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Stephan Schuster, Department of Economics, University of Surrey

December 12, 2010

Abstract

In this paper, a reinforcement learning version of the connections game
first analysed by Jackson and Wolinsky [25], is presented and compared
with benchmark results of fully informed and rational players. Using an
agent-based simulation approach, the main finding is that the pattern of
reinforcement learning process is similar, but does not fully converge to
the benchmark results. Before these optimal results can be discovered in
a learning process, agents often get locked in a state of random switching
or early lock-in.

1 Introduction

Networks are an important paradigm for modelling social and economic re-
lationships. Such relationships play a role, for example, in the transmission
of information, e.g. about job opportunities, the spread of diseases or similar
events that vary with the underlying interaction structure of groups or societies.

A characteristic feature of economic network analysis has been the strategic
perspective, i.e. how networks form and are sustained. Usually some direct or
indirect costs are involved in establishing and maintaining these relationships.
Strategic network formation can be modelled as a game in which players decide
to link or not to link to each other, depending on some value function of the
network and an allocation rule that distributes the value among the players.
The question of interest is what equilibria can develop, what stable states the
process can converge to, and how this compares to the social optimal network
that maximises the benefit of the group as a whole.

In this paper, a stylized game of communication network formation is treated.
Communication networks model relationships among individuals which exhibit
some benefit to the members of the network. One can think of contact networks
among persons through which valuable information is exchanged. The value a
participant experiences depends on the number of other persons he is linked to;
the more persons there are in the network, the higher its value to the individ-
ual. In its simple form the utility of an individual is a linear function of the size
of other players in the network. A more realistic form assumes decay in value
the more distant the source of information is. Establishing and maintaining
direct links is costly as it involves some effort, so that individual utility depends
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on the relationship between costs and benefits, which finally determines the
connectivity and shape of the network that can be formed.

In the game theoretic literature only few attempts have been made to model
network formation processes with bounded rational agents. In most approaches,
bounded rationality is modelled as limits in memory and computing capacity
of agents or ‘errors’ or ‘random noise’ in the decision making process. The
contribution of this paper is the application of a simple reinforcement learning
(RL) model to network formation. Simulations are used to analyse and compare
the model to the perfect rationality and full information case that has been
extensively treated in the literature. The simulation approach is based on a
computational framework that has been applied to similar problems before [35].

This paper is structured as follows: In section 2 notation and definitions
are given. Sections 3 and 4 shortly discusses the related learning and network
literature. Section 5 describes the model, and explains how it brings together the
two perspectives reinforcement learning and network games. Section 6 describes
the game theoretic results. These results serve as the benchmark to compare the
reinforcement learning results. The results or the learning model are obtained
using simulations, which are described and analysed in section 7.

2 Definitions and Notation

Graphs

Definition 1. Graphs. A graph g, g ⊆ G, consists of a nonempty set of el-
ements, called vertex and denoted vi, v ⊆ V , and a list of pairs of vertices,
called edges. Edges connecting two vertices vi and vj directly are denoted ij.
A weighted graph is a graph in which weights are attached to the edges. The
cardinality of a graph is the number of edges it contains, and is denoted with cg.

N denotes the set of all possible graphs that can be generated from V.
g+ij denotes the graph that can be obtained by adding the edge ij to graph

g. Conversely, g-ij denotes the graph obtained by deleting this link.
Graphs that are obtained by adding or deleting links are called ’adajacent’.

For simplification of describing networks, an undirected, unweighted graph
can be defined as follows:

Definition 2. Network patterns. Let the vector a as the ordered in- or out-
degree of all vertices. The in-degree is the number of edges arriving at vertex
i, the out-degree is the number leaving from it, the sum of both is called in-out
degree. In an undirected graph the in-degree equals the out-degree, since for all
edges arriving at i, there must be one leading back. If the labels of the nodes are
interchangeable, a describes the structure of the network completely.

For example the structure 1,1,1,1,4 represents a star with 5 vertices, four
vertices having one link, denoted by ’1’, and one vertex having four links to all
other vertices, denoted by ’4’.

2



Definition 3. Network density. Network density measures how strongly the
vertices of a graph are interconnected by dividing the number of existing edges
by the number of possible edges. In the directed graph it is defined as D =

1
n∗(n−1)

n∑
i=0

n∑
j=0

ij, for the undirected graph it simplifies to D = 1
0.5(n∗(n−1))

n∑
i=0

n∑
j>i

ij.

The fully connected graph has a density of 1, the empty graph a density of 0.

Definition 4. Shortest path. Let Pxy be a nonempty path in a weighted graph
g from vertex x to vertex y, consisting of k edges xv1, v1v2...vk−1y. The weight
of Pxy, denoted as W (Pxy), is the sum of the weights,
W (xv1),W (v1v2), ...W (vk−1y). If x=y, the empty path is considered to be a path
from x to y. The weight of the empty path is zero. If no path between x and y
has weight less than W (Pxy), then Pxy is called a shortest path between x and
y, and is denoted as SPxy.

Definition 5. Average path length. The average path length is the average of

all shortest paths in the graph g and denoted as L: L = 1
n

n∑
i ̸=j

SPij

Games on graphs In a network game, the vertices vi represent players, and
the edges the relationships they can engage in.

Network games further include value and allocation functions on the set of
possible graphs G. Value functions specify what total utility is generated by the
network, and the allocation rule defines how this value is distributed among the
individual players.

Definition 6. Value functions [25].

(i) A value function vf is a mapping vf : {g|g ⊂ gN } → R
(ii) The value function cvf is defined as the sum of individual utilities of the
players: cvf(g) =

∑
i ui(g)

Definition 7. Allocation function [25]. An allocation function Y : {g | g ⊂ gN }
distributes the value generated by vf . The ’equal split rule’ distributes the value
evenly among the players and is defined as: Ye(g, v) = cvf(g)/n.

Stability definitions

Definition 8. Pairwise Stability [25]. A network is pairwise stable if

(i) for all edges ij ∈ g, Yi(g, v) ≥ Yi(g − ij, v) and Yj(g, v) ≥ Yi(g − ij, v) (ii)
for all edges ij ̸∈ g, Yi(g, v) < Yi(g + ij, v) then Yj(g, v) > Yi(g + ij, v)

In words: If a link between two players is stable, then there cannot be an
adjacent network with higher value obtainable by deleting this link. Conversely,
for any player not being part of the network, the value that can be added by
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this player must be smaller than the current value, otherwise the link would be
formed.

