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On the Fixed-Effects Vector Decomposition

Abstract: This paper analyses the properties of the fixed-effects vector decompo-
sition estimator, an emerging and popular technique for estimating time-invariant
variables in panel data models with group effects. This estimator was initially moti-
vated on heuristic grounds, and advocated on the strength of favorable Monte Carlo
results, but with no formal analysis. We show that the three-stage procedure of
this decomposition is equivalent to a standard instrumental variables approach, for a
specific set of instruments. The instrumental variables representation facilitates the
present formal analysis which finds: (1) The estimator reproduces exactly classical
fixed-effects estimates for time-varying variables. (2) The standard errors recom-
mended for this estimator are too small for both time-varying and time-invariant
variables. (3) The estimator is inconsistent when the time-invariant variables are
endogenous. (4) The reported sampling properties in the original Monte Carlo evi-
dence do not account for presence of a group effect. (5) The decomposition estimator
has higher risk than existing shrinkage approaches, unless the endogeneity problem
is known to be small or no relevant instruments exist.

1. INTRODUCTION

We analyse the properties of a recently introduced methodology for panel data,
known as fixed-effects vector decomposition (fevd), which Plümper and Troeger
(2007a) developed to produce improved estimates in cases where traditional panel
data techniques have difficulty. Researchers in many fields seek to exploit the advan-
tages of such panel data. Having repeated observations across time for each group
in a panel allows one, under suitable assumptions, to control for unobserved hetero-
geneity across the groups which might otherwise bias the estimates. Mundlak (1978)
demonstrated that a generalized least squares approach to unobserved group effects,
which treats them as random and potentially correlated with the regressor, gives rise
to the traditional fixed-effects (fe) estimator. However, fe is a blunt instrument for
controlling for correlation between observed and unobserved characteristics because
it ignores any systematic average differences between groups. Thus any potential
explanatory factors that are constant longitudinally (time-invariant) will be ignored
by the fe estimator. Likewise, any explanatory variables that have little within
variation (that is, slowly-changing over the longitudinal dimension) will have little
explanatory power, and will result in imprecise coefficient estimates that have large
standard errors.
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Hausman and Taylor (1981) had previously shown that a better estimator than
fe is available if some of the explanatory variables are known to be uncorrelated
with the unobserved group effect, thus described as exogenous explanatory variables.
The Hausman-Taylor (ht) estimator is an instrumental variables (iv) procedure
that combines aspects of both fixed-effects and random-effects estimation. Given a
sufficient number of exogenous regressors, the ht procedure allows time-invariant
variables to be kept in the model. It also provides more efficient estimates than fe

for the coefficients of the exogenous time-varying variables. The downside of the ht

estimator resides in specifying the exogeneity status for each of the time-varying and
time-invariant variables in the model. In many practical applications such detailed
specification is onerous.

Plümper and Troeger introduced fevd as an alternative that seemed to be supe-
rior to ht because it requires fewer explicit assumptions yet seemed to always have
more desirable sampling properties. Like the fe estimator, and unlike ht, fevd
does not require specifying the exogeneity status of the explanatory variables. Like
the ht estimator, and unlike fe, the fevd procedure gives coefficient estimates for
time-invariant (and slowly-changing) variables as well as the time-varying variables.
Plümper and Troeger motivated the fevd procedure on heuristic grounds, and ad-
vocated it on the strength of favorable results in a Monte Carlo simulation study. In
particular, the simulation indicated that fevd has superior sampling properties for
time-invariant explanatory variables.

Although the fevd procedure comes out of the empirical political science liter-
ature, it is rapidly finding application in many other areas including social research
and economics. At last count there were well over 200 references in Google Scholar
to this emerging estimation methodology. Several empirical studies report standard
errors for fevd-based estimates that are strikingly smaller than estimates based on
traditional methods. There is, however, little formal analysis of the fevd procedure
in this literature.

The present paper is a remedy to the lack of formal analysis. We demonstrate that
the fevd coefficient estimator can be equivalently written as an iv estimator, which
serves to demystify the nature of the three-stage fevd procedure and its relationship
with other estimators. As one immediate benefit, the iv representation allows us to
draw on a standard toolkit of results.

