
MPRA
Munich Personal RePEc Archive

DEoptim: An R Package for Global
Optimization by Differential Evolution

Katharine M. Mullen and David Ardia and David L. Gil and

Donald Windover and James Cline

National Institute of Standards and Technology (NIST), aeris
CAPITAL AG

21. December 2009

Online at http://mpra.ub.uni-muenchen.de/27878/
MPRA Paper No. 27878, posted 10. January 2011 17:11 UTC

http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/27878/

DEoptim: An R Package for Global Optimization by

Differential Evolution

Katharine M. Mullen
NIST

David Ardia
aeris CAPITAL AG

David L. Gil
NIST

Donald Windover
NIST

James Cline
NIST

Abstract

This article describes the R package DEoptim, which implements the Differential Evo-
lution algorithm for global optimization of a real-valued function of a real-valued param-
eter vector. The implementation of Differential Evolution in DEoptim interfaces with
C code for efficiency. The utility of the package is illustrated by case studies in fitting
a Parratt model for X-ray reflectometry data and a Markov-Switching Generalized Au-
toRegressive Conditional Heteroskedasticity model for the returns of the Swiss Market
Index.

Keywords: global optimization, evolutionary algorithm, Differential Evolution, R software.

1. Introduction

Optimization algorithms inspired by the process of natural selection have been in use since
the 1950s (Mitchell 1998), and are often referred to as evolutionary algorithms. The genetic
algorithm is one such method, and was invented by John Holland in the 1960s (Holland
1975). Genetic algorithms apply logical operations, usually on bit strings, in order to perform
crossover, mutation, and selection on a population. Over the course of successive generations,
the members of the population are more likely to represent a minimum of an objective func-
tion. Genetic algorithms have proven themselves to be useful heuristic methods for global
optimization, in particular for combinatorial optimization problems. Evolution strategies
are another variation of evolutionary algorithm, in which members of the population are
represented with floating point numbers, and the population is transformed over successive
generations using arithmetic operations. See Price, Storn, and Lampinen (2006) (Section
1.2.3) for a detailed overview of evolutionary algorithms.

In the 1990s Rainer Storn and Kenneth Price developed an evolution strategy they termed
differential evolution (DE) (Storn and Price 1997). DE is particularly well-suited to find
the global optimum of a real-valued function of real-valued parameters, and does not require
that the function be either continuous or differentiable. In the roughly fifteen years since its
invention, DE has been successfully applied in a wide variety of fields, from computational
physics to operations research, as Price et al. (2006) catalogue.

2 DEoptim: An R Package for Differential Evolution

Program Language Authors Cross-platform

DeApp java Storn Yes
DeWin MS Visual C++ Storn No
DeMat MATLAB Storn No
DiffEvol scilab Di Carlo & Jarausch Yes
DESolver MS Visual C++ Godwin No
DE Fortran90 Fortran 90 Wang Yes
DeMat for Pascal Pascal Geldon & Gauden Yes
DEoptim R Ardia & Mullen Yes

Table 1: Implementations of Differential Evolution for general purpose optimization.

Many implementations of DE are currently available. A web-based list of DE programs for
general purpose optimization is maintained by Rainer Storn at http://www.icsi.berkeley.
edu/~storn/code.html. A selection of programs from this list for which the source code
is readily available are summarized in Table 1. Commercial software such as Mathematica,
MATLAB’s GA toolbox, and a variety of special-purpose programs for optical and X-ray
physics also implement DE1.

The DEoptim implementation of DE was motivated by our desire to extend the set of al-
gorithms available for global optimization in the R language and environment for statisti-
cal computing (R Development Core Team 2009). R enables rapid prototyping of objective
functions, access to a wide array of tools for statistical modeling, and ability to generate
customized plots of results with ease (which in many situations makes use of R prefer-
able over the use of programs in languages like java, MS Visual C++, Fortran 90 or Pas-
cal). Furthermore, R is released in open-source form under the terms of the GNU General
Public License, meaning that packages implemented for it do not require the purchase of
commercial software. R also has a large and growing user base interested in optimization.
DEoptim has been published on the Comprehensive R Archive Network and is available at
http://cran.r-project.org/web/packages/DEoptim/. Since becoming publicly available
it has been used by a variety of authors, e.g., Börner, Higgins, Kantelhardt, and Scheiter
(2007), Higgins, Kantelhardt, Scheiter, and Boerner (2007), Cao, Vilar, and Devia (2009),
Opsina Arango (2009), and Ardia, Boudt, Carl, Mullen, and Peterson to solve optimization
problems arising in diverse domains.

In the remainder of this manuscript we elaborate on DEoptim’s implementation and use. In
Section 1.1, the package is introduced via a simple example. Section 2 describes the underlying
algorithm. Section 3 describes the R implementation and serves as a user manual. DEoptim
is then illustrated via two cases studies, involving fitting a Parratt recursion model for X-
ray reflectometry data (in Section 4) and a Markov-Switching Generalized Autoregressive
Conditional Heteroscedasticity(MSGARCH) model for log-returns of the Swiss Market Index
(in Section 5).

1Certain commercial equipment, instruments, or materials are identified in this paper to foster understand-
ing. Such identification does not imply recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply that the materials or equipment identified are necessarily the best available
for the purpose.

http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://cran.r-project.org/web/packages/DEoptim/

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 3

x1

x 2

−4

−2

0

2

4

−4 −2 0 2 4

●

0
10
20
30
40
50
60
70
80

Figure 1: A contour plot of the two-dimensional Rastrigin function f(x). The global minimum
f(x) = 0 is at (0, 0) and is marked with an open white circle.

1.1. An introductory example

Minimization of the Rastrigin function in x ∈ <D

f(x) =
D∑
j=1

(
x2
j − 10 cos (2πxj) + 10

)
for D = 2 is a common test for global optimization algorithms.
This function is possible to represent in R as

R> rastrigin <- function(x) 10 * length(x) + sum(x^2 - 10 * cos(2 *

+ pi * x))

As shown in Figure 1, for D = 2 the function has a global minimum f(x) = 0 at the point
(0, 0).
In order to minimize this function using DEoptim, the R interpreter is invoked, and the
package is loaded with the command

R> library("DEoptim")

DEoptim package
Differential Evolution algorithm in R
Authors: David Ardia and Katharine Mullen

The DEoptim function of the package DEoptim searches for minima of the objective function
between lower and upper bounds on each parameter to be optimized. Therefore in the call to
DEoptim we specify vectors that comprise the lower and upper bounds; these vectors are the
same length as the parameter vector. The call to DEoptim can be made as

4 DEoptim: An R Package for Differential Evolution

R> est.ras <- DEoptim(rastrigin, lower = c(-5, -5), upper = c(5,

+ 5), control = list(storepopfrom = 1, trace = FALSE))

Note that the vector of parameters to be optimized must be the first argument of the objective
function fn passed to DEoptim. The above call specifies the objective function to minimize,
rastrigin, the lower and upper bounds on the the parameters, and, via the control ar-
gument, that we want to store intermediate populations from the first generation onwards
(storepopfrom = 1), and do not want to print out progress information each generation
(trace = FALSE). Storing intermediate populations allows us to examine the progress of the
optimization in detail. Upon initialization, the population is comprised of 50 vectors x of
length two (50 being the default value of NP), with xi a random value drawn from the uniform
distribution over the values defined by the associated lower and upper bound. The operations
of crossover, mutation, and selection explained in Section 2 transform the population so that
the members of successive generations are more likely to represent the global minimum of the
objective function. The members of the population generated by the above call are plotted at
the end of different generations in Figure 2. DEoptim consistently finds the minimum of the
function within 200 generations using the default settings. We have observed that DEoptim
solves the Rastrigin problem more efficiently than the simulated annealing method found in
the R function optim.

