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Abstract

In this paper we investigate the dependence structure for Ornstein-Uhlenbeck
processes with totally skewed tempered stable structure. They are natural
extension of Ornstein-Uhlenbeck processes withα−stable (and Gaussian)
distribution. However for theα-stable models the covariance is not de-
fined therefore in order to compare the structure of dependence of Ornstein-
Uhlenbeck with tempered stable andα−stable structure we analyze another
measures of dependence defined for infinitely divisible processes such as
Lévy correlation cascade and codifference. We show that for analyzedpro-
cesses the Ĺevy correlation cascade goes faster to zero as in the stable case,
while the codifference of theα-stable Ornstein-Uhlenbeck process has the
same form as in the tempered case.

Key words: truncated Ĺevy flight, tempered stable, Ornstein-Uhlenbeck pro-
cess, structure of dependence
PACS: 05.40.Fb, 05.40.-a

1 Introduction

In modern mathematical finance continuous time models play acrucial role be-
cause they allow handling unequally spaced data and even high frequency data,
which are realistic for liquid data. The probably most famous example is the

∗Partially supported by European Union within European Social Fund.
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Ornstein-Uhlenbeck process that was introduced in 1930 by Uhlenbeck and Orn-
stein [1] as a suitable model in the physical phenomenas. Ornstein and Uhlenbeck
proposed this new model as an alternative to the classical Brownian motion in
case when some kind of mean reverting tendency is observed inthe real data.
The Ornstein-Uhlenbeck process have found many applications especially to the
real financial data such as interest rates, currency exchange rates, and commodity
prices. In finance it is best known in connection with the Vasicek interest rate
model, [2].

Many asset pricing models (such as classical Vasicek model)assume that the
analyzed data have normal distribution. Unfortunately theassumption of nor-
mality is unsatisfactory for many observed data. One approach is to replace the
Brownian motion in the Ornstein-Uhlenbeck process by a heavier tailed Ĺevy pro-
cess. Many studies have shown that heavy-tailed distributions allow for modelling
different kinds of phenomena when the assumption of normality for the observa-
tions does not seem not to be reasonable. Especiallyα-stable (stable) distributions
have found many practical applications, for instance in finance [3], physics [4] and
electrical engineering [5]. The Ornstein-Uhlenbeck process withα-stable struc-
ture was analyzed in [6] as a suitable model to description ofreal financial data.

However the stable processes have infinite moments of the second or higher
orders therefore there appear many problems especially in applications. In or-
der to overcome this drawback, the processes with tempered stable structure (and
their modifications) have been introduced. There are many types of such pro-
cesses, for example classical tempered stable and modified tempered stable mod-
els, see [7, 8, 9]. The classical tempered stable models are known as Truncated
Lévy Flight (see for instance [11, 12, 13, 14]), KoBol [15] and CGMY processes
[16, 17]. They found many applications especially in finance, see [18, 19], biol-
ogy [20], physics to description of diffusion and relaxation [21] and turbulence
[22] as well as in plasma physics [23], see also [24, 25].

In this paper we consider the Ornstein-Uhlenbeck processe with tempered sta-
ble structure that is a natural extensions of Ornstein-Uhlenbeck with Brownian or
stable Ĺevy motion. One of the important steps towards constructing an appropri-
ate mathematical model for the real-life data is covariance. However for the stable
models the covariance is not defined therefore in order to compare the structure of
dependence of the tempered andα−stable Ornstein-Uhlenbeck process we ana-
lyze another measure of dependence defined for infinitely divisible processes such
as Ĺevy correlation cascade [28] that is a useful tool for studying the ergodic prop-
erties, [29]. We examine the asymptotic behaviour of the aftermentioned measure
for considered processes and compare it to theα−stable case. As a main result
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we show that the Ĺevy correlation cascade in the considered case goes faster to
zero as in stable models. Moreover for the tempered stable andα-stable Ornstein-
Uhlenbeck process we compare also the another measure, namely codifference
[30, 31, 32, 33], measure based on the characteristic function. We prove that for
this two analyzed processes this measure indicates the sameasymptotic behaviour.

