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Abstract: We present a sovereign default model with asymmetric shocks and long-term bonds, and 

solve the model using discrete state dynamic programming. As result, our model matches the 

Argentinean economy over period 1993Q1-2001Q4 quite well. We show that our model can match 

high default frequency, high debt/output ratio and other cyclical features, such as countercyclical 

interest rate and trade balance in emerging countries. Moreover, with asymmetric shocks we are 

able to match high sovereign spread level and low spread volatility simultaneously in one model, 

which is till now not well solved. As another contribution of our paper, we propose a 

simulation-based approach to approximate transition function of output shocks between finite 

states, which is an indispensable step in discrete state dynamic programming. Comparing to 

Tauchen’s method, our approach is very flexible in transforming various econometric models to 

finite state transition function, so that our approach can be widely used in simulating different 

kinds of discrete state shocks.    
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1 Introduction 

Sovereign default risk is intensively studied in academic research and policy analysis. Regarding 

the present debt crisis in several European countries and the fact that most of developed 

economies are heavily indebted, the research on sovereign default models has important 

implication in fiscal policy.  

 

The current sovereign default models start from the seminal work of Eaton and Gersovitz (1981), 

which analyzes the relationship between output shocks and endogenous default probability. This 

model and most of the following sovereign default models apply discrete state dynamic 

programming methods to solve recursive competitive equilibrium. Thus solution approach relies 

on transition function between discrete states to simulate exogenous output shocks and examine its 

impact on default probability. In previous studies, researchers use quadrature-based methods 

introduced by Tauchen (1986, 1990) and Tauchen and Hussey (1991) to obtain transition function, 

with the assumption that the shocks are autoregressive. As far as we know, there are very few 

studies dealing with non-AR type shocks.   

 

However, one limitation of Tauchen’s method is that it can only be applied on AR type output 

shocks. While in the real world, the output shocks are widely considered as asymmetric and have a 

time-varying volatility structure. This paper introduces a simulation-based method to obtain the 

transition function, analyzes the effect of Markov-switching type asymmetric output shocks on 

sovereign default, and provide a model which matches the empirical data quite well, better as the 

recent working paper by Chatterjee and Eyigungor (2009). Additionally, our model answers the 

question why the inclusion of asymmetric shocks can result in better match of the data.    

 

Among the influential sovereign default models introduced recently, Aguiar and Gopinath (2006) 

analyze the effect of transitory and permanent shocks on default probability in emerging countries, 

and find that shocks to trend enable their model to match the empirical data better. Arellano (2008) 

shows one model with better fit regarding the recent Argentina default by assuming that the output 

loss in default is more sensitive to output shocks. In a quantitative analysis, her model improves 

greatly in matching the default probability, countercyclical interest rate and current account in 

Argentine. However, this model delivers much lower average spread level than the empirical data. 

Hatchondo and Martinez (2010) show that the assumption of multiple-periods bonds instead of 

one-period bonds will solve this anomaly, but they do not provide a model matching empirical 

moments. Chatterjee and Eyigungor (2009) introduce another assumption on multiple-periods 

bonds, and provide a model which matches the empirical moments well. However, they can not 

simultaneously match the relative high spread level and low spread volatility, which is frequently 

observed in emerging countries, and the default frequency in their model is lower than the 

empirical one, regarding to the estimated Argentinean default frequency in our model.  

 

In this paper, we make two contributions to the literature. One contribution is that we provide a 

model that matches the data even better than Chatterjee and Eyigungor (2009), by assuming 

Markov-switching type asymmetric shocks and long-term bonds. In our model, emerging 

economy has positive probability to run into recession in each period, which enables the default 
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probability to be significantly positive even in economic boom periods. An overall positive default 

probability drives the default spread level high. What’s more, with asymmetric shocks the 

sovereign stays in normal growth states in most of the periods, which reduces the spread volatility 

greatly. So our model can incorporate high spread level and low spread volatility simultaneously.  

 

In order to show the contribution of our assumption on asymmetric shocks, we compare our model 

with another model of the same structure and with the same parameters, except that the output 

shocks is symmetric AR type, which is frequently used assumption in previous studies. 

Quantitative results show that with asymmetric shocks the default frequency, debt/output ratio and 

spread level all increase significantly, while the spread volatility decline dramatically, and the 

correlation coefficients between output, spread and trade balance are closer to data. This result 

indicates that the asymmetric shocks assumption enhances the performance of our model greatly.   

 

As another contribution of our paper, we propose a simulation-based method to approximate the 

transition function between discrete states. Our method is not limited to AR type shocks, and can 

be applied to transform many kinds of econometric models to discrete state transition function. So 

our approach enables the DSGE models to incorporate different types of shocks, instead of limited 

on AR ones. Our simulation-based model is so flexible that it can transform almost all 

econometric models to finite state Markov chains, if only we can simulate data series with these 

models. In this paper, we present the resulting difference in transition function, with our 

simulation-based method and that Tauchen’s method, if AR type of shocks is assumed. And we 

describe how to approximate Markov-switching model with transition function.  

 

With simulation-based approach, we can simulate more realistic shocks, and analyze their impact 

on different DSGE models. In this paper, we present application in sovereign default model. 

Generally, the simulation-based approach can be applied in other macroeconomic models, 

wherever discrete state dynamic programming as a solution method is used. 

