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On the existence of most-preferred alternatives
in complete lattices

Nikolai S. Kukushkin∗

December 16, 2010

Abstract

If a preference ordering on a complete lattice is quasisupermodular, or just satisfies
a rather weak analog of the condition, then it admits a maximizer on every subcomplete
sublattice if and only if it admits a maximizer on every subcomplete subchain. JEL
Classification Numbers: C 61; D 11.

Key words: lattice optimization; quasisupermodularity

1 Introduction

The familiar observation that an upper semicontinuous function attains its maximum on
every compact set resolves the question of the existence of optimal choices in many situations,
but not in all. First, sometimes preferences have to be described by discontinuous relations,
e.g., lexicographic combinations of several scalar characteristics. Second, there may be no
“natural” topology hence the question of whether the preferences are (semi)continuous may
become intolerably vague.

This paper follows the approach of Milgrom and Shannon (1994): we assume an internal
order structure on the set of alternatives; in most cases, it is a complete lattice. All assump-
tions about the preferences are formulated in terms of the order rather than topology. The
existence of optimal choices is obtained under much milder conditions than in Theorem A4
of Milgrom and Shannon (1994). In particular, we prove that a quasisupermodular function
defined on a complete lattice attains its maximum on every subcomplete sublattice if and
only if it attains its maximum on every subcomplete subchain.

In Section 2, basic definitions and some useful results are reproduced. Section 3 starts
with a very weak analog of Milgrom and Shannon’s (1994) “upper semicontinuity on chains.”
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Theorem 2 shows it to be necessary and sufficient for the existence of optima in every
subcomplete subchain of a chain-complete poset; there is an obvious, if vague, similarity
with Theorem 4.1 of Smith (1974). Then we partition the quasisupermodularity property
into four mutually independent “quarters,” first introduced in Kukushkin (2008b, 2009).
Theorems 5 and 6 show that two of these conditions are sufficient to reduce the problem of
the existence of optima on a lattice to that on subchains; Example 7 shows that the other
two are insufficient for that even if imposed together. In Section 4, two stronger conditions
on subchains (though still weaker than upper semicontinuity) are introduced; when coupled
with either of the remaining quarters of quasisupermodularity, they ensure the existence of
optimal choices although this time without any claim to necessity. A few concluding remarks
are in Section 5.

2 Basic notions

For every set A, we denote BA the set of all nonempty subsets of A. Given a binary relation
Â on A and X ∈ BA, we denote

M(X,Â) := {x ∈ X | @ y ∈ X [y Â x]}, (1)

the set of maximizers of Â on X. The interpretation is that an agent has (strict) preferences
described by relation Â over the whole A, but may be faced with the necessity to choose
from a subset X ∈ BA, in which case any point from M(X,Â) will do. For such choice to
be possible, we need M(X,Â) 6= ∅, at least, for “plausible” X.

Typically, A is a partially ordered set (a poset) with the order >; most often, a lattice.
The exact definitions are assumed commonly known.

Theorem A (Zorn’s Lemma). If a poset X has the property that every chain Y ∈ BX

has an upper bound in X, then M(X, >) 6= ∅.

A poset A is chain-complete if sup X and inf X exist for every chain X ∈ BA. If A is a
chain-complete poset and X ∈ BA, we call X a chain-subcomplete subset if sup Y and inf Y
belong to X for every chain Y ∈ BX ; if X itself is a chain, we call it a subcomplete subchain.
The set of all (nonempty) subcomplete subchains of a chain-complete poset A is denoted CA.

A lattice is complete if the greatest lower bound or meet,
∧

X, and the least upper bound
or join,

∨
X, exist for every X ∈ BA. If A is a complete lattice, X ∈ BA is a subcomplete

sublattice of A if
∧

Y and
∨

Y belong to X for all Y ∈ BX . Given a complete lattice A, the
set of all (nonempty) subcomplete sublattices is denoted LA.