The concept of pairwise stability requires is defined for the case that at most
two players act at the same time, and that the players look only one step ahead.
The concept of strong stability extends pairwise stability to coalition of players:

Definition 9. Strong Stability [23]. A network g is strongly stable with respect
to Y and vf if for H ⊆ V and g’ obtainable from g via deviations by H, and vi ∈
H such that Yvi(g

′, vf) > Yvi(g, vf), there exists j ∈ S such that Yj(g
′, vf) <

Yj(g, vf).

That is, a network can only be stable if a subset H of players has no incentive
to alter it.

For dynamic models of network formation, Jackson and Watts [24] have
adapted the concept of stochastic stability. In the dynamic version of the game,
at each time step two randomly selected players decide to form or sever a link.
The players act myopically, and base their decision on whether they are better
of with the alteration in t+1, that is, they do not consider the possible con-
sequences that may follow by changing the utility of other players. After the
action is taken, with some probability ϵ > 0 the alteration is applied, or with
1− ϵ not. This is a Markov chain with the states being the respective networks
that are formed during the process. With ϵ → 0 the stationary distribution
converges to a unique limiting stationary distribution. From this follows the
next definition:

Definition 10. Stochastic Stability [24]. A network in the support of the lim-
iting stationary distribution of the dynamic process is stochastically stable.

3 Reinforcement learning

Humans learn through a variety of sources, such as own experience, observation
or imitation. Reinforcement learning models represent a very simple form of
stimulus-response learning. Agents in such models have no explicit representa-
tion of the domain and learn by trial and error. Successful actions are rewarded,
unsuccessful punished. Reinforcement learning rules are functions that induce
agents to choose actions that were successful in the past more often, while they
avoid actions that led to unsatisfactory outcomes. This if often referred to as
the ’Law of effect’.

The main components of simple RL models typically are:

� An action set A from which an action a is chosen from, and payoffs π
associated with them;

� An action strength function that updates the experience over time. The
typical function is introduced in [33]:

qk(t+ 1) = qk(t) + π(t) (1)

which updates the strength q of the k-th action with the current reward.

4



� A selection function that selects successful actions based on the qk. The
selection function is usually based on Luce’s choice theorem [28]:

pk =
qk∑
qj

(2)

This function computes the choice probability of action k relative to its
strength qk.

A major interest in RL models stems from experimental game theory, which
discovered RL as a method that matches experimental data well (e.g., [33, 14,
8, 26, 30]. Many authors have tested different variants of the simple RL model
given in equation 1, some with more cognitive capabilities than others. For
example, Erev and Roth [33, 14] consider a model integrating fictitious play,
adding this way some simple form of expectation formation. After fitting data
of a broad range of experimental data on ultimatum games, bargaining and
simplified best-shot games, they however find that the simple model fits the
data best; but this might not always coincide with the equilibrium prediction.
Other authors find similar results - for example, Mookerjee and Sopher [30] for
constant sum games or Chen and Tang [10] for public good provision games.

Camerer and Ho [8] however argue that there are two fundamental types
of learning which a realistic learning model has to integrate, experience- and
belief-based learning, and that belief-based learning can add to explaining ac-
tual behaviour better when applied properly. They propose a more complex ap-
proach combining fictitious play with reinforcement learning in the experienced-
weighted attraction model (EWA). They find that EWA can predict data better,
however it depends on many parameters that are often not available in experi-
mental game data sets. Later, in [7] they develop a simplified version of EWA
with just two variables which predicts the data not as good, but still very accu-
rately. Similarly, also Chen and Khoroshilov [9] find that EWA predicts better
than simple RL; only Sarin’s and Vahid’s Payoff Assessment model [34] fits data
better. In the Payoff Assessment model, players players assess expected payoffs
myopically by estimating the expected payoff using average returns per actions,
and choose the action with the expected maximum payoff always.

Many authors have analysed the properties of learning rules and try to es-
tablish conditions under which the actions of players converge to the optimal
action in single-player decision problems or equilibrium in games. Typically
these proofs rely on stochastic approximation theory. Early work has estab-
lished results for limited classes of games or only simple single-agent decisions
(e.g. [1, 5, 6] or for the prisoner’s dilemma [26]). Only more recently more
general results for the boundary behaviour of the process and larger classes of
games were established (e.g. [27, 4, 20, 17]). In stationary environments in
single-agent decision problems, it is found that simple ER learning leads to the
selection of the optimal action with probability 1. [27] show that this happens in
2x2 games with positive probability; however it is demanding to prove that this
holds with probability 1. For example, Beggs [4] can prove this for 2x2 constant
sum games, but Hopkins and Posch [20] find that this cannot be generalised to
any class of games.
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4 Network games

In a static setup, Jackson and Wolinsky [25] show that stable and efficient
networks can exist under certain conditions. Subsequent work based on this
model [37, 24, 21, 12] as well as similar connection models [2, 3] provide a
dynamic perspective. For a complete overview of the current state of economic
network research, see [22, 19].

In [25] players are fully informed, perfectly rational and myopic. Two players
can choose at a time to link to each other or not. After their decision, the net-
work value is computed, and the value distributed among the agents according
to the equal-split allocation rule. Direct links are costly, and both agents bear
the costs of the link. Then the next two players are selected, who then make
their decisions based on the current value of the network and the value that
would result by their respective actions. As they are myopic they only consider
the next state of the network. This process goes on until pairwise equilibrium
is reached. Depending on the cost of links, three different equilibria can be
sustained: the fully connected network, a sparsely connected network, and the
empty network. However, there not all stable networks are efficient. Details are
given in section 6.

Watts [37] analyses the process of forming a network in the connection model.
In this dynamic process, two players are selected randomly and given the oppor-
tunity to form a link. Players are myopic, and thus anticipate in their decision
only the utility of the network that forms in the next step. The process only
stops if it ends in a stable network. She finds two main attractors the formation
of a pairwise stable network, or a cycle of adjacent networks without any sus-
tainable equilibrium. In the first case, there exists a path of adjacent networks
that leads to a state where no player can be better off by severing a link. In
the latter case, the stable network is not reachable over such a path, and the
process has to cycle along the feasible networks on that path. More details are
given in section 6.

