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Merging and Going Bankrupt: A Neutral SolutionI

José Alcalde1,∗, Maŕıa del Carmen Marco–Gil2, José A. Silva3

Abstract

As it is known, there is no rule satisfying Additivity in the complete domain

of bankruptcy problems. This paper proposes a notion of partial Additivity

in this context, to be called µ-additivity. We find that µ-Additivity, together

with two quite compelling axioms, Anonymity and Continuity, identify the

Minimal Overlap rule, introduced by O’Neill (1982)
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1. Introduction

There is empirical evidence pointing out the large number of firms in-

volved in some merging process. As a recent example, let us mention that,
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Preprint submitted to MPRA January 22, 2011



in Spain, it is expected that the number of (regional) saving banks will be

drastically reduced from 45 in 2009 to 20 after the restructuring process

in which the financial sector is involved. The reasons justifying why firms

merge include the effort to gain market power, tax advantages of taking over

a loss making firm, efficiency, increasing market share and diversification

among other factors. Simultaneously to this merging wave, we found that

the number of firms going bankrupt has also grown. This fact can be partially

explained by the global financial crisis.

What this paper tries to explain is how the debtors of a bankrupted firm

should be reimbursed. Taking into account that they could not avoid, nor

promote, any merging process, the procedure employed to solve our problem

should be neutral to the presence of any merging process. By neutrality we

mean that what each creditor would lose, due to the bankruptcy situation,

should not be affected by any entrepreneurial alliance. The question is quite

simple but, as this paper will point out, its analysis is not trivial.

The particular way that we will model this economic problem allows it to

be also applied to some other distribution situations like how to share out a

deceased estate among its inheritors, the design of (multi-issues) tax or tariff

systems, etc. Therefore, we will follow the approach introduced by O’Neill

(1982), when formulating solutions for bankruptcy problems. The analysis of

bankruptcy problems can be considered a simple and robust tool to model

how agents should be rationed. In these situations, each agent in a group

asks for a quantity of a perfectly divisible good, but the available amount is

not enough to satisfy all the agents’ demands.

The literature proposes mainly two approaches to provide satisfactory so-
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lutions for these problems. The first one, the axiomatic analysis, proposes

particular solutions arising from the assumption that some ‘Equity Princi-

ples’ should prevail. The study by Thomson (2003) provides a nice overview

of the main results following this methodology. The second approach is based

on a interpretation of bankruptcy problems as (transferable utility) cooper-

ative games, TU-games henceforth. This formulation, introduced by O’Neill

(1982), has been employed to argue in favor of some particular rules. Re-

garding this, see the papers by O’Neill (1982) and Aumann and Maschler

(1985).

This close relationship between bankruptcy situations and cooperative

games might well lead to analyze how strong the liaison between both frame-

works is. When concentrating on solutions for TU-games, and related to

properties reflecting neutrality on the distributive process, additivity is one

of the most extensively imposed requirements. In fact, the fulfillment of

this property has been extensively demanded in a huge family of allocation

problems analyzed from a co-operative perspective. Just as an illustrative

example, Moretti and Patrone (2008) refers to the Shapley value application

to cost allocation, social networks, water issues, biology, reliability theory

and belief formation. It is well-known that, in his seminal paper, Shapley

(1953) pointed out the additivity of the value he proposed.

When concentrating on bankruptcy situations, additivity of a solution

imposes, as in TU-games frameworks, neutrality on the distributive process.

Just to illustrate it, let us consider a creditor lending some funds to two

firms, say A and B. After a merging process, involving both firms the new

corporation, to be called C, bankrupts. When reimbursing this corporation’s
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creditors, one can propose two ways to proceed. The first one is considering

the problem of (partially) reimbursing C’s creditors; whereas the second one

lies in solving the ‘primitive’ problems related to A and B with respect to

their creditors. What additivity should require is that both processes yield

the same outcome.