Theorem B (Veinott, 1989). A lattice A is complete if and only if it is chain-complete
as a poset. Then a sublattice of A is subcomplete if and only if it is chain-subcomplete.
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The preference relation Â is always assumed to be an ordering, i.e., irreflexive, transitive,
and negatively transitive, z 6Â y 6Â x ⇒ z 6Â x. Then the “non-strict preference” relation º
defined by y º x ­ x 6Â y is reflexive, transitive, and total. Orderings can also be defined
in terms of representations in chains: Â is an ordering if and only if there is a chain C and
a mapping u : A → C such that

y Â x ⇐⇒ u(y) > u(x) (2)

for all x, y ∈ A. Then y º x ⇐⇒ u(y) ≥ u(x), and M(X,Â) = Argmaxx∈X u(x) for every
X ∈ BA.

The most usual assumption in game theory is that the preferences of a player are described
by a utility function u : A → R. In a purely ordinal framework, it is natural to replace R
with an arbitrary chain. Here we take an intermediate position: Henceforth, we consider
preference orderings allowing representation (2) where C has the property that every V ∈ BC
contains a countable cofinal subset, i.e., a countable subset W ⊆ V such that for every v ∈ V
there is w ∈ W such that w ≥ v. Obviously, R possesses the property; a bit less obvious
example is Rm with a lexicographic order.

Given an ordering Â on A and X ∈ BA, we call a sequence 〈xk〉k∈N in X maximizing in
X if (1) xk+1 Â xk for all k; (2) for every x ∈ X \M(X,Â), there is k ∈ N such that xk Â x.

Proposition 1. For every ordering Â on A, the following statements are equivalent:

1. Â admits a representation (2) such that every nonempty subset of C contains a count-
able cofinal subset;

2. for every X ∈ BA, either M(X,Â) 6= ∅, or there exists a maximizing sequence in X.

Proof. For completeness, we provide a straightforward proof. Let Statement 1 hold, X ∈ BA,
and M(X,Â) = ∅. We denote V := u(X) and W = {wk}k∈N a countable cofinal subset of V .
Then we recursively construct an infinite increasing sequence 〈vk〉k∈N in V with the property
that vk > wh whenever k > h in this way. First, v0 := w0. Having vk defined, we set
m := min{h ∈ N | h > k & wh > vk} and vk+1 := wm; the assumption that M(X,Â) = ∅,
hence max V does not exist, ensures that the process never stops. For each k ∈ N, we pick
xk ∈ X for which u(xk) = vk. It is easily checked that the sequence 〈xk〉k∈N is maximizing
in X.

Conversely, if Statement 2 holds, we start with an arbitrary representation u : A → C
and set Z := u(A); then u : A → Z is still a representation of Â in the sense of (2). Let
V ∈ BZ ; we define X := u−1(V ). If M(X,Â) 6= ∅, then u(M(X,Â)) is a singleton cofinal
subset of V . Otherwise, there is a maximizing sequence 〈xk〉k∈N in X. Denoting wk := u(xk),
we immediately see that W := {wk}k∈N is a countable cofinal subset of V .

We call a preference ordering regular, just for want of a better term, if it satisfies the
conditions listed in Proposition 1.
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Given an ordering Â on a poset A, we consider four auxiliary orders (irreflexive and
transitive relations):

y Â
> x ­ [y Â x & y > x];

y Â
< x ­ [y Â x & y < x];

y º
> x ­ [y º x & y > x];

y º
< x ­ [y º x & y < x].

3 Main characterization theorems

We call an ordering Â on a chain-complete poset A mono-ω-transitive if both following
conditions hold:

∀k ∈ N [xk+1 Â xk & xk+1 > xk] ⇒ sup{xk}k Â x0; (3a)

∀k ∈ N [xk+1 Â xk & xk+1 < xk] ⇒ inf{xk}k Â x0. (3b)

Clearly, both conditions (3) hold if Â is upper semicontinuous, i.e., has open lower contours,
or just satisfies Milgrom and Shannon’s (1994) “upper semicontinuity on chains” condition.
On the other hand, a mono-ω-transitive ordering need not be upper semicontinuous on chains
(e.g., the lexicographic order on Rm).