The rest of the paper is organized as follows: In Section 2 we give the defini-
tion of considered Ornstein-Uhlenbeck process with tempered stable structure. In
order to present the motivation of the paper in Section 3 we describe the real data
of turbulence in earth’s plasma by using the tempered stableOrnstein-Uhlenbeck
process. Then, in Section 4, we review the measures of dependence for infinitely
divisible processes: the codifference and the alternativemeasure called the Ĺevy
correlation cascade. The measures of dependence for considered processes are
studied in Section 5 and their asymptotic behaviour is examined.

2 Ornstein-Uhlenbeck process with tempered stable
structure

The classical Ornstein-Uhlenbeck process is one of severalapproaches used to
model (with modifications) the real financial data such as interest rates, currency
exchange rates, and commodity prices. It is also known as themean-reverting
process, and it is given by the following stochastic differential equation:

dY (t) = a(µ− Y (t))dt+ σdB(t), (2.1)

where{B(t)}t≥0 denotes the Brownian motion, the parameterµ ∈ R represents
the equilibrium or mean value supported by fundamentals;σ > 0- the degree of
volatility around it caused by shocks, andθ > 0 - the rate by which these shocks
dissipate and the variable reverts towards the mean. If we extend the Brownian
motion for the set(−∞, 0) according to the procedure presented in [34, 35], then
we can write the unique solution of equation (2.1):

Y (t) = µ+ σ

∫ t

−∞

e−a(t−u)dB∗(u), (2.2)

where{B∗(t)}t∈R is the Brownian motion extended to the set(−∞, 0).
An extension of the process (2.2) is anα−stable Ornstein-Uhlenbeck system de-
fined as follows (see [6, 34]):

Y (t) = µ+ σ

∫ t

−∞

e−a(t−u)dLα(u), (2.3)
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where{Lα(t)} is a Lévy process withα-stable increments extended to the set
(−∞, 0). Stable Ornstein-Uhlenbeck processes were analyzed for instance in [6,
36] as a models describing real financial data.

In this paper we propose an extension of the aftermentioned Ornstein-Uhlenbeck
processes and substitute the Lévy process withα-stable (or Gaussian) increments
extended to the set(−∞, 0) by the Ĺevy process with totally skewed tempered
stable structure. In this cases the Ornstein-Uhlenbeck process can be represented
by the following stochastic integral:

Y (t) = µ+ σ

∫ t

−∞

e−a(t−u)dT (u), (2.4)

where{T (u)} is a Lévy process with totally skewed tempered stable increments
extended to the set(−∞, 0).
An infinitely divisible distribution is called a totally skewed tempered stable (TS)
with parametersα, λ andC if it has no Gaussian component and its Lévy measure
is given by, [10]

v(dx) =
Ce−λx

x1+α
1x>0dx, (2.5)

whereλ > 0, 0 < α < 2 andC > 0 for α > 1 andC < 0 for α < 1. The
Fourier transformφTS of the totally sewed tempered stable distribution is given
by the following formula, [10]

φTS(u) = E exp (iuT ) = exp
(

C((λ− iu)α − λα + iuαλα−1)
)

. (2.6)

Whenλ = 0, then the random variableT with the Fourier transform given in
(2.6) has a totally skewedα−stable distribution with the following values of the
parameters

α, β = 1, σ = (|C|cos(π ∗ α/2))1/α, µ = 0.

By using the connection between the TS and correspondingα−stable distribution
it is easy to find the relation between the probability distribution functions (pdf).
Let pTS(x) andpS(x) be pdf in pointx of TS random variable with parameters
α, λ, C andα−stable with appriopriate values of the parameters, respectively, then
for α 6= 1 we have

pTS(x) = e−λx+(α−1)cλα

pS(x− cαλα−1).

Forα = 1 this relationship takes the form:

pTS(x) = e−λx+cλpS(x− c(1 + lnλ)).