We note that as the dimensionality of the Rastrigen problem increases, DEoptim may not
be able to find the global minimum in the default number of generations. Heuristics to
help ensure that the global minimum is found include re-running the problem with a larger
population size (value of NP), and increasing the maximum allowed number of generations.

1.2. When to apply DE

Differential Evolution does not require derivatives of the objective function. It is therefore
useful in situations in which the objective function is stochastic, noisy, or difficult to differen-
tiate. DE, however, may be inefficient on smooth functions, where derivative-based methods
generally are most efficient.

For illustration, consider a generalized Rosenback function, possible to represent in R as

R> genrose.f <- function(x) {

+ n <- length(x)

+ fval <- 1 + sum(100 * (x[1:(n - 1)]^2 - x[2:n])^2 + (x[2:n] -

+ 1)^2)

+ return(fval)

+ }

This function has a global minimum at 1, which DEoptim finds for n = 10 with a call like:

R> n <- 10

R> ans <- DEoptim(fn = genrose.f, lower = rep(-5, n), upper = rep(5,

+ n), control = list(NP = 100, itermax = 4000, trace = FALSE))

However, the minimum can be determined with far fewer function evalutations with a gradient-
based method such as “BFGS” (Byrd, Lu, Nocedal, and Zhu 1995), e.g., with the call

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 5

Generation 10

x1

x 2

−4
−2

0
2
4

−4 0 2 4

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

Generation 20

x1
x 2

−4
−2

0
2
4

−4 0 2 4

●●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●● ●

●●

●

●

●

●

●

Generation 30

x1

x 2

−4
−2

0
2
4

−4 0 2 4

●●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

● ●●

● ●

●

●

●

●

●

Generation 40

x1

x 2

−4
−2

0
2
4

−4 0 2 4

●●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●● ●

●

●

●●● ● ●●●

●●

●

●

●●

●

●

●

●●

● ●●

● ●

●

●

●

●

●

Generation 50

x1

x 2

−4
−2

0
2
4

−4 0 2 4

●●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●● ●

●

●

●●● ● ●●

●

●●

●

●

●●

●

●

●

●●

● ●●

● ●

●

●

●

●

●

Generation 1

x1

x 2

−4
−2

0
2
4

−4 0 2 4

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

Figure 2: The population associated with various generations of a call to DEoptim as it searches
for the minimum of the Rastrigin function (marked with an open white circle). The minimum
is consistently determined within 200 generations using the default settings of DEoptim.

6 DEoptim: An R Package for Differential Evolution

R> ans1 <- optim(par = runif(10, -5, 5), fn = genrose.f, method = "BFGS",

+ control = list(maxit = 4000))

Note further that users interested in exact reproduction of results should set the seed of their
random number generator before calling DEoptim. DE is a randomized algorithm, and the
results may vary between runs.

2. The Differential Evolution algorithm

We sketch the classical DE algorithm here and refer interested readers to the work of Storn
and Price (1997) and Price et al. (2006) for further elaboration. The algorithm is an evolu-
tionary technique which at each generation transforms a set of parameter vectors, termed the
population, into another set of parameter vectors, the members of which are more likely to
minimize the objective function. In order generate a new parameter vector, DE disturbs an
old parameter vector with the scaled difference of two randomly selected parameter vectors.
The variable NP represents the number of parameter vectors in the population. At generation
0, NP guesses for the optimal value of the parameter vector are made, either using random
values between upper and lower bounds for each parameter or using values given by the
user. Each generation involves creation of a new population from the current population
members xi,g, where g indexes generation, i indexes the vectors that make up the population,
and j indexes into a parameter vector. This is accomplished using differential mutation of
the population members. A trial mutant parameter vector vi,g is created by choosing three
members of the population, xr0,g, xr1,g and xr2,g, at random. Then vi,g is generated as

vi,g = xr0,g + F · (xr1,g − xr2,g) (1)

where F is a positive scale factor. Effective values of F are typically less than 1.
After the first mutation operation, mutation is continued until either length(x) mutations
have been made or rand > CR, where CR is a crossover probability CR ∈ [0, 1], and where
here and throughout rand is used to denote a random number from U(0, 1). The crossover
probability CR controls the fraction of the parameter values that are copied from the mutant.
CR approximates but does not exactly represent the probability that a parameter value will
be inherited from the mutant, since at least one mutation always occurs.
If an element vj of the parameter vector is found to violate the bounds after mutation and
crossover, it is reset. In the implementation DEoptim, if vj > upperj , it is reset as vj =
upperj − rand · (upperj − lowerj), and if vj < lowerj , it is reset as vj = lowerj + rand ·
(upperj − lowerj). This ensures that candidate population members found to violate the
bounds are set some random amount away from them, in such a way that the bounds are
guaranteed to be satisfied. Then the objective function values associated with the children
v are determined. If a trial vector vi,g has equal or lower objective function value than the
vector xi,g, vi,g replaces xi,g in the population; otherwise xi,g remains. The algorithm stops
after some set number of generations, or after the objective function value associated with
the best member has been reduced below some set threshold.
Variations on this theme are possible, some of which are described in the following section.
Values of rand and CR that have been found to be most effective for a variety of problems
are described in Price et al. (2006) (Section 2). Reasonable default values for many problems
are given in the following section.

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 7

3. Implementation

DEoptim was first published on the Comprehensive R Archive Network (CRAN) in 2005 by
David Ardia. Early versions were written in pure R. Since version 2.0-0 (published to CRAN
in 2009 by Katharine Mullen) the package has relied on an interface to a C implementation
of DE, which is significantly faster on most problems as compared to the implementation in
pure R. Since version 2.0-3 the C implementation dynamically allocates the memory required
to store the population, removing limitations on the number of members in the population
and length of the parameter vectors that may be optimized.
The implementation is used by calling the R function DEoptim, the arguments of which are:

• fn: The objective function to be minimized. This function should have as its first
argument the vector of real-valued parameters to optimize, and return a scalar real
result.

• lower, upper: Vectors specifying scalar real lower and upper bounds on each parameter
to be optimized, so that the ith element of lower and upper applies to the ith parameter.
The implementation searches between lower and upper for the global optimum of fn.

• control: A list of control parameters, discussed below.

• ...: allows the user to pass additional arguments to the function fn.

The control argument is a list, the following elements of which are currently interpreted:

• VTR: The value to reach. Specify the global minimum of fn if it is known, or if you wish
to cease optimization after having reached a certain value. The default value is -Inf.

• strategy: This defines the Differential Evolution strategy used in the optimization
procedure, described below in the terms used by Price et al. (2006):

– 1: DE / rand / 1 / bin (classical strategy). This strategy is the classical approach
described in Section 2.

– 2: DE / local-to-best / 1 / bin. In place of the classical DE mutation given in (1),
the expression

vi,g = oldi,g + (bestg − oldi,g) + xr0,g + F · (xr1,g − xr2,g)

is used, where oldi,g and bestg are the ith member and best member, respectively,
of the previous population. This strategy is currently used by default.

– 3: DE / best / 1 / bin with jitter. In place of the classical DE mutation given in
(1), the expression

vi,g = bestg + jitter + F · (xr1,g − xr2,g)

is used, where jitter is defined as 0.0001 · rand + F .
– 4: DE / rand / 1 / bin with per vector dither. In place of the classical DE mutation

given in (1), the expression

vi,g = xr0,g + dither · (xr1,g − xr2,g)

is used, where dither is calculated as dither = F + rand · (1− F).