Remark. There is an obvious similarity with the (topological) notion of “ω-transitivity”
(Gillies, 1959; Smith, 1974; Kukushkin, 2008a).

Theorem 2. A regular ordering Â on a chain-complete poset A has the property that
M(X,Â) 6= ∅ for every X ∈ CA if and only if Â is mono-ω-transitive.

Proof. The sufficiency proof is deferred to after Theorem 5. Assuming (3a) violated, we
define X := {xk}k∈N ∪ {supk xk}; clearly, X ∈ CA. The assumption x0 º supk xk implies
x1 Â supk xk since Â is an ordering; therefore, M(X,Â) = ∅. A violation of (3b) is treated
dually.

Milgrom and Shannon’s (1994) definition of a quasisupermodular function on a lattice
remains meaningful for a mapping to an arbitrary chain:

∀x, y ∈ A
[
u(x) > u(y ∧ x) ⇒ u(y ∨ x) > u(y)

]
; (4a)

∀x, y ∈ A
[
u(y) > u(y ∨ x) ⇒ u(y ∧ x) > u(x)

]
. (4b)
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We partition quasisupermodularity (4) into four independent conditions, cf. Eq. (1) and (2)
of Li Calzi and Veinott (1992):

∀x, y ∈ A
[
u(y) ∨ u(x) > u(y ∧ x) ⇒ u(y ∨ x) > u(y) ∧ u(x)

]
; (5a)

∀x, y ∈ A
[
u(y) ∧ u(x) > u(y ∧ x) ⇒ u(y ∨ x) > u(y) ∨ u(x)

]
; (5b)

∀x, y ∈ A
[
u(y) ∧ u(x) > u(y ∨ x) ⇒ u(y ∧ x) > u(y) ∨ u(x)

]
; (5c)

∀x, y ∈ A
[
u(y) ∨ u(x) > u(y ∨ x) ⇒ u(y ∧ x) > u(y) ∧ u(x)

]
. (5d)

Proposition 3. Let A be a lattice and C be a chain. Then a mapping u : A → C satisfies
condition (4a) if and only if it satisfies (5a) and (5b); u satisfies (4b) if and only if it
satisfies (5c) and (5d).

Proof. The necessity is obvious. To prove the sufficiency, we suppose the contrary. Let
u(x) > u(y ∧ x), but u(y) ≥ u(y ∨ x); then u(y ∨ x) > u(x) by (5a), hence u(y) > u(y ∧ x)
by transitivity, which contradicts (5b). The proof of the equivalence (4b) ≡ [(5c) & (5d)] is
dual.

Remark. When x and y are comparable in the basic order, each condition (5) holds trivially.

Example 4. Let A := {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2; we consider four mappings A → R
depicted in these matrices (the axes are directed upwards and rightwards):

a.

[
0 0
1 2

]
b.

[
2 2
0 1

]
c.

[
1 0
2 2

]
d.

[
2 1
0 0

]
.

The mapping depicted in the matrix “a” satisfies all conditions (5) except (5a), and similarly
with other matrices.

Remark. Agliardi (2000) called a function u on a lattice A pseudosupermodular if it satisfies
(5a) and (5c).

Clearly, the conditions (5), as well as (4), are invariant to monotone transformations
of u, i.e., they only depend on Â. In particular, if an ordering Â admits a representation
satisfying (5a), then every representation of Â satisfies (5a). Henceforth, we just say “Â
satisfies (5a).”

Theorem 5. Let A be a complete lattice and Â be a regular ordering on A satisfying (5a).
Then Â has the property that M(X,Â) 6= ∅ for every X ∈ LA if and only if it is mono-
ω-transitive.

Proof. The necessity follows from Theorem 2 because CA ⊆ LA by Theorem B above. We
start the sufficiency proof with a couple of auxiliary statements.

Claim 5.1. If X is a sublattice of A, x ∈ M(X, Â> ), and X 3 y Â x, then y ∧ x º y.
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Proof. If y Â y ∧ x, then condition (5a) would imply that u(y ∨ x) > u(y) ∧ u(x) = u(x),
which contradicts the assumption x ∈ M(X, Â> ) since X is a sublattice.

