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Stock index returns’ density prediction using GARCH models:
Frequentist or Bayesian estimation?
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aTinbergen and Econometric Institutes, Erasmus University Rotterdam, The Netherlands
baeris CAPITAL AG, Switzerland

Abstract

Using well-known GARCH models for density prediction of daily S&P 500 and Nikkei 225 index
returns, a comparison is provided between frequentist and Bayesian estimation. No significant
difference is found between the qualities of the forecasts of the whole density, whereas the Bayesian
approach exhibits significantly better left-tail forecast accuracy.
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1. Introduction

The modeling of volatility has been at the heart of financial econometrics for decades. One
of its corner-stones is the GARCH model of Bollerslev (1986). Popular extensions include the
Exponential GARCH (EGARCH) model by Nelson (1991) and the GJR model by Glosten et al.
(1993).

The common approach for estimation in GARCH-type models is Maximum Likelihood (ML).
The use of ML is appealing because of the intuitive principle underlying the approach and its ease
of implementation. Nevertheless, ML estimation entails some difficulties in practice due to the
numerical optimization which involves inequality constraints. The Bayesian approach offers an
attractive alternative which enables small sample results, robust estimation, model discrimination
and probabilistic statements on (possibly nonlinear functions of) model parameters (see Ardia,
2008).

The comparison of frequentist and Bayesian GARCH has received little attention in research.
In a study by Nakatsuma and Tsurumi (1996) some attention is paid to the comparison. Based
on a small sample Monte Carlo experiment, they conclude that the Bayesian approach performs
better than the frequentist approach in terms of smaller mean square errors of the posterior mean
versus the MLE of the parameters in an ARMA-GARCH model. Their comparison is however not
extended to an empirical application or to the evaluation of the prediction of returns’ densities.

This note aims at comparing the performance of well-known GARCH models via frequentist
and Bayesian approaches. We evaluate the forecasting performance of the GARCH, GJR and
EGARCH model using index data. The performance of the models is evaluated based on the
relative predictive accuracy; both the entire density and the left tail, which is more interesting
from a risk management point of view, are considered. Our results indicate that the Bayesian
approach outperforms its frequentist counterpart when forecasting the left-tail of the return’s
distribution.
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2. Frequentist and Bayesian estimation of GARCH models

We consider the GARCH(1,1), GJR(1,1) and EGARCH(1,1) models, with Student-t innova-
tions to account for conditional excess kurtosis (see Geweke and Amisano, 2010). The mean
equation is defined as

yt = µ+ εt t = 1, 2, . . . , T

εt|It−1 ∼ S(0, ht
ν−2
ν , ν) ,

(1)

with yt the log-return at time t and where S is used for the Student-t distribution. The sequence of
innovations, given past information It−1, follows a Student-t distribution with mean zero, variance
ht and ν degrees of freedom. The restriction ν > 2 guarantees existence of the conditional variance.

In the GARCH(1,1) model the conditional variance ht is a linear function of the past squared
innovation and conditional variance:

ht = ω + α ε2
t−1 + β ht−1 .

The GJR(1,1) model is similar, except for the indicator variable added to allow for asymmetric
effects depending on the sign of the innovation (i.e., typically to allow for a larger effect of a
negative shock than a positive shock of the same magnitude):

ht = ω + α1 ε
2
t−1I{εt−1≥0} + α2 ε

2
t−1I{εt−1<0} + β ht−1 .

The indicator variable I{•} takes on a value of one if the condition holds and zero otherwise.
Finally, the EGARCH(1,1) model is given by:

log ht = ω + α
|εt−1|√
ht−1

+ γ
εt−1√
ht−1

+ β log(ht−1) ,

where the term εt−1/
√
ht−1 is known as the standardized residual; the occurrence of this term

without |.| allows for the asymmetric behavior of the conditional variance.
For the GARCH and GJR models the positivity constraints imposed on the model parameters

in the variance equation are ω > 0, α•, β ≥ 0.
In what follows, we regroup the model parameters into θ and the observed log-returns into

y = (y1, . . . , yT )′. The likelihood function is given by p(y|θ) which is the product of the conditional
density values at yt.