Jackson and Watts [24] generalise this approach by modelling it as a stochas-
tic process: As in the previous model, two players are selected randomly, but
their decision to form or not form a link is only carried out with a certain prob-
ability 1− ϵ, whereas with probability ϵ the opposite happens. The parameter
ϵ may be thought of as errors individuals make in doing their calculations, or
deliberate deviations in order to explore different paths. The smaller ϵ the more
likely the results converges to that of Watts [37]. However, with larger random
perturbations, the myopic nature of the players can be overcome by visiting net-
works that would not result by rational decisions. Thereby it is possible to reach
a new path of adjacent networks that can lead to a pairwise stable network. As
already outlined in definition 10, the dynamics can be formalised as a Markov
process on the random variable ϵ. As ϵ → 0, stable networks that cannot be
reached are excluded, thus selecting only those pairwise stable networks that can
actually be reached. An application to the co-author model [25] demonstrates
that the complete network is selected as the unique stochastically stable network
out of several possible solutions. However, as they also demonstrate, there are
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examples where all pairwise stable networks are also stochastically stable, so
that the stochastic process does not always help to improve the predictability
of outcomes in a network formation game.

Hummon [21] uses the same model specification as Watts, but simulates the
model computationally to obtain his results for n = 3, 5 and 10 (see also [12]
for a detailed, but purely descriptive follow up for n = 5 and n = 6). The most
important observation in this context is that on average in all cost ranges either
a star or a ring emerges as the most frequent solution. Which formation occurs
depends solely on n and the order in which actors meet. As Watts derived later
theoretically [37], the simulations confirm that with increasing n the frequency
of the star decreases. Only in the lower cost ranges the star as the efficient
network can still form, where maintaining any link is profitable.

In the noncooperative version of the game of [2] links can be formed unilat-
erally. Agents who initiate the forming of links have to bear all the costs, but
benefits are shared. From a static perspective, there is a large number of stable
networks (Nash networks), depending on the cost settings. In any setting where
the benefits exceed the costs, it is a best response to link to at least one other
player. Any minimal connected network is shown to be a Nash equilibrium, i.e.
no player can be better off by deleting a link. In the dynamic game is modelled
as a repetition of one-shot games with a random start network where all players
decide simultaneously. All players observe the resulting network as well as the
strategy played. Players remain with their last strategy with a probability p,
or decide to play a new action with probability 1 − p. In the latter case they
decide on a best-response given the actions played by the other players in the
previous round of the game. Bala and Goyal then identify limiting cases of strict
Nash equilibria by looking at the changes that are induced when exactly one
player adapts his strategy. Simulations are used to test whether the repeated
game converges to these limits for different p and to determine the speed of
convergence. They find that complete networks result in the low cost range;
in the intermediate any type of star is stable; and in the high cost ranges the
empty network is stable. As in the JW model, the trade-off between distance
and link-minimisation is the driving force. Another observation is that simu-
lations typically result in ‘flower networks’: In such networks most players are
linked in the form of a ring with one or a few shortcuts between some players,
contracting the distance among all players.

Beal and Querou [3] base their model on bounded rational, cooperative play-
ers. Bounded rationality is here represented as limited memory in a repeated
game. Furthermore, players incur costs for offering the link; consequently play-
ers only offer links if they know that their opponent does the same. Under full
rationality, this results in the empty network as unique Nash equilibrium. In
the dynamic game, players have limited memory, but are otherwise perfectly
informed about other players’ past actions. The game is repeated over a fi-
nite number of time steps larger than players’ memory. Players maximise their
average payoff. Beal and Querou show that with this form of bounded rational-
ity, non-empty networks can exist. Because of full information, deleting a link
might be harmful as other players never offer to link to this player (expecting
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that they only incur costs, but no benefits), until they forget the deviation. As
a result, the costs of establishing new links cannot be too high or the potential
value gained from a link must be large enough before any link can emerge.

Several more recent papers are based on the non-cooperative version of the
game Many of these models look at the role that heterogeneity plays for equi-
librium networks, which is however not the focus of the model presented here,
but some experimental results from this branch of research is insightful. For
example, McBride [29] focuses on value heterogeneity (the value of connections
is different among players) and partial information. In his model, partial infor-
mation is defined by observing only player’s action with a distance ≤ 1. In such
cases inefficient outcomes might develop, whereas under perfect information the
efficient minimal connected networks are also equilibrium networks. Other au-
thors look at heterogeneous cost for establishing links (e.g., [15]). They find
that in equilibrium state, cost-heterogeneous players form either empty or star
networks where the centre agent bears the costs; if values varies as well, a strict
equilibrium is either the empty network or a minimal connected network with
components being connected in the form of centre-sponsored stars. Experimen-
tal evidence is provided by Goeree et al. [16]. In their experiments they find
that with homogeneous agents, equilibrium networks are almost never achieved.
Introducing cost heterogeneity leads to development of equilibrium networks (in
the form of minimal connected or star-networks), but with a lower frequency
than when agents receive different value from linking.

Also only remotely related is work on other types of communication network
models. These are models with farsighted players (e.g. [38, 11]), or coalition for-
mation [13, 23, 36]. When players are allowed to form coalitions, conditions for
equilibrium are stronger and thus reduce the number of possible equilibria since
deviations require the consent of all concerned players in the coalition. Using
definition 9, Jackson and Nouweland[23] show that strongly stable networks are
efficient. When players are farsighted, situations where the costs of links formed
during the process exceeds the benefits but the resulting (non-empty)network
has a positive payoff for the connected players, can be overcome. However,
although efficient networks could be formed in such cost ranges, this does not
happen because each player wants to prevent to become the centre of a star-like
structure. As a result, circle networks distributing costs and benefits equally
are more likely to form.

There have been no applications of RL to strategic network formation games
in particular. In their approach, only [31, 32] are remotely related. They are
interested in the differences between long- and medium term behaviour of clique
formation game such as Stag Hunt with ER models. Comparing the impact of
different levels of the time discounting factor, they find with the help of simula-
tions that trapping in stable states in simplified network games occur. However,
while this is theoretical true for any time discounting parameter, convergence
may simply never be seen in the very long run if the past is discounted heavily.
Two interesting implications from these results follow: First, for any simulation
approach of networks (representing usually the medium-run behaviour of RL
models), the occurrence of stable states is more likely to be observed if dis-
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counting is limited; second, the more complex the game the less likely trapping
into stable states. Pemantle and Skyrms find this result for even very simplified
network games.