 

Our model is similar to Chatterjee and Eyigungor (2009). However, comparing to their model, we 

provide modifications in the following three ways. Firstly, we assume asymmetric output shocks 

which reflect the real output dynamic process. We will discuss this point more in detail in section 

3. Secondly, we make little modification in computational algorithm, so that we can solve the 

convergence problem showed in Chatterjee and Eyigungor (2009). With this modification, we 

avoid the redundant and confusing assumption on minimum consumption requirement in 

Chatterjee and Eyigungor (2009), which adds no additional value except helping reach 

convergence in computation. Thirdly, we interpret the payment structure of long-term bonds 

differently. We assume sovereign promises coupon payment and principal repayment each period. 

Although this assumption is essentially the same as that in Chatterjee and Eyigungor (2009), our 

interpretation can be more easily understood, and it is also consistent with the bond payment 

structure in reality. Moreover, the parameters on long-term bonds assumption can be more easily 

calibrated in our model. In sensitivity analysis, we also show that the principal repayment ratio is 

critical for the sovereign default model to match the data.  

 

As related literatures, Arellano and Ramanarayanan (2008) also provide one research on sovereign 
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default model with long-duration bonds. However, their interest lies on the interconnection 

between optimal maturity structure and sovereign bond spread. They show that rising interest rate 

spread leads to shortening of the debt maturity, which results in higher spread on short-term bonds 

than that on long-term bonds. Mendoza and Yue (2008) examine a sovereign default model with 

endogenous default cost, with the attempt to connect the sovereign default model and international 

business cycle models in one framework. They claim that with endogenous default cost the mean 

spread is higher, thus provide another explanation for high spread level in emerging countries.  

 

Political factors are often considered in sovereign default model. Hatchondo et. al. (2011) provide 

an explanation to high spread level by introducing political risks. They show that with political 

turnovers between governments the mean spread level will be increased significantly.  

 

Business cycle asymmetry is another stream of the literature related to our paper, and it is now not 

a new topic. More than 40 years ago, Friedman (1963) pointed out that the amplitude of 

contractions is strongly correlated with the amplitude of succeeding expansions in U.S. output, but 

that the amplitude of expansions was uncorrelated with that of subsequent contractions. Friedman 

(1963) called it asymmetry in business cycle. Among the early literatures, Neftci (1984) and 

Goodwin and Sweeney (1993) formally tested the asymmetry of economic time series. Now it is 

commonly accepted that output growth shows cyclical asymmetry in almost all countries.  

 

Among variety of models, Markov switching model introduced by Hamilton (1989) is widely used 

to study the business cycle asymmetry. This seminal work describes the economy as constantly 

switching process between two states, namely recession and expansion. Moreover, the timing of 

business cycles in Hamilton (1989) fits the NBER results quite well. Diebold and Rudebusch 

(1996) introduce a regime-switching dynamic factor model to analyze business cycle asymmetry 

and comovement. Kim and Murray (2002) generalize the regime-switching dynamic factor model, 

and suggest a three-phase description of U.S. economy: recession, high-growth recovery and 

normal growth. In our model, we use conventional maximum likelihood method to estimate an 

MS-AR model2. 

 

The rest of paper is organized as follows. In section 2, we propose the simulation-based approach 

to approximate the transition function between finite states, show its performance and explain the 

difference comparing to Tauchen’s method. In section 3, we describe the model environment and 

define the recursive competitive equilibrium. We present the main quantitative result in section 4, 

with reference to modification of the computational algorithm, and show the contribution of our 

assumption on asymmetric shocks. In section 5, we provide sensitivity analysis regarding to 

parameter values on default cost, principal repayment and exclusion periods following autarky 

state of the sovereign. Section 6 concludes.  

 

2 Simulation-based method and asymmetric output shocks 

Tauchen (1986) introduce a quadrature-based method to construct finite state Markov chain, which 

                                                        
2 We use the Matlab code provided by Perlin (2008) to estimate the model.  
 

 4



approximates an AR model. Tauchen (1990) implement this method to form discretized recursive 

equilibrium model, and then solve the model with value-function iteration. However, with this 

method it is hard to construct discrete state space, if the exogenous variable is assumed to follow 

regime-switching process, which is commonly used to analyze asymmetry in business cycle. 

 

We propose a simulation-based method to construct finite state Markov chain which 

approximating different kinds of models, e.g., Markov-switching models. In fact, our method is so 

general that it can simulate Markov chain for almost every time-series model, if only we can 

simulate data series with the underlying models. At the following, we describe this method, and 

the compare its performance with Tauchen’s method.  

 

At first, we need to assume the type of output shock y 3, which we aim to approximate with finite 

state transition function. The first step of our method it to estimate the econometric model under 

the predetermined assumption, and simulate series of data 1{ }T
t ty   according to the estimated 

model. The second step is to construct the discrete state space of shocks 1{ }i n
iy  , with n denoting 

the maximum grid points and 1y  ... ...i ny y   . We denote the interval length between two 

neighboring grid points to be w. While constructing the discrete state space of shocks, we should 

make sure that more of simulated data falling into the interval 1[ , ]ny y . 