In the frequentist approach θ is assumed to be a fixed unknown constant, which is typically
estimated by ML. The Bayesian approach incorporates the likelihood in a broader framework.
Parameters in θ are assumed to be stochastic variables described by a posterior density p(θ|y)
given by Bayes’ theorem as

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

,

where p(θ) is the prior density for θ, reflecting the prior beliefs before having observed the
data. For the parameters µ, ω, α and β we use non-informative flat (uniform) prior on the pa-
rameter domain. For ν, we use a non-informative proper prior (as an improper prior would yield
an improper posterior, see Bauwens and Lubrano (1998)): a translated exponential density as in
Geweke (1993); ν ∼ λ exp(−λ(ν−2)) with λ = 0.05. We adopt an independence chain Metropolis-
Hastings algorithm (with Student-t candidate distribution around the posterior mode, with scale
matrix equal to minus the inverse Hessian of the log-posterior at the mode, and four degrees of
freedom for fat tails) to draw random samples from the posterior density: 25000 draws after a
burn-in of 5000 draws. Acceptance rates were always around 50%, indicating the good perfor-
mance of the posterior simulator. Prediction results under a more flexible candidate distribution,
the mixture of Student-t distributions of Hoogerheide et al. (2007), were qualitatively the same.
Further, results stay almost the same for somewhat different values of λ.
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3. Tests for difference in forecasting performance

This research focuses on one-day-ahead density forecasts for daily returns rather than point
forecasts. These density forecasts provide an estimate of the probability distribution of future
returns. Our objective is to find the density forecast that comes closest to the true but unobserved
density for daily returns by comparing the relative performance of two competing density forecasts
denoted by f̂t(yt+1) and ĝt(yt+1). Given (1) the forecast densities can be expressed as

yt+1|θ,M, It ∼ S(µ, ht+1, ν) ,

where the forecast density is conditional on θ and model M. In the frequentist approach we
simply use the ML estimator θ̂MLE. The Bayesian approach utilizes the set of posterior draws and
obtains the density forecast as the mean of the density forecasts corresponding to those posterior
draws.

To compare the performance of the different forecast densities we follow Mitchel and Hall
(2005) and Diks et al. (2008) and use the Kullback-Leibler information criterion (KLIC). Using

the KLIC a loss differential series is constructed with dt+1 = ln ĝt(yt+1) − ln f̂t(yt+1), which can
be interpreted as the difference in the score of both models. Obviously, a high score is preferred
as this implies that the model assigns a high ‘probability’ to the observed value. Given a sequence
of density forecasts and corresponding realizations for the observed return, densities are compared
based on the average score d̄. Under the null hypothesis of equal forecast accuracy the loss
differential should be zero on average. This can be tested by a Diebold and Mariano (1995) type
test statistic with robust Newey-West standard error.

We also consider the evaluation of forecast performance in the left-tail of the forecast density,
which is of special interest for risk management applications. For testing, we rely on the censored
likelihood (CSL) scoring rule by Diks et al. (2008). For a particular model the CSL equals the
total non-tail probability (1 − F̂t(r)) if yt+1 is not a tail event and the forecasted density value

f̂t(yt+1) if yt+1 is a tail event. Hence the CSL is obtained as

CSL(f̂t|yt+1) = I{yt+1≤r} ln f̂t(yt+1) + I{yt+1>r} ln(1− F̂t(r)) , (2)

where F̂t(r) is the Student-t cumulative density at time t evaluated at the threshold r. This
term implies that the shape of the forecasted density is ignored for observations outside the region
of interest. To evaluate the CSL of competing models a procedure similar to the evaluation
procedure based on KLIC scores is employed. Note that a proper threshold value r needs to
be specified, determining which observations pertain to the left tail. For a fair evaluation, the
number of pdf-terms and CDF-terms included in the CSL should be the same across all competing
models such that a model-independent threshold is required. Though the threshold is allowed to
be time-varying, the threshold is fixed at -2.5% in this study, which is the 7.7% to 8.8% quantile of
the unconditional return distribution during the out-of-sample period for the S& P500 and Nikkei
225.