As far as we know, the paper by Bergantiños and Méndez-Naya (2001)

is the only one which explores additivity in Bankruptcy frameworks. Their

conclusions in that matter can be summarized as follows:

(1) There is no bankruptcy rule satisfying additivity; and

(2) If we concentrate on a (very restrictive) family of bankruptcy problems,

the Ibn Ezra’s rule is the only one which conciliates additivity and

equal treatment.

Therefore, what Bergantiños and Méndez-Naya (2001) points out is that

additivity is a very demanding property in our framework.4 Moreover, if we

want to explore bankruptcy rules that, being well-defined for any problem,

satisfy some weak version of additivity, we must limit ourselves to considering

rules that coincide with the Ibn Ezra’s proposal in the framework in which

it is defined.

Taking into account the above restrictions, this paper proposes a weak

notion of additivity, that we call µ-Additivity, and a study of the bankruptcy

rules satisfying it. What we find is that the only rule for which anonymity,

4Section 3 discusses the rationale of such a fact both from an economical and a math-

ematical point of view.
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continuity and µ-Additivity are compatible is the Minimal Overlap Rule, in-

troduced by O’Neill (1982).

Anonymity and Continuity are two properties which have been widely

justified in the literature for Bankruptcy problems. What µ-additivity would

suggest is that additivity should be a requirement for comparable problems,

from the creditors’ point of view. Following this interpretation, and trying

to be precise in describing when two bankruptcy problems are comparable,

we consider three elements:

(1) For any two agents, their relative credits are similar, i.e. the agent con-

ceding the highest credit is the same for both problems;

(2) For each agent, her credit position, related to the debtor’s assets is sim-

ilar, i.e. her credits exceed the creditor’s assets in a problem, this

situation should not be reversed in the other; and

(3) The sacrifice that each agent would impose on her ‘rivals’, if her credit

is the first to be paid, should always (or never) be lower than such a

credit.

The rest of the paper is organized as follows. Section 2 introduces the

model and the main definitions related to bankruptcy problems. Section 3

discusses the notion of Additivity from a bankruptcy perspective and, based

on some impossibility results, introduces the notion of ‘Partial Additivity’.

Section 4 provides our main result, consisting on an axiomatization of the

Minimal Overlap Rule based on the weak additivity property, discussed in

the previous section. Technical proofs are relegated to the Appendix.
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2. Bankruptcy. The Framework and Main Definitions.

Let us consider an individual, the debtor, having some debts. Let N =

{1, . . . , i, . . . , n} denote the set of her creditors, that will be considered fixed

throughout the paper. E ≥ 0 will denote the valuation of the debtor’s

assets, and will be called the Estate. For any fixed creditor, say i, ci ≥ 0

will denote her credit, i.e. the quantity that the debtor owes to her. Vector

c = (c1, . . . , ci, . . . , cn) summarizes creditors’ claims. We say that the debtor

goes bankrupt if she has not enough assets to reimburse her debts.

Following the above, a bankruptcy problem can be fully described by a

vector (E, c) ∈ R+ × Rn
+ such that

E ≤
n∑
i=1

ci (1)

Note that Condition (1) reflects that reimbursing creditors’ debts might

be incompatible. Therefore, these agents’ aspirations (on recovering their

debts) would be rationed. Let B denote the family of all the bankruptcy

problems. For notational convenience, we describe the set of bankruptcy

problems having a ‘super-creditor’, i.e. an individual whose credit is not

lower than the estate, as

BS =

{
(E, c) ∈ B:E ≤ max

i∈N
ci

}
(2)

and, for any family of bankruptcy problems, say B? ⊆ B, BO? will denote the

subclass of problems with increasingly ordered claims

BO? = {(E, c) ∈ B?: ci ≤ cj whenever i ≤ j} (3)

Definition 1. A Bankruptcy rule is a function ϕ:B → Rn
+, such that for

each problem (E, c) ∈ B,
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(a)
∑n

i=1 ϕi (E, c) = E; and

(b) 0 ≤ ϕi (E, c) ≤ ci for each creditor i.