Quite similar as Pemantle and Skyrms the question asked in this paper is
what limiting behaviour can be observed in a reinforcement learning network
formation process in the medium run. It is a purely explorative simulation study
applying a RL process to a more complex game with a non-constant, non-linear
reward structure. Its contribution with respect to the game literature is the
application of RL to network formation games, which so far has only received
very limited attention (only few authors treat learning in a very general way ,
e.g. [18]).

5 Model

The basis of any network model is the utility function of the players derived
from a certain network structure. In the connections model, this function is:

ui(g, t) = wii +
∑
j ̸=i

δtijwij −
∑

j:ij∈g

cij (3)

tij is the number of links in the shortest path between individuals i and j. Links
between players have a certain value wij , plus a constant ’intrinsic’ value wii

that each player perceives. 0 < δ < 1 is a decay factor by which the value
of connections may decrease. δtij captures the fact that the longer the path
between the two nodes, the smaller its benefit becomes. If i is not connected to
j, δ is set to 0. But although direct links may be the most valuable, they come
at a cost: cij denotes the costs of maintaining direct relationships (e.g. time
and effort); for all indirect connections, it is set to 0.

In most network models bounded rationality was described as an injection
of ’irrationality’ into otherwise perfect rational players - for example an error
term ϵ as in [24] or [2], or a limited memory as in [3].

In this model, limited rationality of the players is represented by reinforce-
ment learning. Agents start with no information at all, and learn by trial and
error about the game and the application of the appropriate actions. Players
know only the name of the other players in the game, and may choose for each
player i they encounter from the action set Ai = {a0 . . . ai . . . an} given by {offer
link, not-offer link}.

Analogous to the discussed dynamic models, this model also proceeds by
picking two agents j and k at a time. Each agent decides whether to offer
or not offer a link to the other agent at the same time. Afterwards, the new
network is computed, and both agents are given their payoffs p based on the
utility function as in equation 3.

Action strengths are updated not cumulative, as in equation 1, but by taking
averages:

q(at) = q(at−1) + γ(p(t)− q(at−1)) (4)
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Depending on the parameter γ, the action-value function updates the strength
of the current action based on the weight γ of previous experiences and the cur-
rent reward. For a value γ = 0.5, for example, and reasonably large t this
function approximates the average payoff generated with action a. The smaller
γ, the stronger the impact of past experiences; conversely, for γ = 1 only the
reward of the last action is considered, and all previous experiences discarded.
That is, a simple form of expectation formation about average rewards is used.

As selection function, an exponential form is used:

pr(ai,t+1) =
eq(ai)α∑

j,j ̸=i e
q(aj)α

(5)

This averaging mechanism deviates from many typical ER models, and in-
sofar as agents try to approximate a true value, they mimic an expected utility
maximiser. This choice is deliberate; it is assumed here that non-trivial games
require more attention to changes in the payoff structure, otherwise agents will
become trapped easily in inferior outcomes for long periods of time. While -
at least for simple games, as [32] show - it can be assumed that equilibria are
attainable for any time discounting parameter, using an average speeds up the
convergence of the game to such stable states. On the other hand, trapping in
the sense that the equilibrium action will be played infinitely is unlikely, as ex-
perimenting is more likely to result in changes in the player’s action propensities.
For the selection function, the reason for its form is similar. The more complex
the environment of a reinforcement learner, the more important it becomes to
react reasonably fast - hence averaging in the update function - and discriminate
efficiently between actions in a short period of time - this is implemented by the
exponential form. Intuitively, cumulative RL seems a feasible choice for the low
cost range, as payoffs are always positive; in more sophisticated scenarios as in
the medium cost range, slow learning agents can be expected to perform badly
because they possibly experience rewards so lately that it cannot be associated
with any network structure.

6 Benchmark model

The Static Connections Model with perfect rational players Setting
wii to zero and wij to one, Jackson andWolinsky [25] use a simplified setup of the
connections network game for their analysis: ui(g, t) =

∑
j ̸=i δ

tij −
∑

j:ij∈g cij .
They prove the following properties about the stability of the possible networks
if players are fully informed, rational and myopic:

� c < δ − δ2: The complete graph is the only unique stable solution. Since
benefits always exceeds costs, severing a link will result in smaller utility.

� δ− δ2 < c < δ: All solutions benefiting from indirect links are stable. One
of the stable solutions is star, as this structure minimises the number of
links and the distance among the nodes.
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� δ < c: The only feasible solution is the empty network no player would
be willing to create a connection, even if there exists a network that yields
positive payoffs.

They also show that for all n, a unique efficient network exists:

� If c < δ − δ2 then the complete network is efficient, as for each player the
utility of any direct link exceeds the benefit of an indirect link.

� for δ − δ2 < c < δ + (n − 2)/2 ∗ δ2 the star is efficient. It minimises
the number of direct links while connecting all players with a minimal
distance.

� for δ + (n− 2)/2 ∗ δ2 < c only the empty network is efficient; that is, for
any situation where costs exceed the value that can be generated by the
star.

The Dynamic Connections Model with perfect rational players As
described above, Watts [37] analyses the process of network formation from a
dynamic perspective. The main results are:

� δ − c > δ2 > 0: Also in the dynamic model the fully connected network
forms. In each period utility strictly increases for any two players not yet
directly connected. Since breaking any link an agent already has reduces
his payoff, no links will ever be broken, as in the static model.

� 0 < δ − c < δ2: Stable non-empty networks can form in the dynamic
process. The star is most efficient and is also a pairwise stable network,
although not the unique one. The condition for the star to form is that
there exists a centre agent. If this agent meets another agent not yet linked
to her, the centre agent will only establish the connection if this agent is
not linked to anyone else. If she did, she would loose the advantage of
being indirectly connected to the unconnected player. Thus, the star can
only form if all agents meet the centre agent first. The larger n, the more
likely it is that unconnected players meet each other before meeting the
centre agent. As a consequence, the process is likely to converge to a
network with only one path connecting every pair of players (i.e. a ’line
network’).

