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Abstract 
Hierarchical relationships between risk factors are seldom taken into account in 
epidemiological studies though some authors stressed the importance of doing so, and 
proposed a conceptual framework in which each level of the hierarchy is modeled separately. 
The objective of this paper was to implement a simple version of their framework, and to 
propose an alternative procedure based on a Bayesian Network (BN). These approaches were 
illustrated in modeling the risk of diarrhea infection for 2740 children aged 0 to 59 months in 
Cameroon. The authors implemented a (naïve) logistic regression, a step-level logistic 
regression and also a BN. While the first approach is inadequate, the two others approaches 
both account for the hierarchical structure but to different estimates and interpretations. BN 
implementation showed that a child in a family in the poorest group has respectively 89%, 
40% and 18% probabilities of having poor sanitation, being malnourished and having 
diarrhea. An advantage of the latter approach is that it enables one to determine the 
probability that a risk factor (and/or the outcome) is in a given state, given the states of the 
others. Although the BN considered here is very simple, the method can deal with more 
complicated models. 
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INTRODUCTION 
Standard regression methods, including logistic regression and related methods 

(possibly with higher order interactions) that are commonly used in epidemiological studies 
do not take account of causal relationships (which are difficult to establish in epidemiology 
(29-38)) that are known to exist, or are assumed to exist, between the covariates. For example 
when modeling disease status using a logistic regression, potential causal relationships 
between the risk factors are not explicitly modeled. All risk factors are treated as being 
directly related to disease status; i.e. at the same level of association. The usual procedure is 
to apply tests of hypotheses, or some model selection criterion, to decide which risk factors 
should be retained in the model. Causal relationships between some of the risk factors may be 
already known, or may be regarded as plausible on biological grounds. If so, such information 
can be, and should be, incorporated in a hierarchical model describing the relationships 
between disease status and the associated risk factors (the meaning of “hierarchical” here is 
not to be taken in the sense of multilevel modeling (or mixed models) where individual 
patients are grouped say by hospital, hospitals are grouped by region, and regions are grouped 
by country etc.; or as in Meta analysis where patients are grouped by study). Among other 
things, explicitly taking into account of such relationships can help to reduce the ubiquitous 
problem of multicollinearity.  

Hierarchical relationships can be represented by arranging variables in a tree-like 
structure called a directed acyclic graph (DAG). An example of a hierarchical model is given 
in Victora et al.(1). They consider the presence/absence of an infectious disease in developing 
countries as a function of several covariates arranged in a hierarchy with 5 levels. The first 
factor (level 1) is the socioeconomic status; at the level 2 there may be two explanatory 
variables, such as maternal reproductivity and environmental factors; at level 3 one may have 
gestational factors; at level 4 birth weight and perinatal factors; at level 5 child care, diet, 
nutritional status and previous morbidity factors. Factors at level i influence those at level i+1. 
Finally, all the above factors may affect the risk of a child of acquiring an infectious disease. 
By ignoring the hierarchical structure of the model, one places risk factors, irrespective of 
their level, in a single large model and then applies some model selection strategy to eliminate 
the “non-significant” factors and thereby to select the model that fits the data best in some 
predefined sense. Victora et al. (1) argue that such procedure is inadequate because it ignores 
the hierarchical structure of the variables. Instead they proposed fitting a separate model for 
each level of the hierarchy, namely five individual models. In order to estimate the effect of 
each risk factor it is necessary to make adjustments for the (possibly) confounding role that 
other risk factors might play in effecting the outcome variable. Others applications of 
hierarchical models are given in Victora et al.(2) and Fonseca et al.(3) for case-control studies. 

Our aim here is to implement a simple version of Victora et al. (1) ‘s approach, a 
(naïve) logistic approach (including higher order interactions) and to propose an alternative 
unified approach, based on Bayesian networks (BN), that takes account of hierarchical 
structure among covariates. The approaches are illustrated using a relatively simple model for 
assessing the impact of three risk factors for diarrhea in a sample of 2740 children in 
Cameroon. 
 