Among the many rules that have been explored in the literature, we will

introduce those two that will be most useful in our analysis.5 The first one,

to be called Ibn Ezra’s rule, is a ‘semi-solution’ in the sense that it is not

defined for every problem. The second one, known as the Minimal Overlap

rule, was proposed by O’Neill (1982) as a possible extension of Ibn Ezra’s

rule to be defined for any problem.

In order to properly define the above rules, let us consider a problem

(E, c) ∈ BO.6 We say that it is an Ibn Ezra’s problem if and only if it has a

super-creditor.

Definition 2. Ibn Ezra’s rule is the function ϕIE:BS → Rn
+, associating to

each problem (E, c) ∈ BOS , and creditor i, the amount

ϕIEi (E, c) =
i∑

j=1

min {E, cj} −min {E, cj−1}
n− j + 1

(4)

where c0 = 0.

Chun and Thomson (2005) proposes a formal description for the Minimal

Overlap rule. What these authors suggest is to proceed as follows. Let us

5As we have already mentioned, the reader can find a nice and complete overview of

the most relevant Bankruptcy rules in Thomson (2003).
6For expository simplicity and technical convenience, we assume that creditors’ claims

are increasingly ordered. Otherwise, we can re-arrange the creditors’ labels to reach this

objective. Therefore, even though this assumption is proposed, the Ibn Ezra’s and Minimal

Overlap rules are also defined when the agents’ claims are not increasingly ordered.
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consider a bankruptcy problem (E, c) ∈ BO, then what each creditor recovers

is described as follows:

(a) if (E, c) ∈ BS then

ϕMO (E, c) = ϕIE (E, c) ; or (5)

(b) if (E, c) /∈ BS then there is a unique t? ≥ 0 such that

t? = E −
n∑
i=1

max {ci − t?, 0} . (6)

In such a case, the Minimal Overlap rule associates to creditor i the

amount

ϕMO
i (E, c) = ϕIEi (E − t?, c) + max {ci − t?, 0} . (7)

Recently, Alcalde et al. (2008) found an alternative expression for the

Minimal Overlap rule, which is equivalent to the one introduced by Chun and

Thomson (2005), but helps to provide a (direct) intuition on what O’Neill

(1982) could have had in mind about how to extend the proposal by Ibn

Ezra.

Definition 3. The Minimal Overlap rule is the function ϕMO:B → Rn
+, that

associates, to each problem (E, c), the vector

ϕMO (E, c) = ϕIE (min {E, cn} , c) + ϕcel (Er, cr) (8)

where ϕcel stands for the Constrained Equal Losses rule and the ‘residual’

bankruptcy problem, to which the Ibn Ezra’s rule was not applied, is de-

scribed by Er = max {E − cn, 0}, and cr = c− ϕIE (min {E, cn} , c).
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3. Additivity and Bankruptcy Rules

The aim of this section is to introduce a discussion on the notion of

additivity in the framework of bankruptcy problems. Just to illustrate it,

let us consider the following example. A creditor, say i, loans some quantity

to two firms, say F and G. Let cFi and cGi denote these quantities. After a

merging process, firm H emerges as the fusion of F and G and, unfortunately

H goes bankrupt. If we denote by EF and EG the valuations of firms F and

G respectively; and their respective debts vectors are denoted by cF and cG,

we can have that7

(a) EH = EF + EG, and

(b) cH = cF + cG

What creditor i would expect to obtain at the division process, for any

Bankruptcy rule, say ϕ is

ϕi
(
EH , cH

)
≥ ϕi

(
EF , cF

)
+ ϕi

(
EG, cG

)
Note that, otherwise, i could claim that she has been ‘punished’ due to the

merging process, and she would not have the ability to object against such

a decision made by the two firms. If such an argument is extended to all the

creditors we have that the above inequality must become an equality. This

is the essence of the additivity notion.