First, using the iv variance formula, we show that the fevd standard errors for
coefficients of both the time-varying and time-invariant variables are uniformly too

small. In the case of the latter variables, the discrepancy in the fevd standard errors
is unbounded, and grows with the length of the panel and with the variance of the
group effects.
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Second, using the moment-condition representation, we prove that the coefficients
of the time-varying variables in fevd are exactly the same as in fe. This result is
apparent in many of the practical studies which list fe estimates beside fevd esti-
mates, but it is hardly mentioned in the existing analytical material. An immediate
implication is that fevd estimates, like fe, are inefficient if any of the time-varying
variables are exogenous.

Third, fevd usually produces lower variance estimates of time-invariant coeffi-
cients than ht in small samples. However, it does so by including invalid instruments
that produce inconsistent estimates. So, even with massive quantities of data those
fevd estimates will deviate from the truth.

Further developments can also be made to the estimator, to exploit the ideas in
fevd while avoiding the problems of that procedure. The advantage of fevd will
be found in smaller samples where the large sample concept of consistency does not
dominate. The Monte Carlo simulation studies by Plümper and Troeger (2007a)
and Mitze (2009) show a trade-off between bias and efficiency in which fevd often
appears to be better than either fe or ht under quadratic loss.

We present Monte Carlo evidence that a standard shrinkage approach combines
the desirable small sample properties of fevd with the desirable large sample prop-
erties of the ht estimator, so that it has superior risk to both fevd and ht over a
wide region of the parameter space.

In the next section we introduce the notation to be used and describe the three-
stage fevd estimator. We summarize the connections between these stages in a
theorem, which we prove by comparing the various moment conditions. This ap-
proach demonstrates naturally the description of the fevd estimator as iv. Section
3 compares the correct IV variance formula with the formula implicit in the stan-
dard errors of the three-stage fevd approach. The main results are summarized in
two further theorems. We also provide an empirical example to illustrate these re-
sults and some from the previous section. In Section 4 we examine the relationships
between estimators in more detail, allowing the possibility of a trade-off between
bias and variance to produce an estimator with lower mean-squared error. Section 5
reports some Monte Carlo evidence in the spirit of Plümper and Troeger that demon-
strates the superiority of a standard shrinkage estimator. Section 6 has some overall
conclusions.
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2. THE MODEL

The data are ordered so that there are N groups each of T observations. The model
for a single scalar observation is

yit = Xitβ + Ziγ + ui + eit for i = 1, . . . , N and t = 1, . . . , T. (1)

Here, Xit is a k × 1 vector of time-varying explanatory variables, and Zi is a p × 1
vector of time-invariant explanatory variables.1 The parameters β, γ, the group effect
ui, and the error term eit are all unobserved. Some elements ofXit or Zi are correlated
with the group effect ui, in which case we call those variables endogenous. Otherwise
we call those variables exogenous. With endogenous explanatory variables standard
linear regression techniques may produce estimates of the unknown parameters which
are inconsistent in the sense that they do not converge to the true parameter values
as the sample size grows large. One standard approach to this endogeneity problem
is to use the instrumental variables technique developed by Hausman and Taylor.

Notation

The presentation is considerably simplified by introducing some projection matrix
notation. Let

D = IN ⊗ ιT , (2)

where IN is an N × N identity matrix and ιT is a T × 1 vector of ones. That is, D
is a matrix of dummy variables indicating group membership. For any matrix M ,
we use PM = M(M ′M)−1M ′ to indicate the projection matrix for M , and we use
QM = I−PM to indicate the projection matrix for the nullspace of M . For example,

PD = D(D′D)−1D′ =
1

T
(IN ⊗ ιT ι

′

T ) (3)

is the matrix which projects a vector onto D. This particular projection produces a
vector of group means. That is, PDy = {ȳi} ⊗ ιT , where ȳi =

1
T

∑T

t=1 yit. Also,

QD = INT − PD (4)

is the matrix which produces the within-group variation. That is, QDy = {yit − ȳi}
is the NT × 1 vector of within-group differences.