MATERIALS AND METHODS 
Data and variables 

Data for 8096 children aged 0 to 59 months were obtained from the 2004 Cameroon 
Demographic and Health Survey (DHS) (28). The outcome variable of interest here was “Had 
diarrhea recently (Diarrhea)", which was coded as yes=1 and no=0. The three covariates 
considered, that are labeled sanitation, malnutrition and income were determined as follows:  
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Sanitation “Toilet facilities shared” (yes=1 and no=0). Although “insufficient protein and 
energy intake” is the most common nutritional deficiency affecting the young population in 
developing countries (4, 5), the data for this was unavailable, and so we used the stunting 
status (low height-for-age) as a surrogate for malnutrition, coded as 1 if the child is stunted 
and 0 otherwise. The third covariate that, for convenience, we label income, is an indicator of 
socioeconomic status of households based on wealth index according to DHS methodology. 
The wealth index takes account household income, use of health services and health status; it 
is an indicator of the level of wealth that is consistent with expenditure and income measure. 
The observed values of the index were partitioned into quintile groups labeled one (poorest) 
to five (richest); in what follows the label income refers one of these five groups. Including 
only children with measurements on all variables reduced the available sample to 2740 
children.  

The statistical analyses were performed with R version 2.10.1 (7). Two-sided p-values 
less that 0.05 were considered significant. 
 
Models  
The logistic regression approach 

All variables were included in a selection procedure. The AIC (6) selection criterion in 
a stepwise algorithm was used as variable selection method. Goodness of fit of the models 
was assessed using the residual deviance. 
The approach of Victora et al.(1) 

Chi-squared tests were used to assess the association between variables. Logistic 
regressions with diarrhea infection as response and income, malnutrition and sanitation as 
predictors were used at each level of the hierarchy.  
Bayesian networks 

A BN, also known as a Bayesian belief network or belief network, is a probabilistic 
graphical model tool for describing relationships in a wide variety of domains (25), including 
various applications in medicine. A medical researcher may develop a BN for diagnosing and 
for preventing stress fractures. Alternatively a BN could represent the probabilistic 
relationships between diseases and symptoms. For example, given the symptoms, the network 
can be used to compute the probabilities of the presence of various diseases: the diagnosis 
problem (10, 11). Nikovski (9) applies BNs to problems in medical diagnosis. Van der Gaag 
(12) developed methods for eliciting probabilities in a cancer diagnosis study. Lauritzen and 
Spiegelhalter (8) use BN to compute the probability of a patient having tuberculosis, lung 
cancer or bronchitis respectively based on different factors. 

We suggest the use of BN as an alternative to Victora et al.(1)’s approach. It takes into 
account the hierarchical relationships among risk factors and disease. An advantage of the 
proposed approach is that it enables one to estimate the probability that a risk factor and/or the 
outcome (disease) are in certain states, given the states of the remaining items (risk factors or 
outcome) in the model.  

A BN is a network of “variables” or “nodes” connected by directed links (displayed as 
arrows) with a probability function associated with each variable (13, 14). A variable does not 
have parent if no links are pointing towards it and has parent otherwise. For example, in the 
simple structure A→B→C, A has no parent, A is a parent of B and B is a parent of C. A 
variable can be either a discrete random variable with a finite number of states, or a 
continuous random variable (generally assumed to be normally distributed). The links 
between variables represent (causal) relationships. Associated with a discrete variable is a 
probability distribution over its states; for a continuous random variables a Gaussian 
distribution (with given mean and variance parameters) is used instead.   



 
 

4 
 

A marginal probability table (MPT) assigns probabilities to the states of variables 
which have no parents; a conditional probability table (CPT) assigns probabilities to the 
states of variables which have parents. If a variable with parents is discrete then each entry in 
its CPT contains a conditional probability for that variable being in a specific state, given a 
specific configuration of the states of its parents. If a variable is continuous, the CPT contains 
the (conditional) mean and variance parameters for each configuration of the states of its 
discrete parents and a regression coefficient for each continuous parent, for each configuration 
of the states of the discrete parents.  