7We are implicitly assuming that N , the set of creditors, is the same for both firms,

and that there are no intra-group debts, i.e. F is not a G’s creditor or a debtor.
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Definition 4. Let ϕ be a Bankruptcy rule. We say that it satisfies addi-

tivity if for any two problems, (E1, c1) and (E2, c2) we have that

ϕ
(
E1, c1

)
+ ϕ

(
E2, c2

)
= ϕ

(
E1 + E2, c1 + c2

)
. (9)

Bergantiños and Méndez-Naya (2001) provided an example pointing out

that additivity is a very demanding property for Bankruptcy rules. This is

why they could show that there is no rule satisfying additivity.

Some reasons justifying this fact can be found. The first one lies in

the relationship between bankruptcy problems and the TU-games, as sug-

gested by O’Neill (1982). This author proposed to associate to each bank-

ruptcy problem (E, c) the TU-game (N , V ), where the characteristic function

V : 2N → R+ assigns to each coalition S ⊆ N the amount

V (S) = max

{
E −

∑
i/∈S

ci, 0

}
. (10)

In this sense, Example 1 points out that additivity of bankruptcy problems

might not induce additivity of the respective TU-games.

Example 1. Let us consider the following three-agent bankruptcy problems.

(E, c) = (9, (8, 8, 8)), and (E ′, c′) = (31, (4, 12, 22)). Therefore, the aggregate

bankruptcy problem is (E + E ′, c+ c′) = (40, (12, 20, 30)). Let V (resp. V ′,

V ′′) denote the characteristic function relative to the problem (E, c) (resp.

(E ′, c′), (E + E ′, c+ c′)). Following Equation (10) we have that
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S V (S) V ′ (S) V ′′ (S) V (S) + V ′ (S)

{1} 0 0 0 0

{2} 0 5 0 5

{3} 0 15 8 15

{1, 2} 1 9 10 10

{1, 3} 1 19 20 20

{2, 3} 1 27 28 28

{1, 2, 3} 9 31 40 40

Therefore, the TU-game induced by adding the two bankruptcy problems

differs from the addition of the TU-games induced by both problems.

The second reason which explains that additivity is a strong requirement,

comes from an economic perspective. Let us consider a company that can

be seen as the result of a merging process involving some firms. When the

company as a whole, goes bankrupt, the degree of bankruptcy,8 is not

usually homogeneous considering the firms that configure the company. This

will justify the fact that not all the creditors should be rationed, taking into

account the company’s financial situation, but that of the firms receiving

their credits. Therefore, what this situation suggests is that additivity, as in-

troduced by Definition 4, might not be a reasonable property for Bankruptcy

rules, unless the problems to be added share at least, a ‘similar bankruptcy

8Given a bankruptcy problem (E, c), we can define its degree of bankruptcy as the

expression

D (E, c) = 1− E∑n
i=1 ci

.
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degree’.

4. µ-Additivity and the Minimal Overlap Rule

The aim of this section is to describe reasonable conditions under which

additivity is both satisfied by some bankruptcy rules and justified from an

economic point of view. The main idea for our requirements starts from

considering not only the ‘degree of bankruptcy’ as a comparison measure,

but also what each creditor would impose on her ‘rivals’ as a sacrifice when

her debts were completely reimbursed.

Just to formalize the above idea, let us consider the following scenario.

Given a bankruptcy problem (E, c), and an agent i ∈ N , Ei = max {0, E − ci}

denotes the amount that agents other than i would distribute after fully reim-

bursing (if possible) i’s credits. We will denote by µi (E, c) the (constrained

egalitarian) loss in which agents, other than i, incur when i’s credits have

been, as much as possible, reimbursed; i.e. µi (E, c) is the unique solution to∑
j 6=i

max {0, cj − µi (E, c)} = Ei.