� δ − c < 0: No link is formed. Myopic agents cannot form any links, since
there is no benefit in establishing the first link, even if connected networks
with a utility > 0 exist.

7 Simulations

The model has four parameters of interest, α and γ, c and δ. As in the original
model, wij is set to 1, and wii to 0. Again, cost and value are the same for all
players and written c and δ. δ is fixed at 0.5. For each cost range, the values for
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c are drawn randomly in order to obtain some samples within each cost range.
The following three cost ranges the following values result:

� Low cost range c < δ − δ2 : c < 0.25

� Medium cost range δ2 < c ≤ δ : 0.25 < c ≤ 0.5

� High cost range c > δ : c > 0.5

The focus of the simulations is on variations of cost c and the learning
parameter α. The greater α the more likely exploration in the action selection
process; the smaller the faster the agents stick to the first best solution. In the
context of this article, α can also be interpreted as the degree of rationality -
the larger α, the more ‘irrational’ players act in the sense of random noise. α is
incremented in steps of 0.01 beginning from 0.1 and ends at 1.

For the main analysis, the time discounting parameter γ is held constant.
It is mainly seen as a tuning parameter to find the best fitting models for a
detailed analysis of α. Some experiments with different γ were used to select
the best model for a more detailed analysis of α. A short overview of these
experiments is given at the end of the next section. As indicated in the previous
section, time discounting can mainly be interpreted as only influencing the speed
of discovering true values. To investigate the learning properties of the model,
only the relationship between exploration/exploitation and stable states of the
game are considered. The concrete γ values are chosen from a set of {0.1, 0.25,
0.75, 1}, depending on the fitness of the solution in the respective cost range.

Additionally to the definitions introduced at the beginning, three additional
measures are defined here:

Definition 11. Stability. St = 1− 1
2

n(g,t−1)−n(g,t−1)

(n(n−1))

Stability is simply the difference in the number of links between two time
steps, divided by the number of maximum possible links to standardise the
measure. For a single simulation step, the value can be either 0 or 1. Over
a sample of simulations, St can be interpreted as the probability that a link
changes at t. It thus varies between 0 and 1 and the closer it is to 0 the more
stable the network is.

To compare the results with the game-theoretic prediction, a fitness measure
is defined as follows:

Definition 12. Fit / Efficiency. Let the vector gstable be the stochastic stable
network (efficient network), and gactual a simulated network. Let stepsmax be
the maximum number of modifications starting from any network to gstable, and
stepsactual the number of modifications to reach gstable from gactual. Define the
fitness at time t as: fitt =

1
2 (

stepsactual,t

stepsmax
+

stepsactual,t

stepsmax
St)

The resulting measure varies between 0 and 1 and tends towards 1 the closer
the network structure to the stochastic stable network and the more stable
the simulation result (multiplying the distance with St and adding it in the
enumerator has the effect that stable states are weighted higher as St = 0 if a
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linked changed, 1 otherwise). Computing stochastic stability according to [24]
revealed that only the star is stochastic stable, and was therefore chosen as the
benchmark (however, this result is strong; recall [37]’s finding that the likelihood
that stars actually develop depends on the order how players meet).

8 Results

8.1 Structural properties of the RL process

Simulations were run for at least 10.000 time steps with several repetitions per
α and γ value for each cost range, giving a reasonably large sample. A single
simulation was typically run for 2000 steps.

A comparison of the fitness measure in each cost range revealed that the γ
and α combinations maximising fitness are: α = 0.1 and γ = 0.75 for the low,
α = 0.04 and γ = 0.25 for the medium, and α = 0.02 and γ = 0.75 for the high
cost range (in the high cost range several combinations achieve a fit of 1. Out
of the top 20 results the simulation belonging to the most frequent γ value and
the highest α was chosen). Some more simulations with different cost values
for these specific values were simulated. Using network density as an indicator,
figure 1 illustrates connectivity as a function of cost.

Figure 1: Network density over all cost samples.

13



In the high cost range (c > 0.5) the empty network emerges as solution.
In the low cost range (c < 0.25), connectivity is high (almost fully connected
structures). In the medium cost range (0.25 < c ≤ 0.5) networks become grad-
ually more sparse the higher cost becomes (density between 0.4 and 0.5). For
the ’border’ regions between low and medium as well as medium and high cost
range connectivity changes gradually. In the RL process no threshold function
between cost ranges emerges as would be expected from perfect rational, fully
informed players.

The following paragraphs analyse the behaviour of the simulations as a func-
tion of α. γ is hold constant at the value maximising the fitness in each cost
range.

Summary measures per α Figures 2, 3 and 4 show how density, stability
and fit develop in the low, medium and high cost ranges.

Figure 2: Network density, stability and fit for the low cost range.

In the low cost range (c < δ−δ2) the optimal solution is the fully connected
network (D = 1). Figure 2 shows that for small α(<≈ 0.07) the network
is strongly connected (D ≈ 0.7) without reaching the complete network, and
stability tends towards 1. As could be expected, for small α, agents tend to stick
to first-best solutions, which are those providing the largest increase in marginal
utility. With α increasing towards ≈ 0.11, the network is developing towards the
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fully connected network (D ≈ 0.8). However, this comes on the cost of stability,
i.e. some agents keep switching. Finally, for α > 0.6 connectivity and variability
approach a limit in an asymptotic manner with density about 0.35. The random
limit is given by the probability that offered links are accepted. Assuming total
randomness, the chance of offering a link is 0.5, the chance that the other players
offers a link at the same time is equally 0.5. Thus, the probability that a link
can actually be formed by pure chance is 0.25. This indicates that RL performs
better than randomness, even for the smallest degree of rationality possible.

Figure 3: Network density, stability and fit for the medium cost range.

According to the benchmark model, in the medium cost range (δ2 < c ≤ δ)
minimal connected networks should form (i.e. D ≈ 0.5). Computations showed
that the star is the efficient as well as stochastic stable pairwise network. In the
simulations, agents end up very close to a minimal connected network (D ≈ 0.5)
for α < 0.06. These networks are very stable. For 0.07 < α < 0.15 there is a
decrease in density to ≈ 0.4, with a sharp drop in stability and corresponding
decreases in fit. For 0.15 ≤ α < 0.3 density decreases further. For α >≈ 0.3
the connectivity of the network settles asymptotically near to the random limit;
similar to the low cost range the RL process performs also here (slightly) better
than random. The density of ≈ 0.4 in the range 0.07 < α < 0.15 indicates that
networks are not overconnected. The sharp decrease in stability points however
to random matching rather than reinforcements. This means that the observed
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network structures may develop simply because they are closer to a random
outcome.

