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The Optimal Design of Rewards in Contests�

Todd R. Kaplany and David Wettsteinz

December 5, 2010

Abstract

Using contests to generate innovation has and is widely used. Such

contests often involve o¤ering a prize that depends upon the accom-

plishment (e¤ort). Using an all-pay auction as a model of a contest, we

determine the optimal reward for inducing innovation. In a symmet-

ric environment, we �nd that the reward should be set to c(x)=c0(x)

where c is the cost of producing an innovation of level x: In an asym-

metric environment with two �rms, we �nd that it is optimal to set

di¤erent rewards for each �rm. There are cases where this can be

replicated by a single reward that depends upon accomplishments of

both contestants.
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1 Introduction

Using contests to generate innovation has been around for hundreds of years.

In the 1700s, the Longitude prize of £ 20,000 o¤ered by the British Parliament

induced John Harrison to invent the marine chronometer (see Sobel, 1996).

More recently, the Ansari X-prize was a ten-million-dollar competition cre-

ated to jump-start the space tourism industry by attracting the attention of

the most talented entrepreneurs and rocket experts in the world.1 Such R&D

contests are an example of a competition in which all contestants, including

those that do not win any reward (prize), incur costs as a result of their

e¤orts but only the winner gets the reward. In such contests, the designer

may often o¤er smaller prizes for lesser achievements. In fact, while the full

longitude prize was given for determining longitude within 30 nautical miles,

£ 10,000 was given for a method for determining longitude within 60 miles,

and £ 15,000 for a method within 40 nautical miles. Another example with

smaller prizes is where Net�ix o¤ers a prize for improving their movie rec-

ommendation system.2 This prize increases if the improvement is more than

10%.3

We model a contest as an all-pay auction. When the prize depends upon

the result, this is equivalent to having a bid-dependent reward. Such environ-

1See www.xprize.org for details.
2See www.net�ixprize.com.
3Other interesting examples include the Methuselah Mouse Prize (see www.mprize.org)

for creating a long-lived mouse. If the prize money is z, the oldest previous mouse lived
x years and someone creates a mouse that lives y > x years, then they would receive
z � y=(x + y). There was also the Schneider trophy (see Eves, 2001) created to inspire
aviation design. There was a competition between the fastest seaplanes held 11 times
between 1913 and 1931. Each victory won a smaller prize and the full prize of 70,000 Franc
prize would be given if the same club won three times in a row. When this happened by
an English group (won by a forerunner to the Spit�re), the competition ceased.
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ments have been analyzed before both positively, studying the equilibrium

behavior properties and normatively, determining what are optimal contest

designs. Environments with complete information have been analyzed from

a positive point of view in Kaplan et al. (2003) and Siegel (2009, 2010),

the normative point of view was analyzed in Gale and Che (2003). Envi-

ronments with incomplete information were studied from a positive point of

view in Kaplan et al. (2002), the normative point of view was investigated in

Moldovanu and Sela (2002) and Chen et al. (2008). Similar research was car-

ried out for rent-seeking contests, Nitzan (1994) provided a positive analysis,

Franke et al. (2009) provided a normative analysis. Konrad (2009) provides

an excellent survey of equilibrium and optimal design in contests.

In this paper, we provide further normative analysis for environments

with complete information. We look at the optimal rewards under complete

information when the designer wishes to maximize the highest e¤ort of the

participants. We determine the optimal bid-dependent reward structure as

a function of costs in both symmetric and asymmetric environments.

Interestingly, the solution under symmetry, setting reward equal to the

cost of e¤ort divided by the marginal cost of e¤ort, is quite elegant and

produces equivalent behavior to that in Che and Gale (2003) where the �rms

compete by choosing both e¤ort and price. In our paper, the solution under

asymmetry also involves setting the reward equal to the cost of e¤ort divided

by the marginal cost of e¤ort. One may consider this problematic in the sense

that the designer must know which �rm is which and bias the contest in favor

one of the �rms. We address this issue by describing settings where this �rm

speci�c reward structure can be replaced by a reward (to the winner) that
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depends upon both of the �rms�e¤orts. In our setting, we consider a richer

class of contests than considered by Che and Gale (2003) and as a result,

in some cases, the optimal contest generates higher surplus for the designer

than their solution of handicapping one �rm.

While in this paper we phrase the problem as designing a research contest,

our analysis is applicable to many other scenarios that have such a winner-

take-all form. For instance, many races o¤er prizes to the winners that

depend upon time. Also, in a contest to receive a promotion at a company,

the �rm may set the salary increase with the promotion conditional on the

worker�s performance. This paper would suggest how to structure these

rewards.