 

The third step is to determine the state series 1{ }T
t tS  . Following Tauchen (1986), if 

/ 2 / 2i i
ty w y y w    , then the state in time t is i, that is tS i . The final step is to 

determine the transition function 1( ,t t )f y y . As in discrete state, the transition function is 

actually the discrete transition probabilities between different states, that is  

1 1( , ) Pr[ | ]j i
t t ij t tf y y p y y y y     , 

with ijp indicating the transition probability from state i to j. The calculation of transition 

probabilities proceed as follows. As
1

1
n

ij
j

p


 , and , then 0ijp  1( ,..., )i inp p follow the 

Dirichlet distribution. The density function of ip 1( ,..., )i inp p is given by 

1 1
1 1( ; ,..., ) ~ ...i ia a

i n i i
1n

nf p a a p p  ,                      (1) 

where .  1
1

1( | )
T

ij t t
t

a S j S 


   i

ija is the number of times the simulated data series transitions from state i to state j during T 

periods. With simulated data series 1{ }T
t ty  , the correspondent state series can be easily 1{ }T

t tS 

                                                        
3 Low case denotes log value of variable. 
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determined, and then each value of can be counted.  ija

)n (Given the parameters , 1( ,...,i ia a 1,..., )i inp p can be sampled with the density function of 

Dirichlet distribution. The frequently used sampling method is to generate n independent random 

variables *
1( ,..., )i

*
inp p  from the Gamma distribution , , and then 

normalize the resulting variables with

* ~ (ik ikp Gamma a

* *

1

n

ill
p



,1) 1,...,k  n

/ik ikp p  (Fruehwirth-Schnatter, 2006, pp.432 

-433). With this method, we sample ijp many times, and average the results to obtain the final 

transition function in form of a probabilities matrix. Of course, we can get more accurate 

approximations if we increase the sampling times of the probabilities.  

 

We illustrate our method with a simulation exercise, and compare the results with that of 

Tauchen’s method. In the exercise, we assume the underlying model is AR model: 

ty 1) t ty(1     , 2~ (0, )t N  .  

with the true parameters ˆˆ ,  and̂ . We calculate the transition probabilities matrixes with two 

methods, and then we simulate 2 time series each consisting of T data. Then we estimate AR 

parameters. Table 1 shows the true parameters, along with the AR parameters with Tauchen’s 

method, and our simulation-based method. 

 

Table 1: Simulation-based method 

 Simulation-based method 

 
True value Tauchen 

T=1000 T=10000 T=100000 
  -0.0002 0.0004 -0.0020 -0.0001 -0.0001 
  0.9 0.8806 0.8810 0.8902 0.8927 
  0.02 0.0208 0.0201 0.0207 0.0210 

 

With table 1, we conclude that the performance of our method is at least not worse than Tauchen’s 

method. At the following, we use the simulation-based method to approximate Markov-switching 

model, so that we can incorporate asymmetric shocks in sovereign default model.  

 

 
Figure 1: GDP growth, consumption growth and interest rate in Argentine 
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It is commonly accepted that economic variables show asymmetric movements through different 

growth phases. Figure 1 presents quarterly output growth, consumption growth and interest of 

Argentine from 1993 to 2007. The data series come from IMF International Financial Statistics. In 

figure 1, output growth occasionally moves downward in recessions, and quick recovery follows 

the recession before the economy steps into normal growth phase. 

 

In the following, we estimate Markov switching models for Argentine economy, and then apply 

the simulation-based method to derive the transition probability matrix which will be used in value 

function iteration of a recursive equilibrium model in section 3. 

 

We use the Argentine quarterly log GDP data from 1993 Q1 to 2007 Q4, adjust the seasonal 

effects and derive HP filtered cyclical data series ty . While estimating Markov switching models, 

we try different assumptions on number of states and AR lag numbers. As result, we obtain the 

MS(3)-AR(1) model, which has the largest likelihood value. The estimated parameters in each 

state are as following. 

 

Table 2: Parameters of Markov switching model MS(3)-AR(2) 

 State 1 State 2 State 3 
  0.0074 (0.0013) -0.0390 (0.0084) -0.0461 (0.0048) 
  0.7898 (0.0404) 0.5427 (0.0973) 1.2568 (0.1330) 
  0.0086 (0.0009) 0.0085 (0.0027) 0.01 (0.0035) 

Notice: with std. errors in parenthesis. 

 

The estimated transition probabilities matrix is 

0.96(0.14) 0.00( ) 0.04(0.03)

0.40(0.21) 0.60(0.37) 0.00( )

0.00( ) 0.45(0.30) 0.55(0.38)

P

 
   
  

. 

 

Clearly, the Argentine GDP growth shows significant asymmetries between different states. 

Similarly as Kim and Murray (2002), we describe three states in Argentine business cycle as 

normal growth phase, recovery and recession, respectively. Given the transition probabilities 

matrix, the duration of three economic phases can be calculated as 25, 2.5 and 2.22 periods. While 

the Argentine economy stays in normal growth phase in 84% of the time, it has 4% probability to 

step into recession abruptly. If the economy is in recession, it has 45% probability to enter the 

recovery phase, yet there is no probability for the economy to transit from recession directly into 

normal growth phase. In recovery phase, the prospect of the economy looks well, for the chance of 

getting better is 40%, and double recessions does not happen. The interpretation of Argentine 

business cycle based on Markov switching model fit well with the real economy, which supports 

our assumption on asymmetric output shocks.  

 

With the estimated parameters, we can easily simulate output shock data series. We simulate 100 
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samples, with each sample containing 100,000 data. After dropping the extreme data4, we check 

the mean value and standard variation of each sample, so that the moments of every sample are in 

comparable with that in real business cycle. Then we derive , 1{ }n
ik i kp  using the method we 

propose, delete the rows and columns that consist all zeros or NaNs, take average of all sample 

transition matrixes and obtain the final transition function .  1)t ty ( |P y
 

In this paper, we set number of states in transition function 25n  , construct the state space grid 

using 0.9055  and 0.0181  , which is the estimated AR model parameters for Argentine 

economy between 1993Q1 to 2007Q4, and finally we obtain one transition probabilities matrix 

with 23 dimensions. The resulting matrix’s dimensions are less than 25, because the simulated 

data in Markov-switching model are rarely above 9%, which is the value of 24th grid in state space, 

so that the last 2 rows and columns are either 0 or NaNs. We delete these rows and columns to 

obtain the final result.  