8 DEoptim: An R Package for Differential Evolution

– 5: DE / rand / 1 / bin with per generation dither. The strategy described for 4 is
used, but dither is only determined once per-generation.

– any value not above: variation to DE / rand / 1 / bin: either-or algorithm. In the
case that rand < 0.5, the classical strategy described for 1 is used. Otherwise, the
expression

vi,g = xr0,g + 0.5 · (F + 1.0) · (xr1,g + xr2,g − 2 · xr0,g)

is used.

• bs: If FALSE then every mutant will be tested against a member in the previous gen-
eration, and the best value will survive into the next generation. This is the standard
trial vs. target selection described in Section 2. If TRUE then the old generation and
NP mutants will be sorted by their associated objective function values, and the best NP
vectors will proceed into the next generation (this is best-of-parent-and-child selection).
The default value is FALSE.

• NP: Number of population members. The default value is 50.

• itermax: The maximum iteration (population generation) allowed. The default value
is 200.

• CR: Crossover probability from interval [0,1]. The default value is 0.9.

• F: Stepsize from interval [0,2]. The default value is 0.8.

• trace: Logical value indicating whether printing of progress occurs at each iteration.
The default value is TRUE.

• initialpop: An initial population used as a starting population in the optimization
procedure, specified as a matrix in which each row represents a population member.
May be useful to speed up convergence. Defaults to NULL, so that the initial population
is generated randomly within the lower and upper boundaries.

• storepopfrom: From which generation should the following intermediate populations
be stored in memory. Default to itermax+1, i.e., no intermediate population is stored.

• storepopfreq: The frequency with which populations are stored. The default value is
1, i.e. every intermediate population is stored.

• checkWinner: Logical value indicating whether to re-evaluate the objective function
using the winning parameter vector if this vector remains the same between gener-
ations. This may be useful for the optimization of a noisy objective function. If
checkWinner=TRUE and avWinner=FALSE then the value associated with re-evaluation
of the objective function is used in the next generation. Default to FALSE.

• avWinner: Logical value. If checkWinner=TRUE and avWinner=TRUE then the objec-
tive function value associated with the winning member represents the average of all
evaluations of the objective function over the course of the ‘winning streak’ of the best
population member. This option may be useful for optimization of noisy objective
functions, and is interpreted only if checkWinner=TRUE. The default value is TRUE.

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 9

0.01 0.02 0.03 0.04 0.05 0.06 0.07

1e
+

02
1e

+
06

θ (radians)

In
te

ns
ity

 (
co

un
ts

)

Figure 3: XRR measurements of Pt layers on SiO2 substrate.

The default value of control is the return value of DEoptim.control(), which is a list with
the above elements and specified default values.

The return value of the DEoptim function is a member of the S3 class DEoptim. Members
of this class have a plot method that accepts the argument plot.type. When retVal is
an object returned by DEoptim, calling plot(retVal, plot.type = "bestmemit") results
in a plot of the parameter values that represent the lowest value of the objective function
each generation. Calling plot(retVal, plot.type = "bestvalit") plots the best value of
the objective function each generation. Calling plot(retVal, plot.type = "storepop")
results in a plot of stored populations (which are only available if these have been saved by
setting the control argument of DEoptim appropriately). A summary method for objects
of S3 class DEoptim also exists, and returns the best parameter vector, the best value of the
objective function, the number of generations optimization ran, and the number of times the
objective function was evaluated.

A note on recommended settings: we have set the default values to the methods recommended
by Price et al. (2006) as starting points. We use strategy=2 by default; the user should
consider trying as alternatives strategy=6 and strategy=1, though the best method will be
highly problem-dependent. Generally, the user should set the lower and upper bounds to to
exploit the full allowable numerical range, i.e., if a parameter is allowed to exhibit values in
the range [-1, 1] it is typically a good idea to pick the initial values from this range instead of
unnecessarily restricting diversity. Increasing the value for NP will mean greater likelihood of
finding the minimum, but run-time will be longer.

4. Application I: X-ray reflectometry

X-ray reflectometry (XRR) is a measurement method that uses the interference of X-rays (i.e.,
photons with a wavelength in the approximate range of 0.01 nm–10 nm) caused by changes
in a material’s electron density to characterize thin films or other layered structures at the
nanometer to micrometer scale. The data collected consists of pairs of incident/scattered
angle and scattered X-ray intensities, {(θk, Ik)}, typically over a range of about 5 degrees.

10 DEoptim: An R Package for Differential Evolution

Pt

Pt

d1

d2

SiO2

α1

α2

α3

Figure 4: Schematic description of two layers of Pt on a substrate of SiO2. A Parratt recursion
model representing this structure will be fit to the XRR measurements, with free parameters
including the thickness of the Pt layers (d1 and d1), and terms (ρ1, ρ2, and ρ3) describing the
roughness of the interfaces between layers.

Information regarding the density and thickness of each layer, and on the roughness of the
interface between layers and at the surface of the material is extracted by fitting a parametric
model to the measurements.

In the supplementary information we provide the full description of a model function used
by DEoptim to obtain physically realistic parameter estimates from the data shown in Figure
3. This model is based on the Parratt recursion (Parratt 1954), which, as Als-Nielsen and
McMorrow (2001) describe in detail, is often used to model each of the layers in multilayered
materials. For the data here, the Parratt recursion is used to describe reflection and transmis-
sion of X-rays from two thin layers of Pt (with each layer having a possibly distinct thickness,
density, and roughness at the interface) atop an infinitely thick layer of SiO2. Figure 4 is a
schematic description of the model for this multilayered material.

The free parameters of the applied Parratt recursion model are the thicknesses d1 and d2 of
each Pt layer, the density σ1 and σ2 of each Pt layer, terms ρ1, ρ2 and ρ3 descriptive of the
roughness of the interfaces between layers and at the surface, a parameter b describing a linear
background, and a multiplicative scaling parameter m. The model function can be understood
qualitatively by considering the the case of a single layer on a substrate. In this case, the
position of the abrupt drop-off in scattered intensity after the initial plateau is determined by
the density of the layer. The period of the subsequent oscillation fringes is set by the thickness
of the layer, whereas the decay of the oscillations is a function of the roughness of the layer.
Because the amplitudes of reflected and transmitted waves interfere, this qualitative view
cannot be extended to multilayered systems and model fitting is a necessity.

The objective function R to minimize is formulated as the sum of the squared differences
between the log of the data and the log of the Parratt recursion model function. The surface of
objective function values in the 9-dimensional parameter space contains many local minima.
Discovery of parameter estimates that represent a qualitatively good fit requires a global

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 11

0.01 0.02 0.03 0.04 0.05 0.06 0.07

1e
+

02
1e

+
06

θ (radians)

In
te

ns
ity

 (
co

un
ts

)

data
optimized fit
fit at lower bound
fit at upper bound

Figure 5: XRR measurements (black) of Pt layers on SiO2 substrate with model fit (red).
For comparison, the model has also been evaluated at the lower and upper bounds on the
parameters used in the call to DEoptim (solid and dashed grey, respectively).

optimization algorithm such as DE. Treatment of global optimization problems such as these
have been successfully addressed for many years in the XRR community using DE as, e.g.,
Wormington, Panaccione, Matney, and Bowen (1999), Taylor, Wall, Loxley, Wormington,
and Lafford (2001), and Bowen and Tanner (2006) describe. Special purpose programs, e.g.,
the GenX program developed by Björck and Andersson (2007) and the MOTOFIT program
developed by Nelson (2006), have been implemented for XRR model fitting problems of this
sort.