Our paper is structured as follows. In Section 2, we introduce the general

environment with the optimal rewards for symmetric case. Afterwards, in

Section 3, we allow for asymmetry between �rms. Finally, in Section 4, we

present the concluding remarks.

2 Symmetric environment.

2.1 Model

A buyer (designer) desires an innovation. There are n �rms that have poten-

tial to innovate. Firms can create an innovation of value x (to the designer)

for a cost c(x). This value x includes external bene�ts generated by the
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contest.4 We assume c(0) � 0; c0 > 0; c00 > 0, and is common knowledge.5

Furthermore, we assume there exists an x such that x > c(x). The buyer can

design a contest where the reward depends upon the bid of the �rm. He does

so by choosing a reward function R(x) that depends upon the winning bid (it

could be constant). We assume that R must be continuous with R(0) � 0.6

The buyer cares only about the best innovation (maximum x) and how much

he pays out in rewards, namely he wishes to maximize:

E[maxfx1; :::; xng �R(maxfx1; :::; xng)]:

At this point we would like to further motivate our study of contests

rather than other mechanisms: One alternative could be to run a Vickrey

auction where the �rms compete by o¤ering potential innovations and then

the winning �rm would create the innovation promised. Another could mak-

ing a take-it-or-leave-it-o¤er to a single �rm. Our reasons are as follows.

First, in practice, contests are commonly used in a plethora of economic ac-

tivities, while Scotchmer (2004, chapter 2) points out that to her knowledge

(and ours) that a Vickrey auction has never been used in procuring an in-

novation. Second, as mentioned in Scotchmer (2004, chapter 2), without a

contest, there is a hold-up type problem when the ex-post payment depends

4We assume that the designer has the potential to capture all the external bene�ts
accrued to the winner with a contract signed before the contest (such as with the show
Pop Idol).

5While we assume the designer knows c, we also assume that c is not veri�able in court.
6The assumption of continuity of R is natural, since even a discontinuous reward func-

tion is equivalent to a continuous reward function with a minimum amount of noise.
Consider the case that each xi has a noise " that a¤ects the �nal result. (For instance,
there could be a slight wind in the 100 m dash.) In this case, the actual reward would beeR(xi) � E[R(xi + ")] and is continuous.
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upon the �rm delivering a future innovation of a speci�c quality. Third, as

mentioned above, there may be external bene�ts (publicity) for both the de-

signer and winning �rm for running a contest. Thus, studying the optimal

contest is a worthwhile endeavor.

2.2 Analysis

As long as there exists an x such that R(x) > c(x), there is no pure strategy

equilibrium.7 In such a case, however, there will be a symmetric mixed-

strategy equilibrium where each �rm chooses x according to a cumulative,

atomless (except possibly at 0) distribution F .

Proposition 1 In the optimal design, the buyer sets R(x) = c(x)=c0(x).

This generates a surplus of

n

n� 1

Z c0�1(1)

0

(xc0(x)� c(x)) c
00(x)

c0(x)
n�2
n�1
dx:

Proof. The designer�s expected pro�ts can be rewritten as

Z
(x�R(x)) dF n:

Similar to Kaplan et al. (2003), the �rms will have zero expected pro�ts.

Since it is a mixed strategy equilibrium, the �rms must be indi¤erent over

all x in the support of F . Hence,

F (x)n�1R(x)� c(x) = 0:
7When this condition does not hold, the pure-strategy equilibrium has no �rm entering

and the buyer earning zero surplus.
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By integrating we get:

Z
F (x)n�1R(x)dF �

Z
c(x)dF = 0 =)Z

R(x)dF n = n

Z
c(x)dF:

Substituting this into the designer�s objective yields

Z
xdF n � n

Z
c(x)dF =

n

Z �
xF n�1 � c(x)

�
dF:

We can now do a change of variables so that we are integrating over F (rather

than x).

n

Z 1

0

�
x(F )F n�1 � c(x(F ))

�
dF:

Now we can independently choose our x(F ) to maximize the integrand. Thus,

we get F n�1 = c0(x(F )) or F (x)n�1 = c0(x): From the zero pro�t equation of

the �rm, F (x)n�1R(x)� c(x) = 0, the optimal reward is R(x) = c(x)=c0(x):

The expression for the surplus is generated by substitution.