 

In order to show the differences between our transition matrix with that by Tauchen’s method, we 

derive by Tauchen’s method with the same state space construction. Figure 2 shows the 

differences between these two probability matrixes. 
, 1{ }n

ik i kp 

 

Figure 2 shows that the left panel reflects significant asymmetry, which mirrors the asymmetric 

features in Markov-switching model. These asymmetric features include: the shocks are more 

persistent if the economy is experiencing large positive or negative ones, and there are strong 

evidences for recovery if the economy is in recession. Moreover, the matrix in left panel shows 

slightly greater than 0 probabilities for the economy to transit from growth periods to recession, 

but this is not clearly identifiable in the figure. 

 

 
Figure 2: Transition probabilities with simulation-based method and Tauchen’s method 

 
                                                        
4 As table 1 shows,  >1, which means the shock in state 3 is explosive. We do not worry about the stationarity 

of the whole model, because state 3 has average duration of 2.22 periods only. However, in data simulation, the 
shock will be extreme negative if it stays in state 3 for relative long periods. As the output shock is normally 
greater than -0.15 in Argentine real business cycle, we eliminate the 15 periods before and after the date where 
extreme negative shocks appear. 
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3 The Model 

Our sovereign default model follows the seminal work of Eaton and Gersovitz (1981) and the 

extended models introduced recently. The main difference is that we introduce asymmetric output 

shocks, analyze it effect on sovereign default model, and provide better match to empirical 

moments. Moreover, we show a simpler interpretation towards long-term bonds, and provide 

another assumption on multi-periods bond, instead of the mature probability concept in Chatterjee 

and Eyigungor (2009), and the decreasing coupon payment assumption in Hatchondo and 

Martinez (2010). 

 

We consider a small open economy, which receives stochastic endowment ty each period. The 

endowment shock is assumed to be asymmetric, and characterized as a regime-switching process. 

We apply the simulation-based method introduced in section 2 to derive a finite Markov chain 

with the transition function 1( , ) Pr( | )t tf y y y y y y    . This function characterizes the 

dynamic process of endowment shocks in our model. 

 

The sovereign maximize the expected present utility over consumption stream , namely tc

0

[ ( )t
t

E u c



 ] , 

where  is the discount factor, and 0 1  . The benevolent sovereign has access to 

international credit market, and it can invest in or issue long-term bonds . In each period, the 

sovereign has option to default, if it holds net foreign debt in the market. The consumption of 

private household depends on the stochastic endowment

tb

tc ty , debt or investment volume of the 

sovereign and its default decision in period t.   

 

The international credit market is competitive that there are a larger number of foreign creditors. 

The creditors are risk neutral in pricing the defaultable sovereign bonds, and they generate zero 

profit in the competitive market. In each period, the sovereign starts with foreign bonds. After 

the sovereign and foreign creditors observe the endowment shock
tb

ty , the sovereign decides 

whether to default or continue to stay in the contract. If the sovereign default, it erases the debt 

obligations contracted in the past, but this decision will cause output loss in next period, and the 

sovereign will be excluded from international credit market for random periods. If the sovereign 

decides to stay in the contract, the bond price which depends on sovereign’s decision of 

bond holding in next period and the zero-profit condition in competitive credit market. The 

sovereign choose

1( ,t tq b y )

1tb  , taking the bond price function as given, and the creditors 

accept .    
1( ,t tq b y )

1tb 

 

3.1 Principal repayment and assumption on long-term bond 

In order to model long-term bonds, we need to assume a specified repayment structure that does 

not increase the dimensionality of the state space. Hatchondo and Martinez (2010) makes the 
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assumption that all previous bonds promise a same coupon payment which decrease at the same 

rate, and Chatterjee and Eyigungor (2009) assume “each unit of outstanding debt matures next 

period with a constant probability”. However, both of these assumptions do not represent the bond 

payment structure in the real world. 

 

In contrast, we make a simpler assumption on long-term bonds. We assume, in each period, the 

outstanding bonds promise a coupon payment equal to , and the sovereign make principal 

repayment

cb

b . If the sovereign do not default, the outstanding bonds in next period b   

(1 ) b i , where denotes the new issued bonds.  i
 

With this assumption, ( , )c  is enough to describe the payment structure each period. This 

assumption is essentially the same as that in Chatterjee and Eyigungor (2009). We only interpret it 

differently, reflecting the payment structure of bonds in real world.  

 

We assume that the foreign creditors can borrow or lend as much as they need in the market with 

world interest rate , and we denote the default decision of sovereign as , which equal 

to 1 in default and 0 without default, then the bond price is 

*r ( , )d y b 

(1 )[ ( , )]
( , ) { [1 ( , )] } ( | )

1 *y

c q b y
q b y d b y P y y

r

 


       
 ,         (2) 

where denotes the transition probability between discrete states of output shock.  ( | )P y y

 

3.2 Recursive competitive equilibrium 

As Arellano (2008), we denote as the value function of the sovereign with default, and 

this value function satisfies 

( , )oV b y

{ , }
( , ) max{ ( , ), ( )}o c

c d
V b y V b y V y d ,                  (3) 

where is the value if sovereign promise the repayment of the debt, and denotes the 

value in default. 