Figure 4: Network density, stability and fit for the high cost range.

In the high cost range (c > δ) the empty network is expected. Although for
some agents positive utility by indirect links could be generated in the high cost
range, there is always at least one agent for which the costs exceeds the value
it receives and thus motivates the deletion of direct links. Figure 4 shows that
the simulation converges to the equilibrium prediction if agents explore little
(α <≈ 0.15). For α > 0.25, at least two agents are linked (D = 0.1). The
random limit is approached for α values >0.3, a situation where at least two
agents are linked. At α ≈ 0.6 the simulation converges to the random limit
(D ≈ 0.2). Here again, RL clearly performs better than a random process.

Network structures The following paragraphs show summary measures of
the most frequent network structures. To group the results a cluster analysis for
α on the variables D and S was performed. These variables have been chosen
because they characterise both dimensions network structure (D) as well as the
more time-dependent variable stability. For the resulting clusters, the emerging
networks are characterised by network structure, density D, average path length
L, fitness fit, stability S and efficiency E. The choice of 3 cluster centres reflects
roughly the main dynamics observed in figures 2, 3 and 4: A good fit in the
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Cluster Network D L S Fit Share

α 0.01− 0.24 1,2,3,3,3 0.6 1.88 0.92 0.58 0.07
avg(D) 0.68 1,2,2,2,3 0.5 2.05 0.92 0.48 0.09
avg(L) 1.67 2,3,3,3,3 0.7 1.63 0.93 0.67 0.1
avg(S) 0.93 3,3,4,4,4 0.9 1.38 0.93 0.87 0.11
avg(Fit) 0.66 1,2,2,3,4 0.6 1.75 0.93 0.58 0.12
avg(E) 0.66 2,3,3,4,4 0.8 1.5 0.92 0.77 0.15

2,2,2,3,3 0.6 1.75 0.94 0.58 0.17
2,2,3,3,4 0.7 1.63 0.93 0.68 0.18

α 0.25− 0.46 1,1,2,2,2 0.4 2.22 0.66 0.33 0.08
avg(D) 0.59 2,3,3,4,4 0.8 1.5 0.75 0.7 0.1
avg(L) 1.84 1,1,2,3,3 0.5 2 0.7 0.42 0.1
avg(S) 0.71 1,2,3,3,3 0.6 1.88 0.71 0.51 0.11
avg(Fit) 0.51 1,2,2,3,4 0.6 1.75 0.72 0.52 0.14
avg(E) 0.51 2,2,2,3,3 0.6 1.75 0.73 0.52 0.15

2,2,3,3,4 0.7 1.63 0.74 0.61 0.15
1,2,2,2,3 0.5 2.06 0.69 0.42 0.18

α 0.47− 1.0 1,2,2,2,3 0.5 2.06 0.62 0.4 0.07
avg(D) 0.26 1,1,1,2,3 0.4 2.25 0.62 0.32 0.08
avg(L) 0.51 1,1,1,1,2 0.3 0 0.61 0.24 0.08
avg(S) 0.63 1,1,2,2,2 0.4 2.18 0.62 0.32 0.09
avg(Fit) 0.21 0,1,1,1,1 0.2 0 0.63 0.16 0.1
avg(E) 0.21 0,1,1,2,2 0 0 0.62 0.24 0.17

0,0,0,1,1 0.1 0 0.65 0.08 0.19
0,0,1,1,2 0.2 0 0.64 0.16 0.21

Table 1: Low cost range results

lower α regions, then a decreasing region, finally approximation of the random
limit. The tables show the most network architectures that occurred during this
process. For readability, only the upper quartile is represented. The share of
each network is based on the frequency of its occurrence in the quartile.

For the low cost range (c < δ − δ2), table 1 shows the following: In the first
cluster, the most common visited networks are 2,3,3,4,4; 2,2,2,3,3 and 2,2,3,3,4
with a relatively high connectivity (D = 0.6 - 4 missing links to the complete
network; and D = 0.8 - 2 missing links to the complete network). The path
lengths of 1.5-1.75 indicate that most networks are connected in a way that each
other player can be reached directly or with one intermediary at maximum. In
the second α range, the most frequent networks 2,2,2,3,3; 2,2,3,3,4 and 1,2,2,2,3
are still connected more densely than spares networks, but are also quite un-
stable (S ≈ 0.7 as compared to ≈ 0.9 in the first cluster). Finally, cluster 3
illustrates that with α → 1, network density approaches its random limit 0.25,
with frequent unconnected networks (i.e, L = 0).
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Cluster Network D L S Fit Share

α 0.01− 0.2 1,2,2,3,4 0.6 1.75 0.85 0.62 0.07
avg(D) 0.46 1,1,2,3,3 0.5 2 0.78 0.44 0.07
avg(L) 1.78 2,2,2,2,2 0.5 1.88 0.94 0.16 0.09
avg(S) 0.83 2,2,2,3,3 0.6 1.75 0.85 0.31 0.14
avg(Fit) 0.44 0,1,1,2,2 0.3 0 0.72 0.43 0.14
avg(E) 0.44 1,1,2,2,2 0.4 2.37 0.81 0.3 0.15

1,1,1,2,3 0.4 2.25 0.88 0.63 0.17
1,2,2,2,3 0.5 2.04 0.85 0.46 0.22

α 0.21− 0.4 1,2,2,2,3 0.5 2.06 0.54 0.39 0.09
avg(D) 0.24 1,1,1,2,3 0.4 2.25 0.57 0.52 0.09
avg(L) 0.43 1,1,1,1,2 0.3 0 0.59 0.4 0.09
avg(S) 0.5 0,1,1,1,1 0.2 0 0.62 0.27 0.1
avg(Fit) 0.38 1,1,2,2,2 0.4 2.16 0.56 0.26 0.11
avg(E) 0.38 0,0,0,1,1 0.1 0 0.66 0.41 0.14