The XRR measurements shown in Figure 3 are included in DEoptim as the dataset xrrData,
with the vector of data to be fit represented by the vector counts. We have encoded the
objective function R as the function rss. Using knowledge of the physical system underlying
the measurements in order to set plausible lower and upper bounds on the parameters to
optimize, and to set fixed values for beta, wavelength, and delta, the objective function is
minimized with the call

R> parrattFit <- DEoptim(lower = c(d_1 = 5.5e-10, d_2 = 1.5e-08,
+ rho_1 = 2.1e-10, rho_2 = 5.0e-12, rho_3 = 2.2e-10,
+ alpha_1 = 10, alpha_2 = 10, b = 40, m = .90e7),
+ upper = c(d_1 = 5.5e-09, d_2 = 1.5e-07,
+ rho_1 = 2.1e-09, rho_2 = 5.0e-11, rho_3 = 2.2e-09,
+ alpha_1 = 21.46, alpha_2 = 21.46, b = 55, m = 1.1e7),
+ fn = rss, theta_r = theta_r, delta = delta,
+ beta = beta, wavelength = wavelength, data = counts,
+ control = list(itermax = 1500, NP = 90))

Table 2 gives parameter estimates arrived at via the above call, along with the associated
lower and upper bounds. The resulting fit of the model to the data is shown in Figure 5. The
upper bound for the density of the Pt layers was set at 21.46 g·cm−3, the density of Pt in
bulk. The estimates for the densities (19.6 g·cm−3 and 20.9 g·cm−3) are slightly lower than
for the bulk material. The remaining parameter estimates are also plausible from physical

12 DEoptim: An R Package for Differential Evolution

d1 d2 ρ1 ρ2 ρ3 σ1 σ2 b m
/ nm / g·cm−3 / counts

lower 0.55 15.0 0.21 0.005 0.22 10.0 10.0 40.0 0.90e7
upper 5.50 150.0 2.10 0.050 2.20 22.0 22.0 55.0 1.20e7
bestmem 1.69 45.6 0.62 0.0053 0.69 20.0 21.0 48.0 1.1e7

Table 2: Parameter estimates (bestmem) and lower and upper bounds associated with the
call to DEoptim that results in the fit of Parratt recursion model to XRR data shown in
Figure 5. Parameters d1 and d2 represent the thickness of the Pt layers, parameters ρ1,
ρ2, ρ3 describe the roughness of the interfaces between layers, and parameters σ1 and σ2

represent the density of the Pt layers. Parameter b represents an additive background term,
and parameter m represents a multiplicative scaling factor for the intensity. Estimates are
reported to two significant figures, except for t1 and t2, which are reported to three.

first principles, though the evaluation of the ability of the model to describe the material
underlying the XRR measurements is beyond the scope of this paper. As shown in Figure
5, the model fit captures the qualitative features of the dataset well. The robustness of the
estimates has been validated via initialization of DE using a variety of starting populations;
the estimates presented in Table 2 reliably represent the best results obtained.

The function rss encoding the objective function can easily be customized to the dataset at
hand, allowing, for instance, inclusion of more or fewer free parameters. Note that in this
example, the population size, NP, was set to 90 since in practice it has been observed that
convergence to the global optimum is facilitated if NP is at least ten times the number of
parameters being optimized (Price et al. 2006). Determination of whether the best member
returned by DEoptim with this call represents a unique global minimum is beyond the scope
of this paper, but would be interesting to check for the purpose of developing a physical
interpretation of the model fit.

5. Application II: Log-returns of the Swiss Market Index

Volatility plays a central role in empirical finance and financial risk management. Research
on changing volatility (i.e., conditional variance) using time series models has been active
since the creation of the original ARCH (AutoRegressive Conditional Heteroscedasticity) and
GARCH (Generalized ARCH) models. Since then, GARCH type models grew rapidly into a
rich family of empirical models for volatility forecasting during the last twenty years. They
are now widespread and essential tools in financial econometrics.

In the GARCH(p, q) specification introduced by Bollerslev (1986), the conditional variance
at time t of the log-return yt (of a financial asset or a financial index), denoted by σ2

t , is
postulated to be a linear function of the squares of past q log-returns and past p conditional
variances. More precisely:

σ2
t
.= α0 +

q∑
i=1

αi y
2
t−i +

p∑
j=1

βjσ
2
t−1 , (2)

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 13

where the parameters α0 > 0, αi ≥ 0 (i = 1, . . . , q) and βj ≥ 0 (j = 1, . . . , p) in order to
ensure a positive conditional variance. In most empirical applications it turns out that the
simple specification p = q = 1 is able to reproduce the volatility dynamics of financial data.
This has led the GARCH(1,1) model to become the workhorse model by both academics and
practitioners.
Numerous extensions and refinements of the GARCH(1,1) model have been proposed to mimic
additional stylized facts observed in financial markets, such as nonlinearity, asymmetry, and
long memory properties in the volatility process; see Bollerslev, Chou, and Kroner (1992) and
Bollerslev, Engle, and Nelson (1994) for a review. Among them, the class of Markov-switching
GARCH (MSGARCH) has gained particular attention in recent years. In these models, the
parameters of the scedastic function (2) can change over time according to a latent (i.e.,
unobservable) variable taking values in the discrete space {1, . . . ,K} where K is an integer
defining the number of regimes or states. The interesting feature of these models lies in the
fact that they provide an explanation of the high persistence in volatility, i.e., nearly unit root
process for the conditional variance, observed with single-regime GARCH models (Lamoureux
and Lastrapes 1990). Furthermore, these models are apt to react quickly to changes in the
volatility level (unconditional volatility) which leads to significant improvements in volatility
forecasts as shown by Dueker (1997) or Klaassen (2002) for instance. These features make
the models attractive for various applications in financial modeling, such as risk management.
While MSGARCH models are attractive for the description of a variety of phenomena, we face
practical difficulties when attempting to fit their parameters to data. The maximization of
the likelihood function is a constrained optimization problem since some (or all) of the model
parameters must be positive to ensure a positive conditional variance. It is also common to
require that the covariance stationarity condition holds; this leads to additional non-linear
inequality constraints which render the optimization procedure cumbersome. Optimization
results are often sensitive to the choice of starting values. Finally, convergence is hard to
achieve if the true parameter values are close to the boundary of the parameter space and
if the underlying process is nearly non-stationary. For these reasons, a robust optimizer is
required. DE offers an adequate approach to finding the maximum likelihood parameter
estimates in this framework.
In order to illustrate the robustness of DEoptim compared to traditional estimation tech-
niques, we consider a two-state asymmetric MSGARCH model investigated in Ardia (2008,
chapter 7). The author illustrated the poor performance of traditional local optimizers when
estimating such sophisticated models. Only computationally demanding Markov chain Monte
Carlo techniques were able to provide meaningful results.
A two-state Markov-switching asymmetric GARCH(1,1) model with Student-t innovations
for the log-returns {yt} may be written as

yt = εt

√
ν−2
ν σ2

st,t t = 1, . . . , T ,

εt
i.i.d.∼ S(0, 1, ν) ,

σ2
i,t

.=

{
ω1 +

(
α+

1 1{yt−1≥0} + α−1 1{yt−1<0}
)
y2
t−1 + β1 σ

2
1,t−1 when st = 1

ω2 +
(
α+

2 1{yt−1≥0} + α−2 1{yt−1<0}
)
y2
t−1 + β2 σ

2
2,t−1 when st = 2 ,

(3)

where ωi > 0, α+
i , α

−
i , βi ≥ 0 (i = 1, 2) and ν > 2. The restriction on the degrees of freedom

14 DEoptim: An R Package for Differential Evolution

parameter ν ensures that the conditional variance σ2
i,t remains finite; the restrictions on the

GARCH parameters ωi, α+
i , α

−
i and βi guarantee its positivity. t is the time index and T

denotes the total number of observations. 1{·} denotes the indicator function which is equal
to one if the constraint holds and zero otherwise. The sequence {st} is assumed to be a
stationary, irreducible Markov process with discrete state space {1, 2} and transition matrix
P

.= [pij] where pij
.= P(st+1 = j | st = i) is the transition probability of moving from state

i to state j (i, j ∈ {1, 2}). Finally, S(0, 1, ν) denotes the standard Student-t density with
ν degrees of freedom and

√
(ν − 2)/ν is a scaling factor which ensures that the conditional

variance of yt is σ2
st,t.