( , )cV b y ( )dV y

 

We assume finite states in stochastic endowment shocks, and the transition probabilities between 

states are , then the value functions in default and without default are as follows. ( | )P y y

( , ) max{ ( ) ( , ) ( | )}c c

b
y

V b y u c V b y P y y




     ,             (4) 

with the budget constraint (1 ) ( , )[ (1 ) ]c y b c b q b y b b          . 

( ) ( ) [ ( , ) (1 ) ( )] ( | )d def o d

y

V y u c V b y V y P y y  


       ,       (5) 
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where is the probability of re-entry into the international credit market, and the budget constraint 

is 

min{ , }defc y y .                          (6) 

with y denotes the reduced consumption in default, serving as parameter for output loss in case of 

default. With equation (6), the consumption in default takes the lower value between y and , thus 

it is sensitive to output realization. Quantitative simulations show that this assumption is essential 

to generate countercyclical interest rate and current account.  

y

 

4 Quantitative Analysis 

We discretize the stochastic output shock and generate transition function with the simulation- 

based method we introduce in previous section, so that we incorporate the asymmetric shocks in 

modeling. The model is solved numerically using discrete state space dynamic programming, 

which is also used in other sovereign default models.  

 

Chatterjee and Eyigungor (2009) points out the computation difficulty in sovereign default model 

with long-term bonds, that small change of pricing function trigger discrete jump of sovereign’s 

decision on bond holding next period, which again change the future value of outstanding bonds 

and current bond price. This process leads to a convergence difficulty for the algorithm.  

 

In our model, we assume the bond price in first period and in second period is the same, that is, we 

let in equation (2). We take this modification as reasonable, as in equilibrium 

the price function is stationary across time. In computation, we iterate value function and price 

function in the same loop algorithm

( , ) ( , )q b y q b y  

5, till the average value and price differences between two 

iterations are smaller than one predetermined tolerance value. In our case, we set this tolerance 

threshold to be 1e-066. As result, the algorithm converges well. 

 

4.1 Quantitative results 

Arellano (2008) select , y and to match the probability of default, the volatility of the trade 

balance and the ratio of debt to GDP. Chatterjee and Eyigungor (2009) choose and y to match 

the average spread and 70% of the average debt-to-output ratio. We follow similar calibration 

approach. The risk aversion coefficient is set to 2, which is very common. The probability of 

re-entry into credit market following default is 10%, which means sovereigns are excluded from 

international borrowing for 10 quarters averagely in case of default. The risk-free interest rate is 

set to 1%. The coupon rate of the bond is assumed to be 3%. The above parameters are the same as 

that in Chatterjee and Eyigungor (2009). The differences of our model lie in asymmetric shocks 

                                                        
5 According to Hatchondo et. al. (2010), one single loop algorithm increases the calculation speed in sovereign 
default model.  
6 However, the convergence seems to be related to the parameter choice. If is selected to be larger than 0.98, the 
convergence comes slowly, and discrete jumps that Chatterjee and Eyigungor (2009) point out effect the 
convergence speed significantly. Occasionally, it results in the difficulties in convergence.  
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and principal repayment ratio. We explain the simulation-based approach to calculate transition 

function associated with asymmetric shocks in section 2. As to principal payment ratio, we set this 

value to 2%, for Argentine reports annual principal repayment of 7.26% averagely according to 

IMF statistics.     

 

As Chatterjee and Eyigungor (2009), we calibrate  and y to 

match empirical moments. We target to match sovereign bond 

spread and spread volatility, without deteriorating correlation and 

ratio of standard deviation between sovereign interest rate  

and
tr

ty . As results, we present the selected moments of our models 

in table 2. In fact, Chatterjee and Eyigungor (2009) fit the 

empirical data very well. One contribution of our paper is to fit 

spread volatility σ(r-r*), while keep other moments close to the 

empirical data too. As to default frequency, we argue that the 

“correct” default frequency is actually higher than commonly 

accepted 3% in recent literature of sovereign default models. 

Table 3: Parameters 

parameters values 

  2 

  10% 
*r  1% 

c 3% 

  2% 

  0.9675 

y  0.89 

 

 

What is the ‘correct’ default frequency for Argentine? Arellano (2008) and Aguiar and Gopinath 

(2006) suggest the default probability to be 3%, circa 3 defaults in 100 years. Arellano (2008) 

refers to Beim and Calomiris (2001) that Argentine defaulted on its foreign debt for 3 times in 

1956, 1982 and 2001, respectively. Chatterjee and Eyigungor (2009) calculate the default 

frequency conditional on the sovereign in good standing. According to a recent study, Reinhart 

and Rogoff (2010) state that Argentine defaulted 5 times in the last century: 1951, 1956, 1982, 

1989 and 2001, and stay in default for 26.36%7 time, so we have a default frequency of 6.78%. 

Considering that these 5 defaults all took place after World War II, the real default frequency may 

be higher than this ratio. One advantage of our model lies in the capability to allow much higher 

default frequency. We will show that the default frequency with assumption of asymmetric shocks 

rises for c.a. 40%, comparing to that with symmetric shocks.  

 

Clearly, according to the above calculation of default frequency, the 7.2% in our model is closer to 

the data. Additionally, we can match even higher default frequency, by decreasing the time 

preference parameter . According to our simulation exercise, with equals 0.95 we can obtain a 

default frequency of over 10%. Such a high probability can be hardly reached with the models of 

Arellano (2008) and Chatterjee and Eyigungor (2009). According to the fact that Argentine 

defaulted 5 times after World War II, it is perhaps important to match a default frequency of over 

10%, for theoretical modeling or empirical implication.  