Claim 5.2. If x ∈ X ∈ LA, then either x ∈ M(X, Â> ) or there is y ∈ M(X, Â> ) such that
y Â

> x.

Proof. First, we set X∗ := {y ∈ X | y Â
> x}. It is enough to show that M(X∗, Â> ) 6= ∅ if

X∗ 6= ∅. We do that invoking Zorn’s Lemma (Theorem A above). Let Y ⊆ X∗ be a chain
w.r.t. Â

> , i.e., Y is a chain such that y Â x whenever y, x ∈ Y and y > x. If there exists
max Y , it is an upper bound of Y . Otherwise, let 〈yk〉k∈N be a maximizing sequence in Y
and y+ := supk yk; y+ exists and belongs to X because the latter is subcomplete. For every
x ∈ Y , there is m ∈ N such that ym Â

> x. Since y+ = supk≥m yk, we have y+ Â
> ym Â

> x by
(3a). Therefore, y+ ∈ X∗ and is an upper bound of Y in X∗.

Let X ∈ LA and 〈yh〉h∈N be a maximizing sequence in X. (If there is no such sequence,
then M(X,Â) 6= ∅, and we are already home.) We recursively define a sequence 〈xk〉k∈N
such that xk ∈ M(X, Â> ), xk+1 Â

< xk, and xk+1 Â yk+1 for all k. First, x0 :=
∨

X.

Having xk ∈ M(X, Â> ) defined, we first check whether xk ∈ M(X,Â); if the answer is
“yes,” we are home again. Otherwise, we pick h ∈ N such that yh Â xk and h > k +1, hence
yh Â yk+1. Denoting x∗ := yh ∧ xk, we have x∗ º yh Â xk by Claim 5.1, hence x∗ Â

< xk.
Now we define Y := X ∩ [x∗, xk] and, applying Claim 5.2, obtain xk+1 ∈ M(Y, Â> ) such that
xk+1 º x∗.

Let us show that xk+1 ∈ M(X, Â> ). Otherwise, there is y ∈ X such that y Â
> xk+1, hence

y Â xk. We define y∗ := y ∧ xk and apply Claim 5.1, obtaining y∗ º y Â xk+1. Besides,
xk ≥ y∗ ≥ xk+1 ≥ x∗, hence y∗ ∈ Y and y∗ Â

> xk+1, which contradicts xk+1 ∈ M(Y, Â> ).
Thus, xk+1 ∈ M(X, Â> ) indeed.

Finally, we set x+ := infk xk. By (3b), we have x+ Â xk for each k ∈ N. Since xk+1 Â yk+1

for each k, we see that x+ ∈ M(X,Â).

Corollary. A quasisupermodular function on a complete lattice attains its maximum if it
attains a maximum on every subcomplete chain.

Proof of sufficiency in Theorem 2. Let X ∈ CA. The restriction of u to X satisfies (5a),
hence the sufficiency part of Theorem 5 applies.

Theorem 6. Let A be a complete lattice and Â be a regular ordering on A satisfying (5d).
Then Â has the property that M(X,Â) 6= ∅ for every X ∈ LA if and only if it is mono-
ω-transitive.

The proof is dual to that of Theorem 5.

Remark. The very possibility to replace one condition with another shows that there is
no clear prospect for a necessity result, in the style of Theorem 2 above or Theorem 4.1 of
Smith (1974), about a complete lattice A and X ∈ LA.
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Conditions (5a) or (5d) cannot be replaced with (5b) or (5c), or even with their conjunc-
tion.

Example 7. Let A :=
({n/(n+1)}n∈N∪{1}

)×({0}∪{1/(n+1)}n∈N
) ⊂ R2 and u : A → R

be as follows: u(1, x2) = u(x1, 0) := 0; u(n1/(n1 + 1), 1/(n2 + 1)) := min{n1, n2}. It is
easy to check that A with the order induced from R2 is a complete lattice and u is mono-
ω-transitive; by Theorem 2, M(X,Â) 6= ∅ for every X ∈ CA. Moreover, u satisfies (5b) and
(5c). Nonetheless, supx∈A u(x) = +∞, hence there is no maximizer.

