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Introduction

The success of the forecast model of Istanbul Siockange (ISE) market
indices has received great attention in the pasadte The reason being that, any
efficient forecasting of the index value would pidesthe investors with profitable
returns. However, the main complication in predictis the volatility in the time
series. There are several reasons that one mayteveridel and forecast volatility:
for instance to analyze the risk of holding an ass¢he value of an option. Forecast
confidence intervals may found to be time-varyisg,that more accurate intervals
can be obtained by modeling the variance of thergriMore efficient estimators
can be obtained if heteroskedasticity in the erierisandled properly. It has been
rather difficult to decide which model to use inder to make an efficient
forecasting. The choice of data and the seleaeidg can affect the selection of an
appropriate model.

Most of the models arising from the econometricrapph are in discrete
time. Particularly GARCH models and their extensibave received some attention
as appropriate models to capture certain empifacab of the empirical volatility
process [6]. Nelson [10] and Duan [5] attempteccapture the characteristic of
financial returns data by diffusion approximatidaghe discrete time.

Kluppelberg [7] adopted the idea of a single nqsecess and suggested a
new continuous time GARCH (COGARCH) model, whiclptcaes all the stylised
facts as the discrete time GARCH does. As the npiseess, any Lévy processes



are possible, its increments replacing the innowatiin the discrete time GARCH
model. COGARCH based on a single background drilény process, is different
from, though related to, other continuous time Iséstic volatility models that have
been proposed. It generalises the essential featfr¢he discrete time GARCH
process in a direct way.

Here, we demonstrate the applicability of COGARCHdel for modeling
the time-varying volatility of the ISE100. Mallert.eal. [8] have recently
demonstrated how to apply this kind of methodoltmgescribe the volatility of the
Australian stock market, using it to analyse teargeof daily data, mostly equally
spaced in time for the ASX200 index. Also, Mullér &. [9] in 2009 analysed the
volatility of stock markets using COGARCH.

1. Methodology

On the discrete modeling part, the best candidatdemwill be found by
considering AIC and BIC values after stationaridimg return data. Then usual tests
will be carried out to check if the model is coemge stationary, whether it obeys
the negativity constraints, and whether the arfdcefn the residuals is eliminated.

For continuous modeling, the parameters from tiserdie model will be
used for continuous GARCH model (COGARCH). Thenuwations will be carried
out for both of the models and comparisons wilhizele.

Due to Nelson [10] and others, classical diffudiarits have been used in a
natural way to suggest continuous time limits afcdéte time processes, including
for the GARCH models. Nelson's model of COGARCH elodas two different
Brownian motions which are independent of eachrothe

dG, = 6,dBM t2 0 (1)
2= (B —noddt + poldBY 120 2
where BY and B? are independent Brownian motions, aft>0, /7> 0, and

¢ 2 0 are constants.

In Klippelberg et. al. [7], COGARCH model is a diranalogue of the
discrete time GARCH, based on a single backgroumdnd Lévy process, and
generalises the essential features of the distim& GARCH process in a natural
way.



The COGARCH procesfG, )., is defined in terms of its stochastic

differential dG, such that

dG, = o.+dL, t0 (3)

do? = (f —nolldt+ ol d[L, L]Ed:, t>0 4)
wheref >0, 720, and¢ = 0 are constants.
[L, L]E'ﬂI is the quadratic variation processlofwhich is defined as

[L L] = Bocse8 L)2 =T, W, 5)
wherea L, =L, —L,_, fort=0.
The proces$s ‘jumps’ at the same time dsdoes, and has jump sizes

AG =0, AL, t=0 (6)
Kluppelberg [6] shows the identity as

t

C-TE = ﬁt+lug(6}jﬁfds+fp Z Gf(ﬂf_.r}:+ crg
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Deriving a recursive and deterministic approximatior the volatilities at the jump

times we get
t

“_z'::ﬁz'2—1_ﬁ+'-'?j5§d5+fﬂ Z ol (AL, )?
o z=t (8)

since o, is latent andALs is usually not observable, hence using Euler
approximation for the integral we get

E ., -
fa gy ds® ol 9)
D GHAL R (G, Go)?
Otz (10)

therefore for the volatility estimation we end ujhw
“'_:'2 = Ff+(1- "'T}"'_:'2—1 + @(G; — G_1)* (11)



The bivariate procesgr,, G, )., is Markovian. If (g7),s, is the stationary version

of the process with; = 02, then (G,),,, iS @ process with stationary increments
[7, Corrolary 3.1].