 

We have no intention to match debt/output ratio. However, with a result of 0.87, our model seems 

to be close to the empirical ratio of 100%. Comparing to the 5.95% debt/output in Arellano (2008), 

and 10-20% in Aguiar and Gopinath (2006), our result is more realistic. Yet, we accept that the 

assumption of long-duration bonds contributes the most to the match of this ratio, as Chatterjee 

                                                        
7 According to Reinhart and Rogoff (2010), the duration of 5 defaults is totally 29 years, so Argentine spent 
26.36% of the last 110 years in default or restructuring.  
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and Eyigungor (2009) and Hatchondo and Martinez (2010) point out. Our assumption on 

asymmetric shocks also improves this ratio, but the improvement is moderate.  

 

Table 4: Selected moments of our models and Chatterjee 

  Chatterjee Our Model Benchmark  

  γ = 0.05 γ=0.02 γ=0.02 

  AR shocks Asymmetric AR shocks 

Def. Frq. 6.78% 5.94% 7.2% 4.35% 

Spread 0.1025 0.0877 0.1105 0.0613 

Debt/Output 1.00 0.70 0.86 0.48 

σ (c)/ σ(y) 1.09 1.10 1.11 1.05 

σ(NX) 1.50 1.028 1.40 1.04 

σ(r-r*) 2.85 5.60 2.80 3.57 

σ(c,y) 0.98 0.97 0.99 0.99 

σ(NX,y) -0.86 -0.33 -0.74 -0.39 

σ(r-r*,y) -0.77 -0.68 -0.78 -0.65 

σ(NX,r-r*) 0.709 - 0.87 0.55 

 

Additionally, our model also shows countercyclical spread, countercyclical current account and 

larger volatile consumption in emerging countries. Most of these simulated moments are closer to 

empirical data, comparing the result in Chatterjee and Eyigungor (2009).  

 

Our major contribution is that we simulate relative low spread volatility and high spread level 

simultaneously, as table 3 shows, which is not solved in previous researches. In Arellano (2008) , 

varying default probability is the only driving force to the spread volatility, yet it can not account 

for the level of spread. Chatterjee and Eyigungor (2009) point out that with long-duration bonds, 

the model can significantly raise the average spread level, yet the spread volatility in their model is 

larger than empirical data. Although they explain that their model matches the spread volatility in 

non-default periods well, the only shortcoming is that volatility seems very sensitive to the default 

scenario.  

 

With asymmetric shocks, we bring another explanation. Business cycle switches between different 

states through time. In each state, there is a positive probability for the economy to run into 

negative output shocks, or recessions. In fact, it often appears that emerging countries run into 

recession abruptly, sometimes even after a series of economic growth. As an example, “East Asia 

miracle” suddenly turns into “East Asia financial crisis” in 1997. As explanations, Calvo and 

Reinhart (2000) suggest “sudden stop” concept, and Boz (2007) relies on sudden change of 

investor’s belief as driving force behind the abrupt outbreak of crisis. We have no intention to 

explain the reason behind asymmetric switch between different states, and we take it as exogenous 

and incorporate the asymmetric switching shocks into the computational process of the model. As 

                                                        
8 As in Charterjee and Eyigunor (2009), we exclude the first 20 periods following autarky periods after each 
default in calculating the moments in table 4. We will provide sensitivity analysis regarding the length of excluding 
periods. Moreover, Charterjee and Eyigunor (2009) do not provide σ(y), and we estimate this value by taking their 
σ(y) moment to be 4%. The same approach is taken calculating the σ(r) for Charterjee and Eyigunor (2009).  
9 Correlation between sovereign quarterly interest rate and current account comes from Arellano (2008). 
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result, probability to run into recession depends on the current state of the economy. However, in 

almost every state, our model shows one small and positive probability that the economy will be in 

recession in the next period. Considering that default occurs in recession, our model presents 

positive default probability even in economy boom periods. That is the major difference, 

comparing the previous default models. The existence of positive default probability in each 

period guarantees a high spread level.  

 

Our model also shows relative low spread volatility, because the default probability changes little 

between different growth periods, and the sensitivity of spread volatility towards default scenarios 

is also low, because it is in some sense anticipated with the existence of positive default 

probability. Long-duration bonds alone can significantly increase the spread level, but at the same 

time spread volatility. It is hard to match these 2 moments simultaneously with long-duration 

bonds alone. With asymmetric shocks, we provide a concept to match these 2 moments 

simultaneously in a model.   

 

4.2 The effect of asymmetric shocks on sovereign default 

As Chatterjee and Eyigungor (2009) already give an excellent model in fitting the empirical 

moments, the question raised automatically is: what is the contribution of considering asymmetric 

shocks instead of AR symmetric shocks? We provide the selected statistics of a benchmark model, 

which has the same parameters as our model, except the normal shock assumption. We use 

Tauchen’s method to calculate the finite state transition function. The underlying AR process is 

estimated using quarterly real GDP data over the period 1993:1-2007:4. The estimated parameters 

are 0.9055  and 0.0181  . The calculated moments of benchmark model are presented in 

5th column of table 4.  

 

Comparing the statistics between our model and the benchmark model, with asymmetric shocks 

the default frequency is 65% higher, debt/output ratio is 80% higher and spread level is almost 

double as that with normal shocks, while the spread volatility is much lower. The 3 correlation 

coefficients in table 4 change relatively less. As results, default frequency, debt/output ratio, 

spread level and volatility are all sensitive to the type of shocks.  