If the variable B is the only “cause” for variable A, the CPT for A is computed using 
Bayes' rule as 

 
where P(A) is the probability of A and P(B|A) is the probability of B given that A has 
occurred. If A has K variables (B1, B2,…,BK) as causes (parents), B is replaced in the above 
formula by (B1, B2,…,BK); i.e. a CPT for A is given by P(A| B1, B2,…,BK ). The term 
“evidence” refers to the information available regarding the current state of some of the 
variables. E.g., if one already knows that a child is from a poor family then this constitutes 
evidence that affects the probability that the child develop an infectious disease. It may also 
affect the probability that the other variables are in given states, for example, that the child 
suffers from malnutrition. A single item of evidence can affect the entire network. Given 
evidence E, the CPT for A, given the parent B, is updated using the formula 

 
where the left-hand term, P(A|E,B) is called the posterior probability, or the probability of A 
after considering the effect of the evidence E on B. The term P(A|B) is called the a-priori 
probability of A given B alone. The term P(E|A,B) is called the likelihood and gives the 
probability of the evidence assuming the realization of  A and B. Finally, the term P(E|B) is 
independent of A and can be regarded as a normalizing constant, or scaling factor. Details on 
the use of Bayes rules in BN can be found in Jensen et al.(15). Details about the philosophical 
reasoning and application of BN can be found in Jensen (13, 14). The analyses presented here 
were performed using Hugin Lite version 7.0.(16). 

Figure 1 shows a simplified conceptual framework for modeling the diarrhea status of 
children in our application. It is assumed that income, sanitation and malnutrition are risk 
factors for diarrhea infection. The factor income is at the first level, sanitation and 
malnutrition are at the second level and diarrhea is at the last level; thus the model has three 
levels. Socioeconomic status (income) affects diarrhea through poor sanitation conditions and 
malnutrition, but possibly also through unobserved causes, such as lack of transport to access 
health services. That is why we have included an arrow from income to diarrhea. Poor 
sanitation conditions also affect diarrhea directly due to past infections and through 
malnutrition. Malnutrition is a direct cause of disease infections, i.e. a malnourished child is 
vulnerable to infections; e.g. diarrhea infection. Cochran-Mantel-Haenszel (CMH) tests have 
been used to test for conditional independence of variables (26-27). 
 
RESULTS 

There was a highly significant association between income and others variables:  
sanitation (χ2=146.47, d.f.=4, P=0), malnutrition (χ2 = 114.26, d.f.=4, P=0) and diarrhea (χ2= 
14.53, d.f.=4, P = 0.005).  
A naïve approach is to ignore the hierarchical structure of the variables and regard the three 
covariates as belonging to the same single level instead of three levels. Then with diarrhea as 
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dependent variable, and assuming that each model includes an intercept, there are seven 
possible models. Using AIC selection criterion in a stepwise algorithm, the model Logistic 
Regression 3 was selected. The fit of the saturated model (including all higher order 
interactions) showed no significant interaction terms (not reported here). 

However, if the hierarchical structure of the data is taken into account, only three 
models are meaningful (1). At the first level, income is the only predictor, at the second level, 
income and sanitation are the predictors and at the third level, income, sanitation and 
malnutrition are the predictors. Using the approach of Victora et al. (1), we propose to fit a 
logistic regression at each of the three levels. The usual interpretation does not hold. Logistic 
regression 1 measures the overall effect of income on Diarrhea infection. Logistic regression 2 
measures the effects of sanitation on diarrhea adjusted for the confounder income. In this 
model the effect of income is mediated through sanitation. Logistic regression 3 measures the 
effects of malnutrition on diarrhea adjusted for the confounders income and sanitation. In this 
model the effect of income is that not mediated via sanitation or malnutrition, and the effect 
of sanitation is that not mediated via malnutrition. Thus, a fundamental issue in the three 
above models is interpretation.  

Logistic regression 1 (Residual deviance=2338.9, d.f.=2738, P=1), logistic regression 
2 (Residual deviance=2336.5, d.f.=2737, P=1) and logistic regression 3 (Residual 
deviance=2333.1, d.f.=2736,  P=1) indicate that each of these 3 models fit the data quite well 
(Table 1). To avoid the problem of the choice of the reference level, we fit the model to 
evaluate the global effect of each variable.  

In the BN, income is an independent risk factor for diarrhea, in addition to its effect 
via sanitation and malnutrition. Thus income is more likely to be a confounding variable for 
the relationship between sanitation and malnutrition. On the other hand, sanitation was highly 
is associated with malnutrition (χ2= 10.72, d.f.=1, P<0.001) and is associated with diarrhea 
(χ2= 4.96, d.f.=1, P= 0.026). Thus sanitation could be considered as an independent risk 
factor for diarrhea; its association with malnutrition also makes it more likely to be a 
confounding variable for the relationship between malnutrition and diarrhea. Malnutrition is 
associated with diarrhea (χ2 = 5.60, d.f.=1, P= 0.018). These results therefore justify the 
conceptual framework in Figure 1 designed in Victora et al.(1). 
The factors sanitation and malnutrition are not independent (χ2= 10.72, d.f.=1, P<0.0011). 
However, the null hypothesis that they are conditionally independent, given income cannot be 
rejected (χ2