A notion for level of imposed sacrifice, by an agent to her rivals, would

lie in how the above idea is related to such an agent’s claim.

Definition 5. Given a bankruptcy problem (E, c), we say that agent i’s

claim is under-transferred if, and only if, µi (E, c) < ci.

We now introduce a notion of partial additivity which is satisfied by some

Bankruptcy rules.
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Axiom 1. We say that a Bankruptcy rule, say ϕ, satisfies µ-Additivity if

ϕ (E, c) + ϕ (E ′, c′) = ϕ (E + E ′, c+ c′) .

for any two problems (E, c) and (E ′, c′) such that

(a) (ci − cj)
(
c
′
i − c

′
j

)
≥ 0 for each i and j in N ;

(b) (E − ci)
(
E − c′i

)
≥ 0 for each i in N ; and

(c) Each agent’s claim is under-transferred in (E, c) if, and only if, it is

under-transferred in (E ′, c′) ,

Note that what Axiom 1 suggests is that additivity should be preserved

in problems sharing some similarities related to their internal structure:

(a) In both problems the agents’ claims should be ordered in a similar way,

i.e. if i’s claim is greater that j’s claim in a problem, it should not be

the case that j’s claim is greater that i’s claim in the other.

(b) In both problems, each agent’s claim should have the same position rel-

ative to the estate, i.e. if some agent’s claim is lower than the estate

in a problem, it should not be the case that, for the other problem, her

claim exceeds the estate. And,

(c) In both problems the level of imposed sacrifice by each agent, should

have the same position, related to her claim.

In order to present our main result, we need to introduce two axioms

that are usually employed in Bankruptcy Theory. The first one, anonymity,

establishes that what each creditor recovers does not depend on her name,
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but on the internal structure of the problem. The second one is the classical

requirement of continuity.

Axiom 2. We say that a Bankruptcy rule, say ϕ, satisfies Anonymity, or

is anonymous, if for each problem (E, c) and any permutation9 π,

π [ϕ (E, c)] = ϕ (E, π (c)) .

Axiom 3. We say that Bankruptcy rule ϕ satisfies Continuity, or is con-

tinuous, if for each sequence of bankruptcy problems {Eν , cν}ν∈N, if

lim
ν→∞
{Eν , cν} = (E, c) ∈ B.

then

lim
ν→∞

ϕ (Eν , cν) = ϕ (E, c) .

We can now establish the following result, whose proof is relegated to the

Appendix.

Theorem 1. Let ϕ be a Bankruptcy rule. ϕ satisfies Anonymity, Conti-

nuity and µ-Additivity if, and only if, ϕ is the Minimal Overlap rule.

By way of conclusion, let us mention that Theorem 1 is tight in the sense

that the uniqueness result requires all the three axioms, and no axiom is

implied by the other two. Just to clarify that, let us note that:

9A permutation π is a bijection applying N onto itself. In this paper, and abusing

notation, π (c) will denote the claims vector obtained by applying permutation π to its

components, i.e. the i-th component for π (c) is cj whenever j = π (i). Similar reasoning

considerations apply for π [ϕ (E, c)].
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(a) The Constrained Equal Awards rule is both continuous and anonymous

but fails to satisfy µ-additivity;

(b) Any asymmetric Bankruptcy rule belonging to the family that Alcalde

et al. (2008) called the Weighted Minimal Overlap rules is both contin-

uous and µ-additive, but does not satisfy anonymity, and

(c) Let us consider the Bankruptcy rule ϕc that suggests the Ibn Ezra’s

proposal for any problem (E, c) such that E ≤ maxi∈N , and otherwise,

if P denotes the set of agents whose claims are under-transferred,

ϕci (E, c) =

 0 if i /∈ P

ϕceli

(
E,
(
{0}j /∈P , {c}j∈P

))
if i ∈ P

where ϕcel stands for the Constrained Equal Losses rule. Note that this

rule is anonymous and µ-additive but fails to be continuous.
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Appendix A. A Proof for Theorem 1

Throughout this Appendix we assume, without loss of generality, that

c is increasingly ordered i.e., ci ≤ cj whenever i < j. For simplicity of

exposition, for a given problem (E, c) we denote cE the claims vector whose

i-th component is cEi = min {ci, E}, for each agent i ∈ N .