2.3 Comparison to Che and Gale (2003).

In Che and Gale (2003), a buyer also wishes to acquire an innovation that

can be of varying quality. There, the buyer designs a competition where �rms

expend e¤ort to innovate where a higher e¤ort results in a higher quality of

innovation. After innovating each �rm speci�es a price to the buyer. The

buyer then chooses the �rm o¤ering the highest surplus (quality minus price).
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The winning �rm receives payment while all �rms bear the cost of their sunk

e¤ort.

In the simplest version of the Che-Gale model, each �rm i chooses e¤ort

xi, surplus si and price pi to solve maxxi;si;pi �(si)pi � c(xi) s.t. xi � pi =

si (where � is the probability that the other �rms choose a surplus lower

than one�s own). Substituting the constraint into the maximand, we get

�(xi� pi)pi� c(xi). The �rm will optimize over the choices of x and p which

implies (from the FOCs) �0(si)pi = �(si) and �0(si)pi = c0(xi): Together,

these imply �(si) = c0(xi). The zero pro�t condition of the �rm implies that

�(si)pi = c(xi): Thus, pi = c(xi)=c
0(xi): The behavior induced and payo¤s

are identical to our solution.

Intuitively, this works out to be the same since the �rms in the Che and

Gale model optimize over e¤ort and price given a speci�c level of surplus

o¤ered. In our model, the designer optimizes the trade-o¤ between value of

the e¤ort (to the designer) and its cost (to the �rm) for a given probability

of winning (note an e¤ort is worthless to the designer if it is not the highest).

For the symmetric environment, each mechanism has its own bene�ts.

The Che and Gale mechanism has the advantage that the designer does not

need to know the cost function beforehand which our mechanism requires

for determining the rewards. The Che and Gale mechanism has the disad-

vantage that o¤ equilibrium, the buyer may have to purchase the inferior

innovation since it o¤ers him a lower price. This could be politically di¢ cult

and precludes the possibility of renegotiation on price.
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2.4 Examples

Remark 1 The optimal reward function may assume may forms: increas-

ing, decreasing, have both increasing and decreasing parts, or be constant.

The remark is shown through a series of examples.

Example 1 Strictly increasing reward function: n = 2; c(x) = xa where

x > 1.

For such a cost, the optimal reward is R(x) = c(x)
c0(x) =

x�

�x��1 =
x
�
. This

is strictly increasing in x. In equilibrium, the �rms choose e¤ort by using a

cumulative distribution function F (x) = c0(x) = �x��1.

Example 2 Strictly decreasing reward function: n = 2; c(x) = 1
1�x � x.

The optimal reward is R(x) = c(x)
c0(x) = x + 1

2x
� 3

2(2�x) which is strictly

decreasing and positive for 0 � x < 1.

In equilibrium, the �rms choose e¤ort by using a cumulative distribution

function F (x) = c0(x) = 1
(1�x)2 � 1. Thus, each �rm uses a mixed strategy

on [0; 0:2929]. See Figure 1.
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Example 3: Increasing and decreasing optimal reward.

In equilibrium, the �rms choose e¤ort by using a cumulative distribution

function F (x) = c0(x) = 6x5+2x
8

on [0; 1].

Example 4 Constant reward: n = 2; c(x) = ex=2:

The optimal reward is R(x) = c(x)
c0(x) = 2: In equilibrium, the �rms choose

e¤ort by using a cumulative distribution function F (x) = c0(x) = 1
2
ex=2 on

[0; 1:39]. Notice that there is an atom of 1=2 at zero. If one �rm makes an

" e¤ort, it has a 1=2 chance of winning a reward of 2 and it costs the �rm

1. Also note that we implicitly assume that a �rm can stay out and not pay

c(0).

Remark 2 The optimal R(x) is constant if and only if there is a �xed cost

and c(x) = e�x+� where � > 0; � < ln 1
�
and R(x) = 1

�
:

Proof. Since R(x) = c(x)
c0(x) ; if R(x) is constant and equal to r, we have

c0(x)
c(x)

= 1
r
: Integration yields ln c(x) = 1

r
x+k or c(x) = e

1
r
x+k. Since F (x)n�1 =

c0(x) = 1
r
e
1
r
x+k; we have F (0) > 0. Also, we must have 1

r
ek < 1, so k < ln r:

Remark 3 Multiplying the costs by a constant does not e¤ect the optimal

R(x).