Model specification (3) allows reproduction of the so-called volatility clustering observed in
financial returns, i.e., the fact that large changes tend to be followed by large changes (of either
sign) and small changes tend to be followed by small changes. Moreover, it allows for sudden
changes in the unconditional variance of the process; in the ith regime, the unconditional
variance is

σ̄2
i
.=

ωi

1− (α+
i + α−i)/2− βi

, (4)

provided that (α+
i +α−i)/2 + βi < 1 (i.e., the process is covariance stationary); see Bollerslev

(1986, page 310). Finally, it allows determination of whether or not an asymmetric response is
present (i.e., α−i > α+

i for at least one i) and is different between the regimes (i.e., α−i 6= α−i′).
This asymmetric response, referred to as the leverage effect in the financial literature, reflects
the fact that the volatility tends to rise more in response to bad news (i.e., yt−1 < 0) than to
good news (i.e., yt−1 ≥ 0).

In order to write the likelihood function corresponding to model (3), we define the vector of
log-returns y .= (y1, . . . , yT)′ and we regroup the eleven model parameters into the vector

θ
.= (ω1, ω2, α

+
1 , α

+
2 , α

−
1 , α

−
2 , β1, β2, p11, p22, ν)′ .

The conditional density of yt in state st = i given θ and the information set It−1
.= {yt−1, . . . , y1}

is

f(yt | st = i, θ, It−1) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
π(ν − 2)σ2

i,t

[
1 +

y2
t

σ2
i,t(ν − 2)

](ν+1)/2

,

where Γ(·) denotes the Gamma function. This stems from the fact that in state i, yt follows
a Student-t distribution with mean zero, variance σ2

i,t and degrees of freedom ν.

By integrating out the state variable st, we can obtain the density of yt given θ and It−1 only.
The (discrete) integration is obtained as follows:

f(yt | θ, It−1) =
2∑
i=1

2∑
j=1

pij ηi,t−1 f(yt | st = j, θ, It−1) , (5)

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 15

where ηi,t−1
.= P(st−1 = i | θ, It−1) is the filtered probability of state i at time t− 1 and where

we recall that pij denotes the transition probability of moving from state i to state j. The
filtered probabilities {ηi,t; i = 1, 2; t = 1, . . . , T} are obtained by an iterative algorithm similar
in spirit to a Kalman filter; we refer the reader to Hamilton (1989) and Hamilton (1994,
chapter 22) for details.
Finally, the log-likelihood function corresponding to model specification (3) is obtained from (5)
as follows:

L(θ | y) .=
T∑
t=2

ln f(yt | θ, It−1) . (6)

The maximum likelihood estimator θ̂ is obtained by maximizing (6) (or minimizing its negative
value).
To illustrate the utility of DEoptim, we fit the MSGARCH model (3) to daily log-returns of
the Swiss Market Index (SMI), displayed in Figure 6. The sample period is from November
12, 1990, to October 20, 2000, for a total of 2500 observations and the log-returns are ex-
pressed in percent. The data set was downloaded from http://www.finance.yahoo.com and
is available when DEoptim is loaded using the command data(SMI). Note that the two-regime
specification is used for illustrative purposes only; checking for possible model misspecification
is beyond the scope of the present paper.
In addition to the positivity constraints on the model parameters, we require covariance
stationarity to hold in the two regimes, i.e., (α+

i + α−i)/2 + βi < 1 for i = 1, 2 and that the
unconditional variance (4) in state 1 is smaller than in state 2, i.e., σ̄2

1 < σ̄2
2. We also require

the transition probabilities p11 and p22 of the state variable to lie within the [0, 1] interval.
The constraints on the domain are set using the arguments lower and upper of DEoptim,
while the covariance stationarity and unconditional variance constraints are tested within the
objective function which then returns a very large value (in our case 1e10) if not satisfied. In
the DE optimization, we set the control parameters of DEoptim to itermax = 500 and NP
= 110. Note that the objective function (6) is implemented in C to speed up the optimization
procedure. We refer the reader to the Appendix for details on the R implementation.
For comparison, the objective function (6) is also optimized using various unconstrained
and constrained optimization routines available in R. More specifically, we use the function
optim with methods "Nelder-Mead" (unconstrained optimization), "BFGS" (unconstrained),
"CG" (unconstrained), "SANN" (unconstrained), "L-BFGS-B" (box constrained), the function
nlminb (box constrained). More details on the underlying algorithms for these methods can
be found in the optim and nlminb manuals. We also consider optimization routines which
handle more complicated constraints such as constrOptim, constrOptim.nl of the package
alabama (Varadhan 2010) and solnp of the package Rsolnp (Ghalanos and Theussl 2010).
The former relies on an adaptive barrier algorithm and handles linear inequality constraints.
The two latter belong to the class of indirect solvers and implement the augmented Lagrange
multiplier methods, in which linear and non-linear equality and inequality constraints are
allowed; see Ye (1987) for details. For all methods we use ten times the default values of the
control parameters related to the maximum number of iterations and function evaluations.
For optim with method "SANN" we set itermax = 1e5. For unconstrained methods, the
constraints on the model parameters were tested within the function which returns 1e10 is not

http://www.finance.yahoo.com

16 DEoptim: An R Package for Differential Evolution

−5

0

5

Date (year)

Lo
g−

re
tu

rn
s

(in
 p

er
ce

nt
)

1992 1994 1996 1998 2000

Figure 6: SMI daily log-returns.

satisfied, as for DEoptim. For functions which handled inequality constraints, we implement
the constraints explicitly in the inputs of the functions; see the Appendix for an example with
solnp.

We run the estimation 50 times for all optimization routines (including DEoptim) and use
random starting values in the feasible parameter set when needed (using the same random
starting values for the various methods). Boxplots of the negative log-likelihood value (NLL)
at optimum for convergent estimations is displayed in the upper part of Figure 7. The
lower part reports the percentage of non-convergent optimizations (defined as NaN output or
non-convergent flag, usually convergence > 0). We notice that the unconstrained and box
constrained methods 1-6 perform poorly compared to the optimizers which can handle more
complicated constraints. In particular, we note that nlminb does not converge over the 50
runs. Overall, the methods solnp and constrOptim are the best performers in terms of lowest
NLL values reached over the 50 runs. However, we notice that for both the convergence is not
achieved in about 20% of the time. DEoptim compares favorably with the two best competitors
and is more stable over the runs. It does not however reach the lowest value obtained by solnp
after 500 iterations.

Figure 8 displays the boxplots of the NLL values obtained over the 50 runs of DEoptim with
control parameter itermax = 500 on the left-hand side and itermax = 1000 on the right-
hand side. The horizontal red lines reports the lowest values obtained by solnp. We notice
that increasing the number of generated population in DEoptim leads to the convergence

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 17

toward the global optimum.