CMH= 1.07, d.f.=1, P=0.27). In effect sanitation and malnutrition, given income, 
can be regarded as conditionally independent; the relationship between them can be explained 
purely by the fact that poor families are more likely to have both poor sanitation and 
malnourished children than are richer families. This suggests that we could delete the arrow 
from sanitation to malnutrition; but for the purposes of comparison we have not done this. 
Finally, income and diarhea are not conditionally independent given both sanitation and 
malnutrition (χ2

CMH = 15.25, d.f.=4, P= 0.0042). This indicates that socioeconomic status 
(income) affects the probability of diarrhea in more ways than just via sanitation and 
malnutrition. It is plausible that it affects that probability via some other (possibly 
unobserved) factors, such as lack of transport to access health services. Given this lack of 
conditional independence we may not leave out the arrow between income and diarhea. 
As is illustrated in the previous paragraph, conditional independence is a key notion in the 
construction of a BN. It is used to determine which arrows are essential in the network, and 
which can be omitted. There is no direct causal link between two variables that are 
conditionally independent (given a third variable) even if the two variables are highly 
correlated. The high correlation is a consequence of their "common ancestor" (the third 
variable) and not the result of any direct causal relation between them. It is important to note 
that in a BN, a missing edge represents a conditional independence. 
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Table 1: Logistic regressions approaches 

   
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Table 2: CPT for Terminal node Diarrhea 

Malnutrition Sanitation Income Diarrhea 

No Yes 

No No Poorest 0.83 0.17 

Poorer 0.90 0.10 

Middle 0.88 0.12 

Richer 0.84 0.16 

Richest 0.89 0.11 

Yes Poorest 0.86 0.14 

Poorer 0.90 0.10 

Middle 0.83 0.17 

Richer 0.79 0.21 

Richest 0.86 0.14 

Yes No Poorest 0.80 0.20 

Poorer 0.84 0.16 

Middle 0.79 0.21 

Richer 0.82 0.18 

Richest 0.94 0.06 

Yes Poorest 0.81 0.19 

Poorer 0.80 0.20 

Middle 0.79 0.21 

Richer 0.88 0.12 

Richest 0.78 0.22 

 Coefficient SE z-value P-value 

Logistic Regression 1 

Intercept -1.32     0.12 -10.86   0 

Income -0.14     0.04   -3.43 0 

Logistic Regression 2 

Intercept -1.34     0.12 -10.93      0 

Income  -0.15      0.04   -3.66 0 

Sanitation   0.18      0.08      2.23 0.01     

Logistic Regression 3 

Intercept 1.45     0.14 -10.58   0 

Income -0.14     0.04   -3.29 0 

Sanitation 0.19     0.09     2.68          0.01 

Malnutrition 0.21 0.09      2.31          0.01 
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Table 3: CPT for Sanitation                                                         Table 4: MPT for Income 

Income  Sanitation  Income Proportion 

No Yes  

Poorest 0.89 0.11  Poorest 0.20 

 Poorer 0.67 0.33   Poorer 0.22 

Middle 0.67 0.33  Middle 0.25 

Richer 0.58 0.42  Richer 0.18 

Richest 0.68 0.32  Richest 0.15 

 

Table 5: CPT for Malnutrition                                                               

      Sanitation Income Malnutrition 

No Yes 

No Poorest 0.60 0.40 

Poorer 0.88 0.12 

Middle 0.63 0.37 

Richer 0.62 0.38 

Richest 0.77 0.23 

Yes Poorest 0.63 0.37 

Poorer 0.87 0.13 

Middle 0.67 0.33 

Richer 0.70 0.30 

Richest 0.77 0.23 

 

Table 6: Comparison frequencies (%) from data and the adjusted frequencies (BN) 

Factors True (data) Adjusted (BN) 