1The setup here describes a balanced panel with observations on every t for each i, but the ideas
extend to unbalanced panels with more complicated notation. A constant can be represented in
this model by including a vector of ones as part of the time-invariant elements, Z.
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The FEVD Estimator

The fevd proceeds in three stages, which we detail below. To sharpen the analy-
sis, we assume that the elements of Z are exactly time-invariant (not just slowly-
changing), so that PDZ = Z. An explicit analysis of the slowly-changing case yields
qualitatively similar insights.

Stage 1 Perform a fixed effects regression of y on the time-varying X . The moment
condition corresponding to a fixed effects regression is

(y −Xb)′QDX = 0. (5)

The unexplained component after this first step is y−Xb. The group-average of the
unexplained component is PD(y −Xb).

Stage 2 Regress the group-average of the unexplained component from the first step
on the time-invariant Z. The moment condition is

(

PD(y−Xb)−Zg
)

′

Z = 0. Using
the fact that PDZ = Z, this moment condition can be equivalently written as

(y −Xb− Zg)′Z = 0. (6)

The group-average residuals from this regression are

h = PD (y −Xb− Zg). (7)

Stage 3 Regress y on X , Z, and h. The coefficients from this step are the final fevd
estimates. The moment conditions are

(y −Xβ − Zγ − hδ)′[X,Z, h] = 0. (8)

Theorem 1. The solution for β is b from Stage 1; the solution for γ is g from Stage

2; and the solution for δ is one.

Proof. We need to verify that the moment conditions (8) are satisfied at β = b,
γ = g, and δ = 1. This requires that

(y −Xb− Zg − h)′[X,Z, h] = 0. (9)

Substituting in the definition of h from (7) and gathering terms, this simplifies to

(y −Xb− Zg)′QD[X,Z, h] = 0. (10)
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Using the fact that QDZ = 0, this further simplifies to

(y −Xb)′QD[X,Z, h] = 0. (11)

The first set of equalities in (11) must be satisfied, since it is identical to the moment
condition (5) that defines b. The second set of equalities must be satisfied since
QDZ = 0. Similarly, the third set of equalities must be satisfied since QDh = 0,
which follows from the definition of h in (7) and the fact that QDPD = 0.

Instrumental Variables Representation

Using Theorem 1 we can show that the fevd estimator can also be expressed as an
iv estimator for a particular set of instruments. The major benefit of using the iv

representation is that one can draw on a standard toolkit of results. Theorem 1 shows
that the fevd estimates of β are identical to the standard fixed effects estimator b
from Stage 1. This estimator is defined by the moment condition (5). Theorem 1
also shows that the fevd estimates of γ are equivalent to the estimator of g from
Stage 2. This estimator is defined by the moment condition (6). Combining both
moment conditions, and using the fact that QDZ = 0, the full moment conditions
for the fevd estimator are

(y −Xβ − Zγ)′[QDX,Z] = 0. (12)

In other words, the fevd estimator is equivalent to an iv estimator using the instru-
ments QDX and Z.

3. VARIANCE FORMULAE

Using standard results for iv estimators, the asymptotically correct sampling variance
of the fevd procedure is

Viv(β, γ) = (H ′W )−1H ′ΩH(W ′H)−1 for H = [QDX,Z] and W = [X,Z]. (13)

Here, H is the matrix of instruments and W is the matrix of explanatory variables.
Ω is the covariance of the residual, ui + eit, which can be expressed as

Ω = σ2
eINT + σ2

uIN ⊗ ιT ι
′

T = σ2
eQD + (σ2

e + Tσ2
u)PD. (14)

Using straightforward algebraic manipulation of (13), we will later separately expand
out the variances of β and of γ for more detailed inspection.
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We now compare the correct iv variance formula with the fevd variance formula.
Plümper and Troeger state that the sampling variance of the fevd estimator can be
obtained by applying the standard ols formula to the Stage 3 regression. Therefore,

Vfevd(β, γ, δ) = s2
(

[X,Z, h]′[X,Z, h]
)