4. Results and conclusions

Log-returns of the S&P 500 and Nikkei 225 stock indices are examined. Models are estimated
using a ten-year rolling window. The out-of-sample period consists of 600 daily forecasts, ranging
from January 1, 2008, to April 19, 2010.

The top panel of Table 1 reports the results of the pairwise forecast accuracy comparison
of competing density forecasts as measured by the KLIC. Superior predictive accuracy of the
model/method in the row (as compared with the model/method in the column) is indicated by a
positive value.

Our primary interest lies in the comparison of the frequentist and Bayesian approach. Across
all models and datasets the test statistic is not significant, implying that the null hypothesis of
equal predictive accuracy of the frequentist and Bayesian approach cannot be rejected.
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Table 1: Diebold and Mariano (1995) t-statistic (using Newey-West standard error) corresponding to average loss differ-
ential for KLIC (whole density) or CSL (left tail of density), based on 600 density forecasts of the GARCH(1,1), GJR(1,1)
and EGARCH(1,1) models for daily log-returns of the S&P 500 and Nikkei 225. * and ** indicates (two-sided) significance
at 5% and 1% respectively. Positive (negative) values signify better forecast performance of the model specified in the
corresponding row (column).

Frequentist (MLE) Bayesian (MH)
GARCH GJR EGARCH GARCH GJR EGARCH

KLIC

S&P 500
Frequentist (MLE) GARCH -2.632* -1.602 1.007

GJR 2.632* 0.409 1.685
EGARCH 1.602 -0.409 -0.881

Bayesian (MH) GARCH -1.007 -2.376* -4.053**
GJR -1.685 2.376* -2.732**
EGARCH 0.881 4.053** 2.732**

Nikkei 225
Frequentist (MLE) GARCH -2.622** -0.477 -0.041

GJR 2.622** 0.220 0.373
EGARCH 0.477 -0.220 -0.494

Bayesian (MH) GARCH 0.041 -2.033* -2.011*
GJR -0.373 2.033* -0.408
EGARCH 0.494 2.011* 0.408

CSL

S&P 500
Frequentist (MLE) GARCH -2.143* -0.373 -5.274**

GJR 2.143* 1.454 -5.480**
EGARCH 0.373 -1.454 -4.227**

Bayesian (MH) GARCH 5.274** -1.686 -0.798
GJR 5.480** 1.686 0.246
EGARCH 4.227** 0.798 -0.246

Nikkei 225
Frequentist (MLE) GARCH -1.506 -0.007 -5.277**

GJR 1.506 0.243 -5.054**
EGARCH 0.007 -0.243 -5.422**

Bayesian (MH) GARCH 5.277** -1.743 -0.875
GJR 5.054** 1.743 0.916
EGARCH 5.422** 0.875 -0.916

The testing approach also offers a straightforward framework to compare the predictive ac-
curacy of the different GARCH-type models. The results indicate that the EGARCH and GJR
models perform better (significantly in the Bayesian framework) than the standard GARCH model.

The bottom panel of Table 1 reports results for the left-tail forecast accuracy quantified by the
CSL. The null hypothesis of equal predictive accuracy of the frequentist and Bayesian approach in
the left tail is convincingly rejected for all models and datasets in favor of the Bayesian approach.
The difference is mainly caused by the first term on the right-hand side of (2). Our finding makes
intuitively sense: Bayesian inference has been often found to be more appropriate in small samples;
although we have more than 2500 observations, we still have few observations from the (extreme)
left tail.

In addition, note that the differences in CSL between the models are less pronounced (if any
difference exists) than the differences between frequentist and Bayesian estimation, which further
stresses the clearness of the superiority of Bayesian inference in this application.

Our results suggest that in risk management applications the Bayesian approach should be
preferred, because of its superior predictive accuracy in the left tail. This result is remarkable,
since we use large data sets (over 2500 observations) and non-informative priors. For smaller
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data sets or informative priors the difference between Bayesian and frequentist inference may be
even larger. In future research we will focus on different data sets and priors, alternative model
specifications (e.g., different error distributions), model combination (see Ardia and Hoogerheide,
2010), and multi-step-ahead forecasting. In the latter case, the importance sampling method of
Hoogerheide and Van Dijk (2010) may provide a substantial reduction of the computing time.
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