The main properties as well as the procedures of simulation of the considered
tempered stable distribution one can find for instance in [8]and [10].
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3 Motivation

In order to present the motivation of using the Ornstein-Uhlenbeck process with
tempered stable structure we analyse the real data for plasma physics. The data set
describes the floating potential fluctuations of earth’s plasma expressed in volts.
The signal was registered on 15.06.2006 (the time unit - 16 miliseconds) with
movable probe in Scrape-Off Layer (SOL) plasma. The small torus radial posi-
tion was r=11.25 cm. On Fig. 1 we present the analysed real data. The statistical
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Figure 1: The real data from plasma physics.

tests based on the empirical distribution function, [27], reject the hypothesis that
the data can be described by using Gaussian as well as theα−stable distribution.
Therefore as an alternative we propose to use the tempered stable distribution de-
scribed in previous Section. The autocorrelation function(ACF) and partial auto-
correlation function (PACF) indicate the data can be described by autoregressive
model of order 1 (AR(1)), that is a discrete version of the Ornstein-Uhlenbeck
process. By using the maximum likelihood method we estimate the parameterθ
of the process given in (2.4). For the simplicity we assumeµ = 0 andσ = 1. The
estimation results givêθ = 0.2351. Moreover by using the method of moments
we estimate also the parameters of TS distribution:

α̂ = 1.8399, λ̂ = 0.1928, Ĉ = 2.1970.
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On Fig. 2 we present the empirical probability distributionfunction based on the
kernel estimation method of the model’s residua that are described by the totally
skewned tempered stable distribution as well as the theoretical density function
calculated by using the estimated parameters.
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Figure 2: The comparison of the empirical pdf of the rests of the Ornstein-
Uhlenbeck model and the theoretical pdf calculated on the basis of the estimated
parameters from the TS distribution.

4 Measures of dependence for infinitely divisible pro-
cesses

One of the important tool providing to construction of an appropriate mathemat-
ical model for the real-life data is covariance. However forthe large class of
infinitely divisible processes, namely the strictlyα−stable, the covariance is not
defined. Therefore there appears problem: how in this case describe the depen-
dence structure? One of the answer for this question gave Eliazar and Klafter in
[28]. They introduced a new measure of dependence that is defined for infinitely
divisible stochastic processes{Y (t), t ∈ R} with the following integral represen-
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tation:

Y (t) =

∫

X

K(t, x)M(dx),

whereM is an independly scattered infinitely divisible random measure on some
measurable spaceS with control measurem, see also [29].
The new measure was introduced as a concept of correlation cascades, which is a
promising tool for exploiting the properties of the Poissonian part ofY (t) and the
dependence structure of this stochastic process. The Lévy correlation cascade is
defined as follows [28, 29]:

Cl(t1, t2, . . . , tn) =

∫

X

Λ

(

l

min{K(t1, x), . . . , K(tn, x)}

)

m(dx), (4.7)

where the tail functionΛ is given by

Λ(l) =

∫

|x|>l

v(dx) (4.8)

andv is a Lévy measure of the the process{Y (t)}.
Many significant properties and results connected with the Lévy correlation cas-
cade for infinitely divisible processes are presented in [28] and [29]. We only
mention here the functionCl(t1, t2, . . . , tn) tells us, how dependent the coordi-
nates of the vector(Y (t1), Y (t2), . . . , Y (tn)) are. Therefore,Cl(t1, t2, . . . , tn)
can be considered as an appropriate measure of dependence for the Poissonian
part of the infinitely divisible process, [29]. The ergodic property, such as ergod-
icity, weak mixing and mixing, of a stationary infinitely divisible processes can be
described in the language of the Lévy correlation cascade therefore this measure
is a promising tool for studying the dependence structure for this large class of
processes.
When the considered process is a moving-average with respectto the Ĺevy pro-
cess{Z(t)}, i.e. it takes the following form

Y (t) =

∫ t

−∞

f(t− u)Z(du),

then the Ĺevy correlation cascade is defined as follows:

Cl(0, t) =

∫ ∞

t

Λ

(

l

f(y)

)

dy.