Figure 9 displays the boxplots of the parameter values obtained with the 50 runs of DEoptim
together with the parameter values corresponding to its best run (in blue squares), i.e., the
run leading to the minimum NLL, and the parameter values corresponding to the best run of
solnp (in red dots). The parameters at the global optimum (NLL = 3350.6979) obtained by
solnp and DEoptim (after a longer run with itermax = 2500) are ω̂1 = 0.2062, ω̂2 = 0.0930,
α̂+

1 = 0.0000, α̂+
2 = 0.0043, α̂−1 = 0.2123, α̂−2 = 0.1566, β̂1 = 0.5295, β̂2 = 0.8717, p̂11 =

0.9981, p̂22 = 0.9969 and ν̂ = 9.2480. The parameter estimates clearly indicate two different
regimes for the conditional variance process. More precisely, the values of ω̂i and β̂i are far
apart between the regimes. We note the presence of leverage effect in both regimes (i.e.,
α̂+
i < α̂−i for i = 1, 2), with similar levels. The estimated transition probabilities p̂11 and p̂22

very close to one indicate infrequent mixing between states. Finally, the estimated degrees of
freedom parameter suggests heavy tails for the conditional distribution of the log-returns.

Finally, Figure 10 displays the estimated filtered probabilities of the second state (high uncon-
ditional volatility state), {P(st = 2 | θ̂, It); t = 1, . . . , T}, implied by the best model parameters
of solnp (in red solid line) together with the log-returns (in small circles). In addition, we
report in dashed blue lines, the 50% area of the paths obtained over the 50 runs of DEoptim.
The parameters obtained with DEoptim and solnp lead to a clear separation of regimes in the
filtering probabilities. The beginning of year 1991 is associated with the high unconditional
volatility state. Then, from the second half of 1991 to 1997, the returns are clearly associated
with the low unconditional volatility regime, with the exception of 1994. From 1997 to 2000,
the model remains in the high unconditional volatility regime with a transition during the
second semester 2000 to the low unconditional volatility state.

6. Summary and conclusions

Differential Evolution is a heuristic evolutionary method for global optimization that is effec-
tive on many problems of interest in science and technology. By implementing the package
DEoptim we have made this algorithm possible to easily apply in the R language and envi-
ronment. As Section 3 details, we have also made available many variations on the classical
DE strategy. These variations as well as the classical strategy are due to Price, Storn and
Lampinen, and we have referred the interested reader to their textbook (Price et al. 2006) on
DE for details.

We have described herein the use of the package for fitting the Parratt recursion models for
X-ray reflectometry and an MSGARCH model for the log-returns of the Swiss Market Index.
These case studies showcase the power of the DE algorithm underlying DEoptim. We hope
that readers will find the package to be a valuable tool for optimization. If you use R or
DEoptim, please cite the software in publications.

Current work in extension of the package includes the addition of a framework for adaptive
Differential Evolution (Zhang and Sanderson 2009). Future work will also be directed at
parallization of the implementation. The DEoptim project hosted on R-forge (https://
r-forge.r-project.org/projects/deoptim/) links to development versions of the package.

https://r-forge.r-project.org/projects/deoptim/
https://r-forge.r-project.org/projects/deoptim/

18 DEoptim: An R Package for Differential Evolution

Computational details

The results in this paper were obtained using R 2.10.0 (R Development Core Team 2009) with
the packages DEoptim version 2.0-4 (Ardia and Mullen 2009). Computations were performed
on a Genuine Intel dual core CPU T2400 1.83Ghz processor and on a quad core Intel Xeon
Processor E5410.

DEoptim relies on repeated evaluation of the objective function in order to move the popula-
tion toward a global minimum. Users interested in making DEoptim run as fast as possible
should ensure that evaluation of the objective function is as efficient as possible. Using pure
R code, this may often be accomplished using vectorization. Writing parts of the objective
function in a lower-level language like C or Fortran may also increase speed.

Acknowledgements

Many DEoptim users have sent us comments that helped improve the package. We would like
to thank in particular Hans Werner Borchers, Eugene Demidenko, Tarmo Leinonen, Soren
Macbeth, Dorothée Pages, Brian Peterson, Enrico Schumann, and Joshua Ulrich. We would
also like to thank Juan David Ospina Arango, who inspired us to present the Rastrigin function
as an example.

We thank the two reviewers of the paper for insightful suggestions.

Finally, we would like to thank Rainer Storn for his advocacy of DE and making his code
publicly available, which was a great help to us in the implementation of DEoptim.

Disclaimer

The views expressed in this chapter are the sole responsibility of the authors and do not
necessarily reflect those of NIST and aeris CAPITAL AG.

Certain commercial equipment, instruments, or materials are identified in this paper to foster
understanding. Such identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

References

Als-Nielsen J, McMorrow D (2001). Elements of Modern X-ray Physics. Wiley.

Ardia D (2008). Financial Risk Management with Bayesian Estimation of GARCH
Models: Theory and Applications, volume 612 of Lecture Notes in Economics and
Mathematical Systems. Springer-Verlag, Berlin, Germany. ISBN 978-3-540-78656-
6. doi:10.1007/978-3-540-78657-3. URL http://www.springer.com/economics/
econometrics/book/978-3-540-78656-6.

Ardia D, Boudt K, Carl P, Mullen K, Peterson B (????). “Differential Evolution (DEoptim)
for Non-Convex Portfolio Optimization.”

http://dx.doi.org/10.1007/978-3-540-78657-3
http://www.springer.com/economics/econometrics/book/978-3-540-78656-6
http://www.springer.com/economics/econometrics/book/978-3-540-78656-6

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 19

Ardia D, Mullen K (2009). DEoptim: Differential Evolution Optimization in R. R package
version 2.00-04, URL http://CRAN.R-project.org/package=DEoptim.

Björck M, Andersson G (2007). “GenX: An Extensible X-ray Reflectivity Refinement Program
Utilizing Differential Evolution.” Journal of Applied Crystallography, 40(6), 1174–1178.

Bollerslev T (1986). “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of
Econometrics, 31(3), 307–327. doi:10.1016/0304-4076(86)90063-1.

Bollerslev T, Chou RY, Kroner K (1992). “ARCH Modeling in Finance: A Review
of the Theory and Empirical Evidence.” Journal of Econometrics, 52(1–2), 5–59.
doi:10.1016/0304-4076(92)90064-X.

Bollerslev T, Engle RF, Nelson DB (1994). “ARCH Models.” In Handbook of Econometrics,
chapter 49, pp. 2959–3038. North Holland.

Börner J, Higgins SI, Kantelhardt J, Scheiter S (2007). “Rainfall or Price Variabil-
ity: What Determines Rangeland Management Decisions? A Simulation-Optimization
Approach to South African Savanas.” Agricultural Economics, 37(2–3), 189–200.
doi:10.1111/j.1574-0862.2007.00265.x.

Bowen DK, Tanner BK (2006). X-Ray Metrology in Semiconductor Manufacturing. CRC.

Byrd RH, Lu P, Nocedal J, Zhu CY (1995). “A Limited Memory Algorithm for Bound
Constrained Optimization.” SIAM Journal on Scientific Computing, 16(6), 1190–1208.

Cao R, Vilar JM, Devia A (2009). “Modelling Consumer Credit Risk via Survival Analysis.”
Statistics & Operations Research Transactions, 33(1), 3–30.

Dueker MJ (1997). “Markov Switching in GARCH Processes and Mean-Reverting Stock-
Market Volatility.” Journal of Business & Economic Statistics, 15(1), 26–34.

