri (i ∈ G) steps such that ω′

is reachable from ω. Therefore, there exists a sequence, one step longer, such that ω′′ is
reachable from ω. So, ω′′ ∈ ΩG(ω). (And, note that Ii(ω′′) ⊆ ΩG(ω)).
Suppose ω′′ ∈ ΩG(ω). Reflexivity guarantees that ω′′ ∈ Ii(ω′′). So, for some ω∗ ∈ ΩG(ω),
ω′′ ∈ Ii(ω∗), so ω′′ ∈

⋃
ω′∈ΩG(ω) Ii(ω

′).

Proof of Lemma 4 Suppose ω′ |= νi for some ω′ ∈ Ii(ω). Consider the nth entry of
the ken, namely, νni ψn.
(a) Suppose ω′ |= νni ψn = �iψn. Then, for all ω′′ ∈ Ω, ω′Riω′′ implies ω′′ |= ψn. So,
for all ω′′ ∈ Ii(ω′), ω′′ |= ψn. But since Ri is an equivalence relation, and ω′ ∈ Ii(ω), it
follows that Ii(ω′) = Ii(ω). So, for all ω′′ ∈ Ii(ω), ω′′ |= ψn, from which it follows that
for all ω′′ ∈ Ii(ω), ω′′ |= �iψn.
Case (b), ω′ |= νni ψn = �̂iψn and (c), ω′ |= νni ψn = �̇iψn are analogous to case (a).

Proof of Theorem 1 Suppose that assumptions 1 and 2 hold, and that the system
is S5. Let ω ∈ Ω, and consider the set ΩG(ω). It must be the case that at ω, ω |= ν(ω)h.
So by Lemma 4 and Assumption 2, for all ω′ ∈ ΩG(ω), ω′ |= ν(ω)h. By Lemma 3, we
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know that
⋃
ω′∈ΩG(ω) Ii(ω

′) = ΩG(ω). So for each state in each of i’s information cells,
and therefore for each ω′′ ∈ ΩG(ω), it must be the case that ω′′ |= ν(ω′′)i % ν(ω)h
by Lemma 2. It follows that for all ω′′ ∈ ΩG(ω), ω′′ |= ν(ω)h → ν(ω′′)i % ν(ω)h and
ω′′ |= �h(ν(ω)h → ν(ω′′)i % ν(ω)h).
Finally, by the assumption that ω |= CG(dxi ), it follows that ω |= �h(dxi ). By Assumption
1, it follows that ω |= dxh.
Reasoning similarly, between the dummy h and agent j, we find that ω |= dyh. Therefore
ω |= (x = y).

Proof of Theorem 2 Suppose that ω |= CG(dxi ∧ d
y
j ) ∧ (x 6= y). If condition

B holds, then without loss of generality, there is some state ω′ ∈ ΩG(ω) such that
ω′ |= ν(ω′)i % µ(ω′)j . Now by the assumption of common knowledge of actions, it
must be the case that for all ω′′ ∈ ΩG(ω), ω′′ |= �idyj ∧ dxi . By ISTP , it follows that
ω′′ |= ¬�i(ν(ω′′)i → µ(ω′′)j % ν(ω′′)i). So, for every ω′′ ∈ ΩG(ω), there exists an
ω′′ ∈ ΩG(ω) with ω′′Riω

′′′ such that ω′′′ |= ν(ω′′′)i ∧ ¬(µ(ω′′′)j % ν(ω′′′)i). But since
ω′Riω

′ and ω′ |= ν(ω′)i % µ(ω′)j , we have a contradiction.

Proof of Proposition 1 Let “i-arrow" refer to an arrow of i’s accessibility relation.
Firstly, we can show that Ri = Ei∪Fi. An arbitrary ω ∈ Ω either has an i-arrow pointing
to it or it does not. If it does not, by seriality, it points to another state. If it does, then
there exists a state ω′ that points to ω which itself points to some state ω′′ by seriality.
Transitivity implies that ω′ points to ω′′ and Euclideaness implies that ω′′ points to ω.
From here it is easy to prove that ω, ω′ and ω′′ are in an equivalence class.
Secondly, we show that if Ji(ω′) 6= Ji(ω

′′) then Ji(ω
′) ∩ Ji(ω′′) = ∅. Suppose ω ∈

Ji(ω
′) ∩ Ji(ω′′). If ω ∈ Si(ω

′) ∩ Si(ω′′) then Si(ω
′) and Si(ω

′′) are indistinguishable,
and one can verify that Ji(ω′) = Ji(ω

′′). If ω ∈ Si(ω′) ∩ Ai(ω′′) then ω both does have
and does not have an i-arrow pointing to it. Finally, if ω ∈ Ai(ω

′) ∩ Ai(ω′′) then by
Euclideaness, ω′ and ω′′ are indistinguishable, and Ji(ω′) = Ji(ω

′′).
Thirdly, we can show that ∪ω∈ΩJi(ω) = Ω. Suppose ω′ ∈ ∪ω∈ΩJi(ω), then by the def-
initions of Si and Ai, ω′ ∈ Ω. On the other hand, suppose ω ∈ Ω. Then if there is an
i-arrow pointing to ω, ω ∈ Si(ω) ⊆ Ji(ω). If there is no i-arrow pointing to it, then by
seriality, there is an ω′ that ω points to, so ω ∈ Ai(ω′) ⊆ Ji(ω′). So, ω ∈ ∪ω∈ΩJi(ω).