The another measure, that is often considered as a tool of thedependence structure
description, is the codifference (see for instance [30, 31,32]). For the stationary
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infinitely divisible process{Y (t)} this measure of dependence is defined as fol-
lows:

CD(t, 0) = CD(Y (t), Y (0)) =

logE exp{i(Y (t)− Y (0))} − logE exp{iY (t)} − logE exp{−iY (0)}. (4.9)

Codifference carries enough information to detect ergodic properties of the pro-
cess{Y (t)}. It is also closely related to the dynamical functional usedin [38, 39]
to investigate the chaotic behaviour of the considered process. Properties of the
measure on can find in [30]. Let us mention here that there is relationship between
the asymptotic behaviour of Ĺevy correlation cascade and codifference, namely
for the stationary infinitely divisible process{Y (t)} with the Lévy measurev0
of Y (0) without atoms in2πZ, the following two conditions are equivalent (see
Theorem 2 in [29]):

lim
t→0

Cl(t, 0) = 0 for every l > 0

lim
t→0

CD(t, 0) = 0.

In the next section we consider the Ornstein-Uhlenbeck processes with tem-
pered stable structures. As a main result we show the asymptotic behaviour
of this processes in the language of Lévy correlation cascade and compare it
with α−stable case. Moreover we show that the codifference of the Ornstein-
Uhlenbeck process withα−stable and tempered stable structure has the same
asymptotic properties.

5 Structure of dependence of Ornstein-Uhlenbeck
process withα− and tempered stable structure

5.1 The totally skewnedα-stable case

Let us consider the Ornstein-Uhlenbeck process withα-stable structure given in
(2.3). For the simplification we takeµ = 0 andσ = 1. In this case the Ĺevy
measure of theα-stable Ĺevy process{Lα(u)} in (2.3) is given by (see [30]):

v(dx) = 0.5

(

1x>0

x1+α
+

1x<0

|x|1+α

)

dx,

Therefore the Ĺevy correlation cascade of the Ornstein-Uhlenbeck process{Y (t)}
given in (2.3) has the following form [29]:

Cl(0, t) =
2

aα2lα
e−aαt.

8



Moreover the correlation-like measurer defined in (??) depends on on param-
eter (according to the fact that the considered process is stationary) and has the
following form

rl(t) = rl(τ, τ + t) = e−aαt.

The codifferenceCD(t, 0) of the Ornstein-Uhlenbeck process withα-stable Ĺevy
motion is given by [40]:

CD(t, 0) =
1 + e−aαt − |1− e−at|α

aα
,

that for larget andα > 1 gives

CD(t, 0) ∼ const · e−at.

5.2 Totally skewed tempered stable case

In this case we consider the Ornstein-Uhlenbeck process{Y (t), t ∈ R} with to-
tally skewed tempered stable structure. The{T (t)} process in representation (2.4)
it is a process with Ĺevy measure given in (2.5). In the considered case the tail
functionΛ given in (4.8) takes the following form

Λ(l) = CλαΓ(−α, λl),

whereΓ(s, t) is a incomplete gamma function defined as follows

Γ(s, t) =

∫ ∞

t

xs−1e−xdx. (5.10)

Using the form of theΛ function we obtain the following form of the Ĺevy corre-
lation cascade for the tempered stable O-U process defined in(2.4):

Cl(t, 0) =

∫ ∞

t

CλαΓ(−α, λleau)du.

Let us consider the asymptotic behaviour of such function for t → ∞. Because
the incomplete gamma function has the following property

Γ(s, x)

xs−1e−x
→ 1 for x → ∞

then we obtain for larget

Cl(t, 0) ∼ Cλα

∫ ∞

t

(λleau)−α−1 exp{−λleau}du =
Cλα

a

∫ ∞

λleat
w−α−2e−wdw
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=
Cλα

a
Γ(−α− 1, leat) ∼

Cλα

a
(λleat)−α−2 exp{−λleat}

In this case the codifference defined in (4.9) is given by

CD(t, 0) =

C

∫ 0

−∞

(λ− ieas(e−at − 1))α − (λ− ieas)α + 2iαλα−1eas(e−at − 1)ds

−C

∫ 0

−∞

(λ+ ie−a(t−s))α − λαds.

By using the following formula

(a+ b)α =
∞
∑

k=0

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
aα−kbk

we obtain
CD(t, 0) =

C
∞
∑

k=1

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)ak
λα−kik((1− e−at)k − (−1)k)ds+

+
2iCαλα−1(e−at − 1)

a
− C

∞
∑

k=1

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)ak
λα−kike−atk.