4 Further results

We introduce a pair of conditions stronger than (3), but still weaker than upper semiconti-
nuity on chains.

∀X ∈ CA ∀Y ∈ BX

[∀y, x ∈ Y [y > x ⇒ y º x] ⇒ ∀x ∈ Y [sup Y º x]
]
; (6a)

∀X ∈ CA ∀Y ∈ BX

[∀y, x ∈ Y [x > y ⇒ y º x] ⇒ ∀x ∈ Y [inf Y º x]
]
. (6b)

It is easy to see that (6a)⇒(3a) while (6b)⇒(3b).

Theorem 8. Let A be a complete lattice and Â be a regular ordering on A satisfying (3b),
(6a), and (5c). Then M(A,Â) 6= ∅.
Proof. The basic construction is virtually the same as in the proof of Theorem 5. Again, we
start with a couple of auxiliary statements.

Claim 8.1. If X is a sublattice of A, x ∈ M(X, º> ), and X 3 y Â x, then y ∧ x Â y.

Proof. The maximality of x implies that u(y) ∧ u(x) = u(x) > u(y ∨ x), hence u(y ∧ x) >
u(x) ∨ u(y) = u(y) by (5c).

Claim 8.2. If x ∈ X ∈ LA, then either x ∈ M(X, º> ) or there is y ∈ M(X, º> ) such that
y º

> x.

Proof. Setting X∗ := {y ∈ X | y º
> x}, we show that M(X∗, º> ) 6= ∅, invoking Zorn’s

Lemma (Theorem A above). If Y ⊆ X∗ is a chain w.r.t. º
> , then the “left hand side” of (6a)

applies to Y , hence sup Y is an upper bound of Y (w.r.t. º
> ) in X∗.

Let 〈yh〉h∈N be a maximizing sequence in A. Exactly in the same way as in the proof of
Theorem 5, we recursively construct a sequence 〈xk〉k∈N such that xk ∈ M(A, º> ), xk+1 Â

< xk,
and xk+1 Â yk+1 for all k. We again set x0 :=

∨
A and then rely on Claims 8.1 and 8.2

instead of Claims 5.1 and 5.2. Finally, (3b) gives us infk xk ∈ M(A,Â).

Theorem 9. Let A be a complete lattice and Â be a regular ordering on A satisfying (3a),
(6b), and (5b). Then M(A,Â) 6= ∅.
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The proof is dual to that of Theorem 8.

Remark. In Example 7, conditions (6a) and (6b) are violated by chains {n1/(n1+1)}n1≥n2×
{1/(n2 + 1)} (n2 ∈ N) and {n1/(n1 + 1)} × {1/(n2 + 1)}n2≥n1 (n1 ∈ N), respectively.

An ordering Â on a lattice A is weakly quasisupermodular (Shannon, 1995) if

∀x, y ∈ A
[
x Â y ∨ x ⇒ y ∧ x º y

]
. (7)

It is easy to see that (7) is “self-dual” and follows from either condition (4). Each ordering
in Example 4 is weakly quasisupermodular, hence (7) does not imply any condition (5).
Similarly, none of conditions (5) implies (7) by itself.

Example 10. Let A := {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2; we consider two functions A → R
depicted in these matrices (the axes are directed upwards and rightwards):

a.

[
1 2
0 3

]
b.

[
3 0
2 1

]
.

Neither function represents a weakly quasisupermodular ordering; that depicted in the matrix
“a” satisfies (5a) and (5c); that depicted in the matrix “b,” (5b) and (5d).

Proposition 11. An ordering Â on a lattice A satisfies (7) if it satisfies (5a) or (5c), and
satisfies (5b) or (5d).

Proof. Suppose the contrary: x Â y ∨ x, but y Â y ∧ x. Then y ∨ x º y by (5a) or (5c),
hence x Â y ∧ x by transitivity, which is incompatible with either (5b) or (5d).