Ghalanos A, Theussl S (2010). Rsolnp: General Non-linear Optimization Using Augmented
Lagrange Multiplier Method. R package version 1.0-4.

Hamilton JD (1989). “A New Approach to the Economic Analysis of Nonstationary Time
Series and the Business Cycle.” Econometrica, 57(2), 357–384.

Hamilton JD (1994). Time Series Analysis. First edition. Princeton University Press, Prince-
ton, USA. ISBN 0691042896.

Higgins SI, Kantelhardt J, Scheiter S, Boerner J (2007). “Sustainable Management of
Extensively Managed Savanna Rangelands.” Ecological Economics, 62(1), 102–114.
doi:10.1016/j.ecolecon.2006.05.019.

Holland JH (1975). Adaptation in Natural Artificial Systems. University of Michigan Press,
Ann Arbor.

Klaassen F (2002). “Improving GARCH Volatility Forecasts with Regime-Switching GARCH.”
Empirical Economics, 27(2), 363–394. doi:10.1007/s001810100100.

Lamoureux CG, Lastrapes WD (1990). “Persistence in Variance, Structural Change, and the
GARCH Model.” Journal of Business & Economic Statistics, 8(2), 225–243.

http://CRAN.R-project.org/package=DEoptim
http://dx.doi.org/10.1016/0304-4076(86)90063-1
http://dx.doi.org/10.1016/0304-4076(92)90064-X
http://dx.doi.org/10.1111/j.1574-0862.2007.00265.x
http://dx.doi.org/10.1016/j.ecolecon.2006.05.019
http://dx.doi.org/10.1007/s001810100100

20 DEoptim: An R Package for Differential Evolution

Mitchell M (1998). An Introduction to Genetic Algorithms. The MIT Press.

Nelson A (2006). “Co-refinement of multiple-contrast neutron/X-ray reflectiv-
ity data using MOTOFIT.” Journal of Applied Crystallography, 39(2), 273–
276. doi:10.1107/S0021889806005073. URL http://dx.doi.org/10.1107/
S0021889806005073.

Opsina Arango JD (2009). Estimacion de un Modelo de Difusion con Saltos con Distribu-
cion de Error Generalizada Asimetrica usando Algorithmos Evolutivos. Master’s thesis,
Universidad Nacional de Colombia.

Parratt LG (1954). “Surface Studies of Solids by Total Reflection of X-Rays.” Physical Review,
95(2), 359–369.

Price KV, Storn RM, Lampinen JA (2006). Differential Evolution: A Practical Approach to
Global Optimization. Springer-Verlag, Berlin, Germany. ISBN 3540209506.

R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org.

Storn R, Price K (1997). “Differential Evolution – A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces.” Journal of Global Optimization, 11(4), 341–359.
ISSN 0925-5001.

Taylor M, Wall J, Loxley N, Wormington M, Lafford T (2001). “High resolution X-ray Diffrac-
tion Using a High Brilliance Source, with Rapid Data Analysis by Auto-fitting.” Materials
Science and Engineering B, 80(1-3), 95 – 98. ISSN 0921-5107.

Varadhan R (2010). alabama: Constrained Nonlinear Optimization. R Package version
2010.7-1.

Wormington M, Panaccione C, Matney KM, Bowen DK (1999). “Characterization of Struc-
tures from X-ray Scattering Data Using Genetic Algorithms.” Philosophical Transactions of
the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
357(1761), 2827–2848. doi:10.1098/rsta.1999.0469.

Ye Y (1987). Interior Algorithms for Linear, Quadratic, and Linearly Constrained Non-Linear
Programming. Ph.D. thesis, Department of ESS, Stanford University.

Zhang J, Sanderson AC (2009). “JADE: adaptive Differential Evolution
with optional external archive.” Trans. Evol. Comp, 13(5), 945–958.
doi:http://dx.doi.org/10.1109/TEVC.2009.2014613.

http://dx.doi.org/10.1107/S0021889806005073
http://dx.doi.org/10.1107/S0021889806005073
http://dx.doi.org/10.1107/S0021889806005073
http://www.R-project.org
http://www.R-project.org
http://dx.doi.org/10.1098/rsta.1999.0469
http://dx.doi.org/http://dx.doi.org/10.1109/TEVC.2009.2014613

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 21

1 2 3 4 5 6 7 8 9 10

3350

3400

3450

3500

3550

3600

3650

3700

NLL values

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Percentage of non−convergent runs

Figure 7: Top: Boxplots of the 50 negative values of the log-likelihood function (NLL) at opti-
mum θ̂ obtained by the various optimizers. (1) function optim with method "Nelder-Mead",
(2) method "BFGS", (3) method "CG", (4) method "L-BFGS-B", (5) method "SANN" with
control parameter itermax = 1e5, (6) function nlminb, (7) function constrOptim, (8) func-
tion constrOptim.nl of the package alabama, (9) function solnp of the package Rsolnp,
(10) function DEoptim with control parameters NP = 110 and itermax = 500. Starting val-
ues are generated randomly in the feasible parameter set. Lower boundaries were set to 0.0
(2.0 for ν) and upper boundaries to 1.0 (50 for ν). Bottom: Percentage of non-convergent
runs of the different optimization methods (either NaN output or convergence flag indicating
non-convergence).

22 DEoptim: An R Package for Differential Evolution

itermax = 500 itermax = 1000

3350

3355

3360

3365

3370

Figure 8: Top: Boxplots of the 50 negative values of the log-likelihood function (NLL) at
optimum θ̂ obtained by DEoptim with control parameters NP = 110 and itermax = 500 (left)
and itermax = 1000 (right). The horizontal red line reports the lowest NLL value obtained
by solnp over the 50 runs.

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 23

ω1 ω2 α1

+
α2

+
α1

−
α2

−
β1 β2 p11 p22

0.0

0.2

0.4

0.6

0.8

1.0

6

8

10

12

ν

Figure 9: Boxplot of the parameters obtained over the 50 runs of DEoptim, together with the
parameters of its best run (blue squares), i.e., the run leading to the lowest NLL, and the
parameters corresponding to the best run of solnp (red dots).

24 DEoptim: An R Package for Differential Evolution

0.0

0.2

0.4

0.6

0.8

1.0

Date (year)

Pr
(s

t =
 2

 |
θ^ , I

t)

1992 1994 1996 1998 2000

Figure 10: Estimated filtered probabilities of the second state, {P(st = 2 | θ̂, It); t = 1, . . . , T},
implied by the best model parameters obtained by solnp (in red) over the 50 runs. The
dashed blue lines delimit the 50% area of the paths obtained over the 50 runs of DEoptim.
The small black circles depict the log-returns.

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 25

A. Implementation of the MSGARCH model

We described below the major steps for implementing and estimating in R the Markov-
switching asymmetric GARCH(1,1) model described in Section 5.

First, we define the function NLL which computes the negative value of the log-likelihood func-
tion (6). This function will be minimized in order to find the maximum likelihood estimator θ̂.
The function NLL has input parameters theta, a 11-dim vector containing the MSGARCH(1,1)
parameters, y the (T × 1) vector of log-returns y .= (y1, . . . , yT)′ and checkConstraints, a
boolean indicating if the constraints should be checked within the function (which is TRUE
by default). The function outputs 1e10 when the constraints are not fulfilled. In the imple-
mentation below, two constraints must be fulfilled: i) the covariance-stationarity condition
of the conditional variance is satisfied in the two states; ii) the unconditional variance in
state 1 is smaller than in state 2. The constraints on the lower and upper bounds on the
parameters will be checked by the optimization function itself (below we consider DEoptim
and solnp which handle this case). For optimization functions which cannot handle box
constraints (e.g., optim with method Nelder-Mead), lower and upper bounds should also be
checked within the function NLL. If the two constraints are satisfied, the function NLL calls a
C routine which computes the negative log-likelihood value. The C implementation is needed
for speed purposes, since for each input theta, two conditional variance processes need to be
computed as well as the filtering and updating steps of a Kalman-like algorithm (Hamilton
1989) . Since DEoptim evaluates the objective function for a large number of theta values,
this C implementation is recommended. We do not document the C implementation here and
refer the reader to file MSGJR.C attached for details.