We first provide a result establishing that, under Continuity, µ-Additivity

implies Invariance under Claims Truncation.

Proposition 1. Let ϕ be a Bankruptcy rule satisfying µ-Additivity and Con-

tinuity. Then it satisfies Invariance under Claims Truncation, i.e. for each

problem (E, c), ϕ (E, c) = ϕ
(
E, cE

)
.
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Proof. Let ϕ be a rule satisfying µ-Additivity and Continuity. Let (E, c) be

a problem where 0 < E < cn = maxi∈N {ci}; and let S ⊂ N be the subset of

agents claiming zero. Let us consider the following two cases.

Case 1: cn = cn−1 or cn−1 < E

Therefore, by µ-Additivity,

ϕ (E, c) = ϕ

(
E − 1

r
,

(
(0)i∈S,

(
cEi −

1

r

)
i∈N\S

))
+

+ϕ

((
1

r

)
,

(
(0)i∈S ,

(
ci − cEi +

1

r

)
i∈N\S

))

for all r ∈ N such that

1

r
< min

{
min
i∈N\S

{ci} , cn − E
}
.

Now, by considering the limit when r goes to infinity in the previous

equation and taking into account that ϕ is continuous, we obtain

ϕ (E, c) = ϕ
(
E, cE

)
+ ϕ

(
0, c− cE

)
= ϕ

(
E, cE

)
.

Case 2: E ≤ cn−1 < cn

By µ-Additivity,

ϕ (E, c) = ϕ

(
E − 1

r
,

(
(0)i∈S,

(
cEi −

1

r

)
i∈N\S∪{n}

, cEn −
1

2r

))
+

+ϕ

((
1

r

)
,

(
(0)i∈S ,

(
ci − cEi +

1

r

)
i∈N\S∪{n}

, cn − cEn +
1

2r

))

for all r ∈ N such that

1

r
< min

{
min
i∈N\S

{ci} , max
i∈N :E<ci<cn

{ci − E} , 2 (cn − cn−1)
}
.
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Now, by considering the limit when r goes to infinity in the previous equation

and taking into account that ϕ is continuous, we obtain

ϕ (E, c) = ϕ
(
E, cE

)
+ ϕ

(
0, c− cE

)
= ϕ

(
E, cE

)
.

�

Proof of Theorem 1

Firstly, it is straightforward to verify that the Minimal Overlap rule sat-

isfies Anonymity, Continuity and µ-Additivity.

Now, let ϕ be a rule satisfying these axioms. Given a problem (E, c) ∈ B,

let us consider the following two cases:

Case 1: E ≤ cn.

By Proposition 1 we have that

ϕ (E, c) = ϕ
(
E, cE

)
Let us denote P 1 = cE1 ; for 1 < i ≤ n, P i = cEi − cEi−1. And for each

i ∈ N , let denote cP
i

=
(

(0)j<i , (P
i)j≥i

)
.

Now, let us consider the following two subcases:

Subcase 1.a: cEn = cEn−1.

µ-Additivity implies that

ϕ
(
E, cE

)
=
∑
i∈N

ϕ
(
P i, cP

i
)
.

Therefore, by Anonymity and Proposition 1,

ϕj

(
P i, cP

i
)

=

 0 if j < i

P i

n−i+1
if j ≥ i

,
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i.e.