One may intuitively think that doubling costs would entail an increase of

the optimal rewards; however, since R(x) = c(x)
c0(x) , there is no change. This is

due to the result that if cost is doubled, then it is optimal to have F doubled

(a decrease in the e¤ort). In order to induce this, R(x) should stay the same.
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3 Asymmetric Environment.

Now assume that there are two �rms that di¤er by their cost functions c1(x),

c2(x) where c1(x) � c2(x): For now, assume that the designer can make a

separate reward o¤er to either �rm: R1(x) and R2(x): Assume that the buyer

chooses rewards such that the equilibrium has both �rms making a positive

e¤ort.

Under these assumptions, again there must be a mixed-strategy equilib-

rium which we denote by F1(x) and F2(x).

Lemma 1 In the optimal design, �rms make zero pro�ts.

Proof. The proof is by contradiction. Let us say that the two reward

functions R1 and R2 are optimal and induce behaviour F1 and F2: Assume

that the equilibrium is such that R1(x)F2(x)� c1(x) = 0 and R2(x)F1(x)�

c2(x) = �: (Note that in equilibrium at least one must make zero pro�ts.)

Create an bR2(x) as follows: bR2(x) = R2(x) � �
F1
. This bR2 is less costly

and induces the same equilibrium distribution functions. Hence, there is a

contradiction to the initial assumption that R1 and R2 are optimal for the

designer.

When pro�ts are zero the total social welfare coincides with the objective

of the designer. Let us look at the case were there are cost functions c1(x)

and c2(x): The social welfare isZ
xdF1F2 �

Z
c1(x)dF1 �

Z
c2(x)dF2 =Z

(xF2 � c1(x))dF1 +
Z
(xF1 � c2(x))dF2

12



The designer�s problem is then

max
F1;F2

Z
(xF2 � c1(x))dF1 +

Z
(xF1 � c2(x))dF2

s:t: the supports of F1 and F2 coincide.

Proposition 2 If c0�11 (1) = c0�12 (1) and c01(0) = c02(0), then optimal design

has the buyer set Ri(x) = ci(x)=c0i(x).

Proof. Let us do a change of variables to choose x(F1) and F2(F1). Now

the maximization problem becomes

max
x(F1);F2(F1)

Z
(x(F1)F2(F1)� c1(x(F1)) + [x(F1)F1 � c2(x(F1))]F 02(F1)) dF1:

Choosing x() pointwise leads to the following FOC:

F2(F1)� c01(x(F1)) + [F1 � c02(x(F1))]F 02(F1) = 0:

Choosing F 02(F1) pointwise leads to the second FOC:

�
Z F1

0

x( eF1)d eF1 + x(F1)F1 � c2(x(F1)) = 0
Note that in order to do this last step, we have to use integration by

parts to rewrite the integral
R
x(F1)F2(F1)dF1 as

R F1
0
x( eF1)d eF1F2(F1)���1

0
�R R F1

0
x( eF1)d eF1 � F 02(F1)dF1.
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Let us now write the second FOC by writing F in terms of x:

Z x

0

F1(x)dx� xF1(x) + xF1(x)� c2(x) = 0Z x

0

F1(x)dx� c2(x) = 0

F1(x) = c02(x)

Substituting this into the �rst FOC yields F2(x) = c01(x). Using the

indi¤erence conditions of the �rms yields the optimal reward functions. The

conditions c0�11 (1) = c0�12 (1) and c01(0) = c02(0) ensures that the supports

coincide.

Example 5 c1(x) = xa

a
; c2(x) =

xb

b
(where a; b > 1). We have R1(x1) = x1

a

and R2(x2) = x2
b
where F1(x1) = xb�11 and F2(x2) = xa�12 :

Notice that such a reward structure requires that the designer not only

knows which �rm has which cost function, but is also able to openly dis-

criminate against one of the �rms. Such favoritism could be problematic

politically. It would be much easier and more elegant if there could be a

single reward function. We, hence, proceed to try and construct a reward

function that depends not only on one�s own e¤ort but also on that of the

other �rm and which in expectation replicates, in equilibrium, the two sepa-

rate reward functions.

Proposition 3 The optimal design can sometimes be implemented by a sin-

gle reward function that depends upon both e¤orts.