0,1,1,2,2 0.3 0 0.6 0.4 0.19
0,0,1,1,2 0.2 0 0.63 0.54 0.19

α 0.41− 1.0 0,1,2,2,3 0.4 0 0.56 0.52 0.07
avg(D) 0.25 1,1,1,2,3 0.4 2.25 0.56 0.52 0.07
avg(L) 0.32 1,1,2,2,2 0.4 2.15 0.55 0.26 0.08
avg(S) 0.62 1,1,1,1,2 0.3 0 0.59 0.34 0.08
avg(Fit) 0.35 0,1,1,1,1 0.2 0 0.63 0.27 0.11
avg(E) 0.35 0,1,1,2,2 0.3 0 0.6 0.4 0.17

0,0,0,1,1 0.1 0 0.68 0.42 0.19
0,0,1,1,2 0.2 0 0.64 0.55 0.22

Table 2: Medium cost range results
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In the medium cost range (δ2 < c <= δ) , relatively stable networks close
to minimal connected networks form in the first cluster. The network 1,2,2,2,3
is the most common, with an average path length of 2.04, meaning that now
often at least one intermediary connects two different players. This is close to
a ring, the structure minimising the costs while at the same time distributing
them evenly so that no incentives for deviation exist. This coincides with re-
sults of [37], and - for the noncooperative game - of [2]. The ring itself has
a share of 0.09. In this range, more efficient structures (1,1,2,2,2; 1,1,1,2,3)
are more common. Also in the other clusters, the only connected network are
also those ’flower networks’, that is ring-structure with a few shortcuts that
decrease the distance between the players. However many networks are un-
connected. Whereas D indicates a relatively close match with pairwise stable
networks (these are: 1,1,1,1,4; 1,2,2,3,4; 1,3,3,3,4; 2,3,3,3,3; 2,2,2,3,3; 1,1,2,2,4;
2,2,2,2,2 for cost close to the low cost limit, plus the more sparse structures
1,2,3,3,3; 1,1,2,3,3; 1,2,2,2,3; 1,1,1,2,3 for costs close to the high cost range), the
distance to the unique stochastic stable network 1,1,1,1,4 is larger as in the low
cost range. That is, while rational myopic players according to the stochastic
process of [24] are most likely to end up with a star network, the RL process
does not converge to this result, but remains somewhere between ring and star.

In the first cluster of thehigh cost range (c > δ), the most frequent network is
the empty network with a share of 0.73. In the most frequent non-empty network
only two players are connected. In the other clusters, non-empty networks are
more frequent. In the other clusters, at least two players connect most of the
time - in the second cluster, only 30% of the networks remain unconnected, in
the third cluster only 15%.

8.2 Memory effects

To round up this discussion, summary measures are reported for simulation
runs with different γ values while holding α constant. For each cost range, the
optimal α values were chosen - 0.1 in the low, 0.04 in the medium, and 0.02 in
the high cost range.

Table 4 shows that in the low cost range fit and connectivity are best for
the higher γ value. Moreover, a γ value of 1 increases connectivity as compared
to smaller values, but also has an effect on the stability of the network, as the
probability of deviations is the highest. γ = 0.75 seems to compromise well
between exploration on the one hand, and stability on the other.

In the medium cost range γ = 0.25 is optimal. Also here higher γ values,
but also γ = 0.1, induce higher density - which is inefficient in this scenario.
Furthermore, γ = 0.1 and γ = 0.25 both maximise path length, which means
that here are networks that connect the players in the most sparse way. Note
that the better fit of γ = 0.25 is due to the choice of stochastic stability as
benchmark. When looking at the shorter path length at γ = 0.75 this actually
points to a prevalence of circle networks as predicted by [37].

Although in the high cost range there seems the fitness score is very high
irrespective of γ, also here it seems that - analogous to the low cost range
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Cluster Network D L S Fit Share

α 0.01− 0.27 1,1,1,2,3 0.4 2.25 0.41 0.42 0.01
avg(D) 0.05 0,1,1,1,1 0.2 0 0.76 0.7 0.02
avg(L) 0.09 0,1,1,2,2 0.3 0 0.7 0.59 0.03
avg(S) 0.91 1,1,2,2,2 0.4 2.39 0.65 0.5 0.04
avg(Fit) 0.9 0,0,1,1,2 0.2 0 0.77 0.71 0.04
avg(E) 0.9 0,0,0,1,1 0.1 0 0.88 0.85 0.14

0,0,0,0,0 0 0 0.99 0.99 0.72

α 0.28− 0.51 0,1,1,1,3 0.3 0 0.65 0.58 0.02
avg(D) 0.08 1,1,1,1,2 0.3 0 0.64 0.57 0.02
avg(L) 0 0,1,1,2,2 0.3 0 0.64 0.57 0.04
avg(S) 0.75 0,1,1,1,1 0.2 0 0.72 0.69 0.07
avg(Fit) 0.76 0,0,1,1,2 0.2 0 0.72 0.69 0.16
avg(E) 0.76 0,0,0,0,0 0 0 0.89 0.95 0.31

0,0,0,1,1 0.1 0 0.81 0.81 0.38

α 0.51− 1.0 1,1,2,2,2 0.4 2.13 0.55 0.47 0.03
avg(D) 0.16 0,1,1,1,3 0.3 0 0.62 0.57 0.04
avg(L) 0.05 1,1,1,1,2 0.3 0 0.61 0.56 0.05
avg(S) 0.71 0,1,1,2,2 0.3 0 0.62 0.67 0.1
avg(Fit) 0.72 0,1,1,1,1 0.2 0 0.68 0.91 0.11
avg(E) 0.72 0,0,0,0,0 0 0 0.82 0.57 0.15

0,0,1,1,2 0.2 0 0.68 0.67 0.22
0,0,0,1,1 0.1 0 0.75 0.79 0.32

Table 3: High cost range results

- shorter memory favours efficiency and stability. γ = 0.75 provides the most
stable solutions. Also here, γ = 1.0 induces too fast switching, increasing density
while at the same time reducing stability.