Theorem 12. Let A be a complete lattice and Â be a regular ordering on A satisfying (3b),
(6a), and (7). Then M(A,Â) 6= ∅.
Proof. The basic scheme remains the same.

Claim 12.1. If X is a sublattice of A, x ∈ M(X, º> ), and X 3 y Â x, then y ∧ x º y.

Proof. The maximality of x implies that x Â y ∨ x, hence y ∧ x º y by (7).

Claim 12.2. If x ∈ X ∈ LA, then either x ∈ M(X, º> ) or there is y ∈ M(X, º> ) such that
y º

> x.

The proof is exactly the same as in Claim 8.2; it only needs (6a).

The end of the proof is again standard. Given a maximizing sequence 〈yh〉h∈N in A, we,
relying on Claims 12.1 and 12.2, recursively construct a sequence 〈xk〉k∈N such that xk ∈
M(A, º> ), xk+1 Â

< xk, and xk+1 Â yk+1 for all k. Again, (3b) gives us infk xk ∈ M(A,Â).
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Theorem 13. Let A be a complete lattice and Â be a regular ordering on A satisfying (3a),
(6b), and (7). Then M(A,Â) 6= ∅.

The proof is dual to that of Theorem 8.

Remark. The preference ordering in Example 7 is weakly quasisupermodular; therefore,
both conditions (6) cannot be replaced with (3).

5 Concluding remarks

5.1. We may call a lattice A relatively complete if meet
∧

X exists for all X ∈ BA that are
bounded below, while join

∨
X exists for all X ∈ BA that are bounded above. Rm with

the natural order is a relatively complete lattice which is not complete. If A is a relatively
complete lattice, X ∈ BA is a subcomplete sublattice of A if

∧
Y and

∨
Y exist in A and

belong to X for all Y ∈ BX . Theorems 5 and 6 admit straightforward generalizations
to relatively complete lattices A. Theorem 2 admits a similar generalization to “relatively
chain-complete posets.”

5.2. Conditions (5) play crucial roles in the study of monotone comparative statics with
constant feasible sets (Kukushkin, 2008b, 2009). If the feasible set is varied while the pref-
erence ordering remains fixed, then those roles are taken by conditions (4) as well as strict
and weak quasisupermodularity (Li Calzi and Veinott, 1992; Milgrom and Shannon, 1994;
Shannon, 1995).

5.3. An ordering that is not regular in our sense could hardly be relevant to any decision
problem. Still, one may wonder whether the same results could be obtained without the
assumption. The answer is negative, even concerning Theorem 2.

Example 14. Let A′ be a well-ordered uncountable set. We define A∗ := {a ∈ A′ | {x ∈
A′ | x < a} is countable} and A := A∗ ∪ {sup A∗}. It is easy to see that A is a complete
chain and sup A∗ /∈ A∗. Then we define a preference ordering (actually, a linear order) on A:

y Â x ­
[
y ∈ A∗ & [y > x or x = sup A∗]

]
.

Condition (3b) holds by default; (3a), because sup{xk}k ∈ A∗ whenever {xk}k ⊆ A∗. How-
ever, M(A,Â) = ∅.

Sufficient conditions for the existence of optima without the regularity assumptions can
be obtained (Kukushkin, 2008b) by supplementing any one of conditions (5) with “chain-
related” conditions in the style of (6); the proofs require transfinite recursion. An analog of
Theorem 2 can be obtained, but there is no clear prospect for a necessity result concerning
optimization on subcomplete sublattices, like in Theorems 5 and 6.
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5.4. Similarly to Theorem 4 of Kukushkin (2008a), Theorem 2 remains valid if Â is a
semiorder (e.g., ε-improvement). In principle, the sufficiency part can be extended far beyond
semiorders, cf. Theorem 1 of Kukushkin (2008a), but the notion of a maximizing sequence has
to be modified considerably. The necessity does not hold even for interval orders (Kukushkin,
2008a, Example 3). As to Theorems 5 and 6, it is unclear whether they remain valid even
for semiorders.
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