Sanitation   

Yes 31.24 30.07 

No 68.76 69.93 

Malnutrition   

Yes 30.62  29.25  

No 69.38 70.75 

Diarrhea   

Yes 15.36 14.97 

No 84.64 85.03 

Table 6 shows the marginal frequencies of the variables in the data and the adjusted ones. The 
latter take into account the hierarchical structure of the variables; in particular they adjust 
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automatically for any confounding effect. For example, the proportion of children with 
Diarrhea infection was 15.36%; after taken into account the hierarchical structure, this 
proportion reduced to 14.97%. Figure 2 shows the distribution of the risks/factors and the 
disease and takes into account the hierarchical structure. The marginal frequencies of the 
variables in the data are very close to those given in the BN in Figure 2. The main reason is 
that the "prior probabilities" (beliefs) given in Tables 2, 3, 4 and 5 were not determined 
apriori; they were estimated from the data. Note that the proportion of children living in a 
poor sanitary condition is 31.24%; but if one takes account of the hierarchical structure and 
the confounding role of income, this proportion is reduced to 30.07%. The proportion of 
malnourished children is 30.62%; after taking into account the hierarchical structure and the 
confounding role of income and malnutrition, this proportion reduces to 29.25%. Note that the 
proportion of income status doesn’t change because this variable doesn’t have parent. 
However, it may change when there is "evidence" (i.e. knowledge) regarding the state of one 
or more of the other variables. In general, when there is evidence of the state of any variable, 
all the networks frequencies are likely to change, as illustrated in Figures 3 and 4. From 
Figure 3, evidence that a child's family falls in the poorest group leads to a 89.00% probability 
that he/she has poor sanitation, a 39.67% probability that he/she is malnourished and a 
17.94% probability that he/she has diarrhea infection. Figure 4 shows that when there is 
evidence that the child's family belongs to a poorest group, has poor sanitation and is 
malnourished, there is 20% probability that he/she has diarrhea infection. 

 
DISCUSSION 
The chosen variables in DHS are obviously imperfect for characterizing income, malnutrition 
and sanitation (17). Furthermore as we have mentioned earlier, causation is in general very 
difficult to establish (29-38). 

Our intention was not to develop a comprehensive model, but rather to illustrate the 
use of a BN to construct hierarchical structures when the covariates are known to be, or are 
assumed to be interdependent in certain ways. The network can be used to predict the state of 
the variable for any child when there is evidence of the true state of one or more of the other 
variables. BN is very useful for modeling situations where some information is already known 
and incoming data are uncertain or partially unavailable (18). DHS that are conducted at 
irregular time intervals are an example of this; BNs can help predicting risk factors/outcome 
while waiting for a new survey.  

Probabilities in CPTs and MPTs (e.g. Tables 2-5) can be obtained from historical data 
(here DHS) or elicitation of probabilities from experts (e.g. epidemiologists). Objective 
survey data and subjective expert assessment can be used either separately or in combination 
with each other. Of course in the absence of any objective data, elicitation of reliable 
probabilities is the most difficult aspect in BN modeling. It is especially difficult when many 
risk factors are being investigated and these are related in complex ways (19-24). To alleviate 
the task, Kjaerulff (19) and van Engelen (20) propose the removal of arcs representing weak 
dependencies. A key advantage of BN is the facility of updating (or modifying) the network 
as new information becomes available. On the other hand a major criticism of BNs is the need 
to choose prior probabilities, and to choose a statistical distribution (when necessary). 

The BN that we used for the purpose of illustration is a very simple one. There may be 
a multitude of others (unobserved, or not-mentioned nor included) confounding factors 
besides the four variables considered. However, BN are powerful tools that can be extended 
to model much more complex relationships.  
We recommend the use of BNs in epidemiological studies whose aim is predicting or 
studying the determinants of diseases. The conceptual framework must be clearly set up in 
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order to identify potential hierarchical structure in the data. Automatic variables selection 
should be used only when such structure is not found in the data. A properly constructed BN 
automatically takes into account possible confounding variables. Failure to take into account 
hierarchical structure of covariates can result in models that lead to unclear, sometimes even 
misleading, interpretations, of the relationships under investigation. 
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Appendix 

  

Figure 1: Bayesian network: a simplified conceptual hierarchical framework for Diarrhea 

 

Figure 2: Frequency network showing posterior probabilities (%) 
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Figure 3: Frequency network showing posterior probabilities (%) when there is evidence that the child belongs to a 
poorest family. 

 
Figure 4: Frequency network showing posterior probabilities (%) of developing diarrhea when there is 
evidence that the child belongs to a poorest family, with poor sanitation condition and is malnourished.  