8.3 Discussion

The networks in low cost range (c < δ− δ2) almost never approach full connec-
tivity. At the beginning of the process, the first links provide the highest utility
and reinforce link offers on both sides of a player pair. Once the network is com-
plete, the marginal utility of exchanging an indirect for a direct link is small.
This holds especially for flower networks, which contract the distance between
players the most. The selection probabilities become thus very similar for both
forming and severing a link. Only scenarios with little experimentation can be-
come trapped in a stable state. In most other scenarios, probability switching
occurs for the players acting last. The larger α, the greater the chance that a
link is severed, and the more likely that the marginal agent’s switch between
linking and not linking. This could result in a cycle where most of all players
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Cost range γ D L S fit

0.1 0.54 1.95 0.99 0.54
0.25 0.54 1.85 0.99 0.54

(c < δ − δ2) 0.5 0.59 1.78 0.95 0.58
0.75 0.67 1.65 0.91 0.65
1 0.63 1.74 0.94 0.61
0.1 0.5 1.76 1 0.47
0.25 0.46 2.01 0.99 0.56

(δ2 < c <= δ) 0.5 0.48 2.08 0.99 0.42
0.75 0.45 1.82 0.97 0.5
1 0.46 2.01 0.98 0.43
0.1 0.21 1.25 0.99 0.99
0.25 0.002 0 1 0.99

(c > δ) 0.5 0.0005 0 1 1
0.75 0 0 1 1
1 0.004 0 1 0.99

Table 4: Simulation results for various γ

are at some stage the marginal agent that is not worth linking at some point
in time. The networks that are being formed during the process are thus very
similar, but not fully stable. This can also be inferred from the trends in density
and stability: For the smallest α values stability is highest, but not density. As
α increases, stability decreases stronger than density increases. Also the distri-
bution of visited network structure does not change very much, which means
that similar network structures exist at any particular point of time, but with
more frequently changing links.

Up to the level where the utility of not being linked is smaller than being
linked, the learning process in the medium cost range (δ2 < c <= δ) follows a
similar dynamic as in the low cost range. Once utility becomes negative, the
average rewards decrease strongly and prevents further linking. Thus the cost
settings act as a natural cut-off to the reward perceived by the agents. In the
low cost range there is no such bound, but the additional utility becomes very
small, leading to random switching. The closer cost to δ − δ2, the more similar
behaviour in the medium cost range becomes to behaviour in the lower cost
range - density increases. The optimal γ is with 0.25 lower than the optimum in
the other cost ranges, which means that agents are more tolerant to deviations;
this is plausible since utility is not strictly increasing. Allowing some tolerance
for deviating behaviour ensures that the network does not collapse quickly as
a consequence of a deviating agent. Note that the stochastic stable network
is a star, which is a strong assumption. The RL networks rarely match this
prediction. Since most networks here are minimally connected, the networks
that form are similar as in [37] ring-like structures.
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The results for the high cost range (c > δ) largely reflects the equilibrium
prediction. Here the learning task for the agents is the simplest because there
are very few non-empty networks in which an agent can experience a positive
reward. The only deviation is induced by the increased randomness in the
action probabilities with increasing α. Also, the optimal γ value of 1 shows that
the optimal agents react very quickly with no memory at all to alterations in
the network structures. This is plausible, since independent of the history, any
addition of a link has always a negative impact for at least one agent - which
was also stated in the dynamic benchmark model.

The networks evolving from the learning model differ with the exception
of the high cost range quite considerably from the equilibrium prediction. A
closer look at the data showed that for the optimal α and γ values (0.1/0.75,
0.01/0.25 and 0.07/1), only 1 % of all networks in the low range were the
stochastic stable outcome (4,4,4,4,4 the only pairwise/strongly and stochastic
stable network) as compared to 13 % of the most frequent network 2,2,3,3,4;
in the medium cost range 51% of all visited networks were pairwise stable, but
only 19% stochastic stable; only in the high cost range 71% of all networks were
the predicted empty network. Looking at the structure of the networks that
evolved, it is more accurate to speak of two characteristic cost ranges one with
c < δ and one with c > δ. In the ranges where positive utility is achievable,
agents form sparsely connected networks, adding some shortcuts contracting the
distance among them (flower networks). The smaller the cost, the closer the
resulting networks are to the complete network, the higher the cost the more
sparse the resulting network will be - independent of whether the cost is in the
low or medium range. The shorter the distance between agents in the network,
the more undecided agents become whether to connect to some other player
directly or not. If δ2 − δ < c < δ, the RL process matches pairwise stable
networks more often because utility is increasing with the first additional links,
but later with too many direct links decreasing. Another factor is simply chance
- sparse networks are simply closer to the random limit of 0.25.

9 Conclusion

In this paper a reinforcement-learning version of Jackson/Wolinsky’s connec-
tions model was studied with simulations. Using the concept of stochastic
stability as developed in [24], the results have been compared with the equi-
librium predictions of the full rationality benchmark model. Results indicate
the patterns (high connectivity in the low, medium connectivity in the medium,
and low connectivity in the low cost ranges) are similar, but that there is some
considerable distance between the equilibrium and learning predictions.

The outcome of the RL process is similar as in the original model driven by
the shape of the utility function, which has very different forms depending on the
cost range. Thus, in the low range utility is convex, but always positive; in the
medium cost range it slopes downwards after a certain density of the network
is reached; in the high cost range it is strictly negative. For a probabilistic
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choice model this results in random switching in the low cost range the more
connected the network becomes, low rates of experimentation in the medium
range once utility starts to decrease; and punishment of any links in the high cost
range. Whereas the full rationality model expects three different regions, divided
sharply by full / sparse / empty networks, the RL model exhibits a gradual
decrease in connectivity from almost complete to empty networks. There are no
apparent thresholds once the characteristic cost range boundaries are crossed.
Furthermore, there is a tension between stability of the learning process and
the pairwise as well as stochastic stability. Coordination in the learning model
requires slow updates, which results in suboptimal exploration of the state space.

This model focused on a limited set of parameters. Variations on some of
the other parameters might be interesting for future work. Examples are the
size of the network n or the value δ of the network. As the most fully connected
networks were those with the lowest cost, it seems likely that increasing the
difference between δ and c will result in denser networks in lower cost ranges.
Furthermore, connectivity in low cost ranges is likely to decrease with larger
n as it can be expected that the relative difference of rewards between linking
and not linking will increase at a similar rate as in smaller networks. As stable
states are reached quickly once the network becomes sparsely connected, this
will typically be at lower density values the larger n becomes.
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