>'NLL' <- function(theta, y, checkConstraints = TRUE) {

+ constraintsOK <- TRUE

+ nll <- 1e10

+ if (isTRUE(checkConstraints)) {

+ ## covariance stationarity for each regime

+ csc1 <- (theta[3] + theta[5]) / 2 + theta[7]

+ csc2 <- (theta[4] + theta[6]) / 2 + theta[8]

+ ## unconditional variance for each regime

+ uv1 <- theta[1] / (1 - csc1)

+ uv2 <- theta[2] / (1 - csc2)

+ ## check if the constraints on the model parameters are fulfilled

+ constraintsOK <- (csc1 < 1.0) & (csc2 < 1.0) & (uv1 < uv2)

+ }

+ if (isTRUE(constraintsOK)) {

+ ## if constrained fulfilled, call the C code and

+ ## estimate the neg-log-lik value

+ n <- length(y)

+ ## call underlying C function

+ outC <- .C(name = 'MSGJRS',
+ theta = as.double(theta),

+ y = as.double(y),

+ n = as.integer(n),

+ nll = as.double(0),

26 DEoptim: An R Package for Differential Evolution

+ f = vector('double', 2 * (n - 1)),

+ u = vector('double', 2 * (n - 1)))

+ ## get updated nll value

+ nll <- outC$nll

+ }

+ ## robustify is nan output

+ if (is.nan(nll)) {

+ nll <- 1e10

+ }

+ ## output the value

+ return(nll)

+}

Second, we load the package, the data set and the complied C function MSGJR.C (under Linux),
set the lower and upper boundaries, set the seed and minimize the value of the function NLL
using the function DEoptim. For the control parameters of DEoptim, we set itermax = 500
and NP = 110, giving more robustness to the evolutionary process. The number of members
in the population is set to 10 times the number of parameters. The result of the optimization
is stored in the object outDE of the class DEoptim. Note that in this case, the function NLL
checks if the constraints are fulfilled and outputs 1e10 if not.

> ## load package

> library("DEoptim")

> ## load dataset

> data(SMI)

> ## load compiled C code (under Linux)

> dyn.load("MSGJR.so")

> ## or under Windows dyn.load("MSGJR.dll")

> ## set lower and upper boundaries

> LB <- c(rep(0.0, 10), 2)

> UB <- c(rep(1.0, 10), 50)

> ## set seed

> set.seed(1111)

> ## run DE optimization

> outDE <- DEoptim(NLL, lower = LB, upper = UB, y = y,

+ DEoptim.control(itermax = 500, NP = 110))

Iteration: 1 bestvalit: 3457.906087 bestmemit: 0.310703 0.293937 0.608078
0.188130 0.227485 0.350169 0.145067 0.623558 0.405052 0.313200 8.941630
Iteration: 2 bestvalit: 3457.906087 bestmemit: 0.310703 0.293937 0.608078
0.188130 0.227485 0.350169 0.145067 0.623558 0.405052 0.313200 8.941630
...
Iteration: 500 bestvalit: 3354.081090 bestmemit: 0.225172 0.170456 0.007156
0.035552 0.247096 0.233424 0.504850 0.782076 0.996851 0.996322 9.472251

After 500 iterations, the best population member is

Katharine Mullen, David Ardia, David Gil, Donald Windover, James Cline 27

par1 par2 par3 par4 par5 par6 par7 par8 par9 par10 par11
0.2252 0.1705 0.0072 0.0356 0.2471 0.2334 0.5048 0.7821 0.9969 0.9963 9.4723

for a negative log-likelihood value of 3354.08.

An alternative optimization approach considered in Section 5 is solnp available in the package
Rsolnp (Ghalanos and Theussl 2010). In this case the constraints are explicitely given using
the input function ineqfun (which must have the same inputs than NLL, even if not all are
needed). We therefore set the input checkConstraints to FALSE in NLL. Moreover, we require
a starting value of the optimization. The result of the optimization is stored in the object
outSOLNP of the class Rsolnp.

> ## load package

> library("Rsolnp")

> ## define lower and upper bounds

> LB <- c(rep(0.0, 10), 2)

> UB <- c(rep(1.0, 10), 50)

> ## define the inequality constraints in a function

> ineqfun <- function(theta, y, checkConstraints) {

+ csc1 <- 0.5 * (theta[3] + theta[5]) + theta[7]

+ csc2 <- 0.5 * (theta[4] + theta[6]) + theta[8]

+ uv1 <- theta[1] / (1 - csc1)

+ uv2 <- theta[2] / (1 - csc2)

+ uv <- uv2 - uv1

+ h <- c(csc1, csc2, uv)

+ return(h)

>}

> ineqLB <- c(0, 0, 0)

> ineqUB <- c(1, 1, 1e5)

> ## define starting value in the feasible set

> thetaStart <- c(0.1, 0.2, 0.01, 0.01, 0.15, 0.15, 0.5, 0.6, 0.5, 0.5, 20)

> outSOLNP <- solnp(pars = thetaStart, fun = NLL, ineqfun = ineqfun,

+ ineqLB = ineqLB, ineqUB = ineqUB, LB = LB, UB = UB,

+ y = y, checkConstraints = FALSE)

Iter: 1 fn: 3374.4122 Pars: 0.0975794 0.0001383 0.0315380 0.0262597
0.3136239 0.0505717 0.7515778 0.9615000 0.5577655 0.3701970 9.0604452
Iter: 2 fn: 3374.3081 Pars: 0.1008872 0.0001061 0.0310303 0.0264484
0.3099624 0.0534042 0.7483836 0.9600354 0.5494617 0.3508670 9.1424336
Iter: 3 fn: 3374.3080 Pars: 0.1009166 0.0001053 0.0310270 0.0264577
0.3098355 0.0534334 0.7483817 0.9600163 0.5493104 0.3503742 9.1394165
solnp--> Completed in 3 iterations

The optimum is obtained at

0.10092 0.00011 0.03103 0.02646 0.30984 0.05343 0.74838 0.96002 0.54931 0.35037 9.13942

28 DEoptim: An R Package for Differential Evolution

for a negative log-likelihood value of 3374.31. We note that in this case, the procedure gets
stuck to a local minimum since the value is higher than the one obtained by DEoptim. Using
the alternative starting value c(0.01, 0.02, 0.01, 0.01, 0.15, 0.15, 0.8, 0.8, 0.9,
0.9, 10) leads to the global minimum at 3350.698. Several starting values must therefore be
used to diminish the risk of convergence to local minima.

Affiliation:

Katharine Mullen
Ceramics Division, National Institute of Standards and Technology (NIST)
100 Bureau Drive, MS 8520, Gaithersburg, MD, 20899, USA
E-mail: Katharine.Mullen@nist.gov

David Ardia
aeris CAPITAL AG Switzerland
URL: http://perso.unifr.ch/david.ardia/

mailto:Katharine.Mullen@nist.gov
http://perso.unifr.ch/david.ardia/