ϕj

(
P i, cP

i
)

=

 0 if j < i
cEi −cEi−1

n−i+1
if j ≥ i

with c0 = 0.10 And, thus, for each agent h

ϕh
(
E, cE

)
=

∑
i∈N

ϕh

(
P i, cP

i
)

Since, for any j > h we have that cP
j

h = 0,

ϕh
(
E, cE

)
=

h∑
i=1

ϕh

(
P i, cP

i
)

=
h∑
i=1

cEi − cEi−1
n− i+ 1

=

=
h∑
i=1

min {ci, E} −min {ci−1, E}
n− i+ 1

= ϕMO
h (E, c) .

Subcase 1.b: cEn 6= cEn−1.

Let q (j) denote the cardinality of the set {i ≤ j:P i 6= 0} . By µ-Additivity

we have

ϕ
(
E, cE

)
= ϕ

(
P 1 +

1

r
,

((
cP

1
)
i<n

, cP
1

+
1

r

))
+

+
∑

i<n:P i 6=0

ϕ

(
P i − 1

r (q (n)− 1)
,

(
max

{
0, cP

i − 1

r (q (n)− 1)

})
j∈N

)
+

+ϕ

(
P n − 1

r (q (n)− 1)
,

(
0,

(
min

{
cp

i

,
1

r

})
1<i<n

, cP
n

n −
1

r (q (n)− 1)

))
,

where r ∈ N is such that

1

r
< min

{(
1− 1

q (n)

)
P n, min

i:P i 6=0

{
P i
}}

.

10Throughout this proof, and for notational convenience, we will consider c0 = cE0 = 0.
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Now, by considering the limit when r goes to infinity in the previous

equation, by Continuity we obtain

ϕ
(
E, cE

)
=
∑
i∈N

ϕ
(
P i, cP

i
)
.

By using the reasoning of the Subcase 1.a above, we obtain that for each

agent h

ϕh
(
E, cE

)
= ϕMO

h (E, c) .

Case 2: E > cn.

In such a case, there is a unique t, 0 ≤ t < cn, such that∑
i∈N

max {0, ci − t} = E − t.

Let k be the unique agent such that ck − t > 0, and ck−1 − t ≤ 0. Note

that this implies that, for each agent j, with j ≤ k, we have that cj is

under-transferred. Then, for each r ∈ N such that

1

r
< min {E − t, (n− k − 1) (ck − t)}

by µ-Additivity we have that,

ϕ (E, c) = ϕ

(
t+ 1

r
,

(
(ci)i<k ,

(
t+ 1

r(n−k+1)

)
i≥k

))
+ ϕ

(
E − t− 1

r
,

(
(0)i<k ,

(
ci − t− 1

r(n−k+1)

)
i≥k

)) (A.1)

Let us consider the limit, when r goes to infinity, in the equation (A.1)

above. By Continuity, we have

ϕ (E, c) = ϕ
(
t, (min {ci, t})i∈N

)
+ ϕ

(
E − t, (max {0, ci − t})i∈N

)
.
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Observe that the problem
(
t, (min {ci, t})i∈N

)
was analyzed in Case 1

above. Therefore, for each agent h, we have that

ϕh
(
t, (min {ci, t})i∈N

)
=

h∑
i=1

min {ci, t} −min {ci−1, t}
n− i+ 1

. (A.2)

Moreover, note that for agent h we have that

max {0, ch − t} =

 0 if h < k

ch − t if h ≥ k
.

Since by construction

n∑
i=1

max {0, ci − t} = E − t,

we can conclude that for each agent h,

ϕh
(
E − t, (max {0, ci − t})i∈N

)
= max {0, ch − t} . (A.3)

Therefore, by combining equations (A.1), (A.2), and (A.3), we have that, for

each agent h,

ϕh (E, c) =
h∑
i=1

min {ci, t} −min {ci−1, t}
n− i+ 1

+ max {0, ch − t} = ϕMO
h (E, c) .

�
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