Proof. We wish to create a reward function R(xh; xl) This reward

function represents the reward paid to the �rm with the highest e¤ort and
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depends upon both the high and low e¤ort levels xh and xl. The expectation

of this reward function should yield the individual expected reward functions,

namely, R xh
0
R(xh; xl)F

0
2(xl)dxl

F2(xh)
= R1(xh);R xh

0
R(xh; xl)F

0
1(xl)dxl

F1(xh)
= R2(xh):

Rewriting yields

Z xh

0

R(xh; xl)F
0
2(xl)dxl = R1(xh)F2(xh);Z xh

0

R(xh; xl)F
0
1(xl)dxl = R2(xh)F1(xh):

Substituting the functions used in our example yield

Z xh

0

R(xh; xl)x
a�2
l dxl =

1

a(a� 1)x
a
h;Z xh

0

R(xh; xl)x
b�2
l dxl =

1

b(b� 1)x
b
h:

The solution to these two equations is R(xh; xl) = 1
a+b�1x

ab
a+b�1
h x

1� ab
a+b�1

l :

Note that for the example in the above proof the exponent on xh is always

positive and the exponent on xl is always less than 1 and could be negative.

We can also compute the expected pro�t for the above example which isR 1
0
(xc01(x)� c1(x))c002(x)dx+

R 1
0
(xc02(x)� c2(x))c001(x)dx =

1� 1
a
� 1

b
+ 1

a+b�1 :
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3.1 Comparison to Che and Gale (2003).

Che and Gale allow the buyer to handicap the stronger �rm by limiting the

price the �rm can charge. Now the �rm�s problem ismaxxi;si;pi �i(si)pi�ci(xi)

s.t. xi � pi = si and pi � p�i . Without the constraint binding, as before

�i(si) = c0i(xi) and pi = ci(xi)=c
0
i(xi): Once the constraint binds, �i(si) =

(ui + ci(s+ p
�)) =p� where ui is the pro�t of �rm i: The buyer is able to choose

p� in order to limit the pro�t of this �rm. The pro�t is determined by the

maximum surplus the other �rm can o¤er which equals s�j = maxx x� cj(x):

If p�i is binding, then ui = p
�
i � ci(s�j + p�i ): If one wishes to set ui to zero, we

have p�i = ci(s
�
j + p

�
i )

Example 6 The Che and Gale (2003) mechanism when c1(x) = 2
3
x
3
2 ; c2(x) =

1
2
x2.

For the weak buyer pj = cj(xj)=c
0
j(xj) = 2xj=3: Since sj = xj � pj, we

have sj = xj=3. Since �j(si) = c0j(xi); we have �j(s) = (3 � s)1=2 : Likewise

for the strong buyer, when p� is not binding, we have �i(s) = 2s: Using the

probability of winning �i; we can determine the strategy Gi of each player:

G1(s) = (3 � s)1=2

G2(s) =

8<: 2 � s if s < p;
(s+p)2

2�p if s > p where p = 2�
p
3

3
:
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We can now compute the expected pro�t:

Z 1=3

0

s � d(G1 �G2) =
Z p

0

s � d(G1 � 2s) +
Z 1=3

p

s � d(G1 �
(s+ p)2

2 � p ) =Z p

0

3 (3)1=2 � s3=2ds+
Z 1=3

p

(3)1=2

2
s � d((s)1=2 � (s+ p)

2

p
) =�

173� 76
p
2 + 20

p
3 + 44

p
6
� 1

945
=

0:220041:

Using the mechanism in this paper, the expected pro�t is 1 � 1
a
� 1

b
+

1
a+b�1 =

7
30
= 0:23333; which is higher.

Note that this �nding does not contradict those in the Che and Gale

(2003), since our mechanism uses bid-dependent rewards which are not feasi-

ble in their environment and added �exibility is an advantage. Furthermore,

we avoid directly handicapping one of the �rms by using a combined reward

function. This allows the handicapping indirectly through the behaviour of

the other �rm that handicaps it.

4 Conclusion

We have examined the optimal design of rewards in a contest with complete

information. We �nd a simple rule for setting the optimal rewards in the

symmetric case. This allows the designer to simply choose the best design

and pay the winner according to the prespeci�ed reward. With asymmetry,

it is optimal to have di¤erent �rms receive di¤erent rewards. We show it

might be possible, for some environments, to replicate this with a common
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joint reward function that depends upon both e¤orts. This design method

yielded �better outcomes�then previously used mechanisms.

Further research is needed to examine the e¤ect of changing the number

of �rms. Several open issues remain for the asymmetric environment case:

What are general conditions under which it is possible to create a joint reward

function? What is the best design, when the optimal reward functions do

not share the same support? Finally, it is of interest to see what the optimal

reward function would be under additional constraints, for instance, if one

were limited to o¤ering the same reward to both �rms where this reward

could only depend upon the highest e¤ort.
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