= C

∞
∑

k=2

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)ak
λα−kik((1− e−at)k − (−1)k − e−atk).

Whenk is even, then the function

(1− e−at)k − (−1)k − e−atk

for larget behaves likeke−at. Whenk is odd, then

lim
t→∞

(1− e−at)k − (−1)k − e−atk = 2.

therefore finally we obtain

CD(t, 0) ∼ const · e−at +R,

whereR is constant.
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5.3 Classical tempered stable case

Let us consider the process{Y (t), t ∈ R} defined in (2.4) with classical tempered
stable structure. For simplification let us takeµ = 0, σ = 1 in representation (2.4)
and consider the CGMY process, i.e. in the definition of Lévy measure in (??) we
takeC1 = C2 = C > 0. In this case the tail functionΛ takes the following form

Λ(l) = Cλα
+Γ(−α, λ+l) + Cλα

−Γ(−α, λ−l),

whereΓ(s, t) is a incomplete gamma function defined as follows

Γ(s, t) =

∫ ∞

t

xs−1e−xdx. (5.11)

Using the form of theΛ function we obtain the following form of the Levy corre-
lation cascade for the tempered stable O-U process defined in(2.4):

Cl(t, 0) =

∫ ∞

t

Cλα
+Γ(−α, λ+le

au) + Cλα
−Γ(−α, λ−le

au)du.

Let us consider the asymptotic behaviour of such function for t → ∞. Because
the incomplete gamma function has the following property

Γ(s, x)

xs−1e−x
→ 1 for x → ∞

then we obtain for larget

Cl(t, 0) ∼ Cλα
+

∫ ∞

t

(λ+le
au)−α−1 exp{−λ+le

au}du+Cλα
−

∫ ∞

t

(λ−le
au)−α−1 exp{−λ−le

au}du

=
Cλα

+

a

∫ ∞

λ+leat
w−α−2e−wdw +

Cλα
−

a

∫ ∞

λ
−
leat

w−α−2e−wdw

=
Cλα

+

a
Γ(−α− 1, λ+le

at) +
Cλα

−

a
Γ(−α− 1, λ−le

at)

∼
Cλα

+

a
(λ+le

at)−α−2 exp{−λ+le
at}+

Cλα
−

a
(λ−le

at)−α−2 exp{−λ−le
at}

=
Ce−a(α+2)t

alα+2

(

exp{−λ+le
at}

λ2
+

+
exp{−λ−le

at}

λ2
−

)

.

In the simple case whenC = λ+ = λ− = 1 we have

Cl(t, 0) ∼
e−a(α+2)t

2alα+2
exp{−leat}.
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In his case the correlation-like measure defined in (??) depends only on one pa-
rameter. Moreover

rl(t) = rl(τ, τ + t) ∼ exp{−a(α + 2)t− l(eat − 1)}.

In this case the codifference defined in (4.9) is given by

CD(t, 0) =

Γ(−α)

∫ 0

−∞

(1−ie−a(t−u)+ieau)α+(1+ie−a(t−u)−ieau)α−2((1+ieau)α−1+(1−ieau)α)du

+Γ(−α)

∫ t

0

((1− ie−a(t−u))α + (1 + ie−a(t−u))α − 2)du.

Therefore we obtain

CD(t, 0) ∼ Γ(−α)e−ati

∫ 0

−∞

eau[(1+ ieau)α−1− (1− ieau)α−1]du = const ·e−at.

6 Conclusion

In this paper we analyzed structure of dependence of three types of Ornstein-
Uhlenbeck processes related to the stable law: classical tempered stable, modified
tempered stable and Lamperti stable Ornstein-Uhlenbeck processes. This struc-
ture of dependence we described in the language of Lévy correlation cascade as
well as the codifference. As a main result we showed that the measure of depen-
dence based on the Lévy measure in the three considered cases goes faster to zero
as in stable models. As the conclusion on Figure?? we present behaviour of the
correlation-like measurer for theα−stable, classical tempered stable, modified
tempered stable and Lamperti stable Ornstein-Uhlenbeck process.
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