 

As explanations, the growth prospect in emerging economies is optimistic in normal state, which 

consists over 80% period of time. With long-duration of growth, the sovereign can bear more debt, 

thus in our model the debt/output ratio is much higher in equilibrium than the benchmark model. 

Considering that the output shock volatility in normal growth periods is also lower than that in 

recession and recovery, the spread volatility which is calculated excluding the recession and 

recovery periods10 is lower too.  

 

In order to show the differences of spread more vividly, we simulate spread and output shocks in 

models with asymmetric shocks and normal AR shocks, excluding default periods and debt 

                                                        
10 As we mentioned earlier, we calculate the statistics excluding the debt accumulation phase following the 
re-entry of sovereign into international credit market. As default takes place mostly in recession, the debt 
accumulation phase is also the recession and recovery periods.  
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accumulation periods following end of autarky periods. As these variables are all discrete spaced 

numbers, we add one small random number to each simulated data with the condition that the 

random numbers do not affect the original relationship between these variables. We show the 

results in the following scatter plot. 

 

 

Figure 3: Spread level in model with asymmetric shocks and normal AR shocks 

 

The left panel of figure 3 shows that most of the shocks happen in growth periods, which is an 

asymmetric feature of the real business cycle. Comparing with the right panel, the mean spread 

level in models with asymmetric shocks is almost double high as that with normal AR shocks. The 

selected moments in table 4 demonstrate the same result. As the spreads in left panel are more 

concentrated in positive shock areas, the spread volatility is lower than that in the right panel. The 

extreme negative shocks take place very rare with asymmetric shocks, but if it occurs, the spread 

level is more widely dispersed than that with normal AR shocks.  

 

Similarly, we provide justification for higher default frequency with asymmetric shocks in the 

following section. According to the assumption of asymmetric shocks, it is possible that the 

sovereign run into recession abruptly in each period, including in economic boom periods. This 

feature increases the default frequency significantly, along with higher spread level. Figure 4 

shows the relationship between default probabilities and output shocks, with left panel presenting 

the results in asymmetric shocks and the right panel normal AR shocks. The approach to simulate 

the relevant data is similar to figure 3. 

 

As in figure 3, output shocks concentrate in positive area, which corresponds to normal growth 

periods of the emerging economy. The mean default probability is higher with asymmetric shocks 

in positive shock area, while with negative shocks the default probabilities are more scattered in 

left panel.  

 

It is at the first sight confusing, why the default probabilities do not increase monotonically with 

decreasing output shocks in the left panel? Through simulation, we know that if the economy run 

into recession, the default will occur in the first periods of the recession with over 50% probability. 

With other words, this means every 2 recessions there is 1 default. This simulated result is 
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consistent with the Argentinean economy over periods 1993Q1 to 2001Q4. During these periods 

Argentine experienced 2 recessions and default once. With simulation-based method in calculating 

transition function between different states, we incorporate this information into the model 

building, thus the simulated result reflect the empirical happenings of Argentinean economy 

between 1993Q1 to 2001Q4.  

 

 
Figure 4: Default probabilities in model with asymmetric shocks and normal AR shocks 

 

Moreover, why do defaults occur in the first period of recession in our model, which does not 

match the empirical results? As in other sovereign default models, we assume that the sovereign 

and creditors observe the current output and they know the stochastic transition function between 

different output states so that they can evaluate the sovereign default probabilities in the following 

periods. As AR model does not fit the empirical stochastic output very well, the forecast based on 

AR model is less accurate. With Markov-switching model and correspondent asymmetric shocks, 

the agents in our model can forecast the future output development more accurate. Moreover, if 

the economy runs into recession, the recession will persistent for 2 or 3 periods. At the beginning 

of the recession, the sovereign will evaluate whether they can go through the recession without 

default. If they can not, they will prefer to default earlier, because with earlier default they can 

spend less for interest rate and principal repayment, and the default cost is relatively indifferent to 

when to default.      

 

However, in reality the sovereign rarely default in the first period of recession. Usually, they will 

first try their best to avoid the default. Our model does not match the default timing of the 

sovereign, because of the almost perfect forecast of the future output. One possible modification to 

our model lies on changing the form of expectation of the agents on future output. In our model, 

although we do not explicitly explain the expectation form, but our model structure implies one 

rational expectation. Abandoning the rational expectation may probably improve to match the 

default timing.  

 

Moreover, figure 3 and figure 4 seem very similar in that the stochastic process between default 

spread and default frequency have a stable relationship. This is proved in Chatterjee and 

Eyigungor (2009), that ( , ) * ( , )r y b r y b    , with  denoting the default frequency. Our 

simulation results show that this relationship also holds with asymmetric shocks.  
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5 Sensitivity Analyses 

In this section, we present sensitive analysis of our results to different values of principal 
repayment , default cost y and exclusion periods following re-entry in moments calculation.  

5.1 Principal repayment ratio and default cost 

We use the same computational approach to solve the recursive competitive equilibrium with 

different principal repayment parameters and default costs, and calculate the relevant moments via 

simulation. The results are presented in table 5. 