2. Data

We perform the analysis using daily log returnsI8&B100 daily closing
index values. We focus on the time period from QR/994 to 23/06/2010. The data
were obtained from ISE.

3. Results And Diagnostics

The first step into the empirical study is to usaptical tools to detect any
apparent features of the data. In the case of ébgyr of ISE100 data series; in
Error! Reference source not found.it is clear that the return data is more like a
random walk. There is no trend in the log returnQE100 and it is more like a
white noise type data series, which suggests tmatitne series is stationary. The
stationarity of the data also supported by ACF BACF graphs. This result will be
investigated further by the unit root tests.

3.1 Results Of Unitroot And Stationary Tests

According to the p-value of ADF test, 2.713e-4% tiull hypothesis that
the data contains a unit root can be rejected. tAisds also supported by KPSS test
result, with the p-vale 0.4386annot reject the null hypothesis at any signift@an
level that the data is stationary around a constant

3.2 Discrete Modeling

The best candidate model is found to be AR(1)~GARCH model. The
Ljung-Box test with the p-value of 0.025 tells gt there is no autocorrelation in
the model’s residuals and the candidate modelralsmves the ARCH effect in the
residuals given the LM Test's p-value is 0.1246.

The model obeys the negativity constraint of a GAR@odel that is none
of the coefficients of the parameters are negatiud, it also satisfies the covariance
stationarity condition as the sum of coefficierstdeiss than 1. All of the coefficients



are statistically significant as the t-values areater than 1.65. All the results show
that the candidate model AR(1)~GARCH(1,1) is a gouatlel for the log return of

ISE100 time series.
¥, = 0.00181322 + 0.05623574Y,_; + &, (12)

= 0.00001319 + 0.11436918Y? 1 T +0. 8?2819520} 1 (13)
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Figure 1: Time series plot of ISE100 index valueglreturn of ISE100, ACF and PACF of log return
Source: Own Study

Table 1
Estimated Coefficients of AR(1)~GARCH(1,1)
Value Std.Error tvalu Pr(> |'[|)
Cc 0.00181322 3.316e-004 5.468 1468008
AR(1) 0.05623574 1.590e-002 3.536 4e1004
A 0.00001319 1.978e-006 6.670 9868011
ARCH(1) 0.11436918 7.410e-003 15.435 0.0008+
GARCH(1) 0.87281962 7.373e-003 118.385 0.0008+0

Source: Own Study



3.3 Continuous Modeling

Given that the parameters of COGARCH model is edqoahe discrete
GARCH model's parameters as such

B=B,n=Ind,¢=A/0 (14)
The candidate model's parameters are
£ =0.00001319 4 =0.11436918 S = 0.87281962 (15)
The parameters' of COGARCH(1,1) model are

77 =In0.8781962= 0.13603 ¢ =0.114369180.87281962= 0.13103  (16)

To start the simulation we use numerical solutifansdG, and do; in (6)

and (11), and we also use a Lévy process drivesbbypound Poisson process. The
compression between the volatility of the log retdata with the discrete GARCH
model and COGARCH's volatility, Figure 2, showsttkizere is a close relation
between discrete and continuous model and both Imadenic the real data’s
volatility.
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Figure 2: Volatility plots of Log Return Data, canious GARCH model, and GARCH model
Source: Own Study



Conclusion

Log return of ISE100 daily closing éxdvalue was modeled with the best
candidate model AR(1)~GARCH(1,1). Then using theapeeters from the discrete
model, continuous model COGARCH(1,1) was appliedht® data. Volatility of
simulated data from discrete and continuous modefspared with the real data
volatility. We showed that the simulated GARCH ity and COGARCH
volatility appears to follow the same pattern afnps. Furthermore, both models
imitate the real return data’s volatility.
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Summary

The objective of this paper is to model the vaitgtibf Istanbul Stock Exchange
market, ISE100 Index by ARMA and GARCH models damehttake a step further
into the analysis from discrete modeling to cortisimodeling. Through applying
unit root and stationary tests on the log returthefindex, we found that log return
of ISE100 data is stationary. Best candidate mokdesen was found to be
AR(1)~GARCH(1,1) by AIC and BIC criteria. Then ugithe parameters from the
discrete model, COGARCH(1,1) was applied as a nantis model.