Proof of Lemma 5 Entirely analogous to the proof of Lemma 2.

Proof of Lemma 6 Suppose ω′′ ∈
⋃
ω′∈ΩG(ω) Si(ω

′). So, ω′′ ∈ Si(ω
′) for some

ω′ ∈ ΩG(ω). But, ω′Eiω′′, and there exists a sequence of Ri (i ∈ G) steps such that ω′

is reachable from ω. Therefore, there exists a sequence, one step longer, such that ω′′ is
reachable from ω. So, ω′′ ∈ ΩG(ω).
Suppose ω′′ ∈ ΩG(ω). Either ω′′ has an i-arrow pointing towards it, in which case
ω′′ ∈ Si(ω′′). So, ω′′ ∈ Si(ω′′)∪Ai(ω′′) = Ji(ω

′′), or, ω′′ has no i-arrow pointing towards
it, in which case, by seriality, there exists some ω′′′ such that ω′′ ∈ Ai(ω′′′). Note that
ω′′′ must be in ΩG(ω) since it is reachable from ω′′. So, ω′′ ∈ Si(ω′′′)∪Ai(ω′′′) = Ji(ω

′′′).
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In either case, for some ω∗ ∈ ΩG(ω), ω′′ ∈ Ji(ω∗), so ω′′ ∈
⋃
ω′∈ΩG(ω) Ji(ω

′).

Proof of Lemma 7 Suppose ω′ |= νi for some ω′ ∈ Ji(ω). Firstly, suppose
ω′ ∈ Si(ω), and consider the nth entry of the ken, namely, νni ψn.
(a) Suppose ω′ |= νni ψn = �iψn. Then, for all ω′′ ∈ Ω, ω′Eiω′′ implies ω′′ |= ψn. So,
for all ω′′ ∈ Si(ω′), ω′′ |= ψn. But since Ei is an equivalence relation, and ω′ ∈ Si(ω),
it follows that Si(ω′) = Si(ω). So, for all ω′′ ∈ Si(ω), ω′′ |= ψn, from which it follows
that for all ω′′ ∈ Si(ω), ω′′ |= �iψn. Also, each ω′′′ ∈ Ai(ω) has an arrow pointing to
each state in Si(ω), so for all ω∗ ∈ Si(ω), if ω′′′Fiω∗, ω∗ |= ψn. So, for all ω′′′ ∈ Ai(ω),
ω′′′ |= �iψn. It follows that for all ω′′ ∈ Ji(ω), ω′′ |= �iψn.
Case (b), ω′ |= νni ψn = �̂iψn and (c), ω′ |= νni ψn = �̇iψn are analogous to case (a).
Now, suppose ω′ ∈ Ai(ω), and consider the nth entry of the ken, namely, νni ψn.
(d) Suppose ω′ |= νni ψn = �iψn. Then, for all ω′′ ∈ Ω, ω′Fiω′′ implies ω′′ |= ψn.
So, for all ω′′ ∈ Si(ω

′), ω′′ |= ψn. This implies that ω′′ |= �iψn for all ω′′ ∈ Si(ω),
and ω′′′ |= �iψn for all other states ω′′′ ∈ Ai(ω). It follows that for all ω′′ ∈ Ji(ω),
ω′′ |= �iψn.
Case (e), ω′ |= νni ψn = �̂iψn and (f), ω′ |= νni ψn = �̇iψn are analogous to case (d).

Proof of Theorem 3 Suppose that assumptions 1 and 3 hold, and that the system is
KD45. Let ω ∈ Ω, and consider the set ΩG(ω). It must be the case that at ω, ω |= ν(ω)h.
So by Lemma 7 and Assumption 3, for all ω′ ∈ ΩG(ω) ∪ {ω}, ω′ |= ν(ω)h. By Lemma 6,
we know that

⋃
ω′∈ΩG(ω) Si(ω

′) ⊆ ΩG(ω). So for each state ω′′ in each of i’s information
sinks, it must be the case that ω′′ |= ν(ω′′)i % ν(ω)h by Lemma 5. However, this must
also be true at every state ω′′′ that is in the component but not in any of i’s sinks (by
Lemma 7). So, for all ω′′ ∈ ΩG(ω) ∪ {ω}, ω′′ |= ν(ω′′)i % ν(ω)h. It follows that for all
ω′′ ∈ ΩG(ω) ∪ {ω}, ω′′ |= ν(ω)h → ν(ω′′)i % ν(ω)h and ω′′ |= �h(ν(ω)h → ν(ω′′)i %
ν(ω)h).
Finally, by the assumption that ω |= CG(dxi ), it follows that ω |= �h(dxi ). By Assumption
1, it follows that ω |= dxh.
Reasoning similarly, between the dummy h and agent j, we find that ω |= dyh. Therefore
ω |= (x = y).

Proof of Theorem 4 Entirely analogous to the proof of Theorem 2.
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