 

Table 5: Model results with different principal repayment ratios and default costs 

 =0.05, 0.96    =0.02, 0.96   
 

y =0.94 y =0.92 y =0.90 y  = 0.90 y  = 0.88 y  = 0.87

Def. frequency 8.84% 7.72% 6.28% 8.52% 7.12% 6.52% 

Spread level 0.1278 0.1117 0.097 0.1276 0.1113 0.1092 

Debt/output 0.59 0.71 0.82 0.92 1.03 1.11 

σ (c)/ σ(y) 1.15 1.16 1.16 1.12 1.13 1.10 

σ(NX) 1.08 2.08 4.04 0.64 2.04 4.16 

σ(r-r*) 4.03 4.27 4.70 2.81 2.98 3.09 

σ(c,y) 0.99 0.97 0.92 1.00 0.97 0.90 

σ(NX,y) -0.64 -0.35 -0.21 -0.72 -0.21 -0.03 

σ(r-r*,y) -0.79 -0.72 -0.61 -0.80 -0.76 -0.58 

σ(NX,r-r*) 0.77 0.54 0.43 0.84 0.35 0.32 

 

Table 5 shows that model results are sensitive to principal repayment ratio and default costs, thus 

careful choice regarding to these 2 parameters is important. Additionally, time preference 

parameter also influence the calculated moments, as Aguiar and Gopinath (2006) present. Low 

value of means the agent is more inpatient, so that they value the current consumption more 

important, which leads to more default and raises default frequency. A detailed sensitivity analysis 

towards is not considered here.  

 

With smaller principal repayment ratio, the default frequency, spread level and debt/out ratio are 

all higher, and the correlation coefficients between sovereign spread, output and trade balance are 

more sensitive. Smaller principal repayment ratio means that the sovereign bonds have longer 

duration, and Hatchondo and Martinez (2009) explain that long-duration bonds are associated with 

higher default probabilities in the future periods, and these bonds are also more sensitive to output 

shocks, which lead to more volatile sovereign spread. Moreover, since with long-duration bonds 

the principal repayment in each period is lower, the sovereign will issue more debt to raise 

consumption, which leads to higher debt/output ratio. 

 
As to default cost, it is clear that larger default costs (smaller y ), will decrease the probability that 

sovereign default in case of negative shocks. Since sovereign spread and default frequency hold a 

stable relationship, larger default cost will result in smaller spread level. With decreasing default 
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probability, the creditors are willing to lend more to sovereign, thus increase the debt/output ratio.  

 

5.2 Exclusion periods following re-entry  

According to the assumption of our model, the sovereign repudiate the outstanding debt obligation 

in default, so that the model shows no debt position as the sovereign re-enters the international 

credit market. Chatterjee and Eyigungor (2009) states that the debt accumulation process just after 

the re-entry is not related to the output and interest rate. Thus we exclude the debt accumulation 

periods following the re-entry in calculating relevant statistic moments.  

 

We denote the length of debt accumulation phase to be periods. Chatterjee and Eyigungor (2009) 

set to be 20, and in their model the calculated moments are not sensitive to the choice of m . In 

our model, however, we find that several statistic moments are very sensitive to . As reasons, 

defaults take place mostly in recessions and in our model the economy moves quickly from 

recession to recovery. If is chosen to be very larger, then the calculated volatilities will be too 

small, because the important dynamic process of recovery is not included in moments calculation, 

and as the GDP growth rate changes less in normal growth phase, the resulting volatility will be 

smaller, at the same time the negative correlation between net export and output, spread and 

output will be attenuated.  

m

m

m

m

 

The calculation of default frequency is not related to exclusion periods, so we do not report the 

sensitivity test regarding default frequency. The other moments with different exclusion periods 

are presented in table 6. 

 

Table 6: Moments with different exclusion periods 

 m = 15 m = 20 m = 25 

Spread level 0.1108 0.1104 0.1104 

Debt/output 0.858 0.859 0.859 

σ (c)/ σ(y) 1.13 1.11 1.11 

σ(NX) 1.68 1.40 0.56 

σ(r-r*) 2.89 2.82 2.82 

σ(c,y) 0.97 0.99 0.99 

σ(NX,y) -0.28 -0.74 -0.81 

σ(r-r*,y) -0.78 -0.78 -0.78 

σ(NX,r-r*) 0.32 0.87 0.96 

 

Table 6 shows that trade balance is very sensitive to the choice of exclusion periods. With shorter 

exclusion periods, the trade balance is more volatile, and correlation coefficients with output and 

sovereign spread are less significant. This sensitivity can be explained with debt accumulation 

process following the re-entry into credit market. Yet, debt/output ratio remains stable in this 

process, which indicates that debt accumulates along with the increasing output at a similar speed. 

In this process, the volatility of sovereign spread is slightly higher than other periods, and the 

other moments remain stable with different choice of exclusion periods.  
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6 Results  

We develop a sovereign default model by assuming asymmetric output shocks and long-term 

bonds. In quantitative analysis to Argentinean economy between 1993Q1 to 2001Q4, our model 

matches the data well. We can simulate countercyclical interest rate and trade balance, as long as 

high spread level and low spread volatility. Comparing to the models with normal symmetric 

shocks, our model can generate higher default frequency, higher debt/out ratio, higher spread level 

and low spread volatility. 

 

As explanations, we point out that with asymmetric shocks the emerging countries may run into 

recession with positive probability in each periods, which keeps the default frequency stay in a 

high level. Additionally, the emerging countries meet with positive shocks in most of periods, and 

this lead to less volatile spread.  

 

Moreover, we provide a simulation-based approach to approximate transition function between 

finite states. While Tauchen’s method is limited to transform AR model to finite state Markov 

chain, our method is very general in converting various kinds of econometric models to Markov 

chain, which is indispensable in discrete state dynamic programming. Considering dynamic 

programming to be an important computational approach to modern macroeconomic models, our 

method can be widely used to achieve numerical analysis.   
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