−1
= s2





X ′X X ′Z X ′h
Z ′X Z ′Z Z ′h
h′X h′Z h′h





−1

. (15)

Here, s2 = ‖y − Xβ − Zγ − h‖2/dof , where dof is the degrees of freedom. By
application of (7), the expression for s2 can be simplified to

s2 = ‖QD(y −Xβ)‖2/dof , (16)

which we note is the standard textbook fe estimator for σ2
e when dof = NT −N −k

(see e.g. Wooldridge, 2002, p. 271).2

Now consider the variance of β. The fevd variance formula for β is the top-
left block of the overall fevd variance formula in (15); using the partitioned-inverse
formula this submatrix can be written as

Vfevd(β) = s2(X ′Q[Z,h]X)−1. (17)

By expanding out (13), the correct variance for β can be written as

Viv(β) = σ2
e(X

′QDX)−1. (18)

Note that this is exactly the textbook fixed effects variance formula.
Now we note from (16) that s2 is a consistent estimator of σ2

e . However, the
matrices in the fevd formula (17) and the correct formula (18) differ. The fevd

variance formula for β must therefore be incorrect, and we can show the direction of
the error.

Theorem 2. The fevd variance formula for coefficients on time-varying variables

is too small.

2The usual ols formula for the standard errors from the Stage 3 regression would calculate the
scale term using dof = NT −k−p− 1, where p is the number of Z variables including the constant
and the final minus one allows for the additional regressor h. This divisor would clearly produce
an inconsistent estimator of σ2

e for large N and small T . Plümper and Troeger (2007a, p. 129)
mention briefly an adjustment to the degrees of freedom and, although they do not give an explicit
formula, their software employs the divisor dof = NT − N − k − p + 1 (Plümper and Troeger,
2007b). This adjustment would yield a consistent estimate of σ2

e , but it is nonstandard and slightly
biased. To sharpen the subsequent analysis, we use the standard unbiased estimator of σ2

e
, in which

dof = NT −N − k.
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Proof. Now PD[Z, h] = [Z, h], so that PDP[Z,h] = P[Z,h]. Such a relationship between
projection matrices implies that PD−P[Z,h] is positive semi-definite (in matrix short-
hand, PD ≥ P[Z,h]). So, QD ≤ Q[Z,h]. That (X ′Q[Z,h]X)−1 ≤ (X ′QDX)−1 follows
immediately. This inequality will almost always be strict because the p+1 variables
[Z, h] cannot span the whole of the N -dimensional space of group operator D, and
the X ’s have arbitrary within-group variation.

The fevd formula for the variance of β is biased in that it systematically under-

states the true sampling variance of the estimator. The essential inequality does not
disappear as N gets larger, so the formula is also inconsistent. The usual reported
standard errors will be too small.

Now, consider the variance of γ. The fevd variance formula for γ is the middle
block of the overall fevd variance formula in (15). Using an alternative representa-
tion of the partitioned inverse, this submatrix can be written as

Vfevd(γ) = s2(Z ′Z)−1
(

I + Z ′[X, h]
(

[X, h]QZ [X, h]
)

−1
[X, h]′Z(Z ′Z)−1

)

. (19)

Note that Z ′h = 0, so that in the partitioned central matrix of the second term only
the submatrix corresponding to X will be selected. Then, we have the simplification
of (19),

Vfevd(γ) = s2(Z ′Z)−1 + s2(Z ′Z)−1Z ′X
(

X ′QZX
)

−1
X ′Z(Z ′Z)−1. (20)

In contrast, by expanding out (13), the correct variance for γ can be written as

Viv(γ) = σ2
e(Z

′Z)−1+Tσ2
u(Z

′Z)−1+σ2
e(Z

′Z)−1Z ′X(X ′QDX)−1X ′Z(Z ′Z)−1. (21)

Again, s2 is a consistent estimator of σ2
e , so the first term in (20) and in (21) is

essentially the same. However, the expressions are otherwise different, so the fevd

variance formula for γ must also be incorrect. Again, we can show the direction of
the error.

Theorem 3. The fevd variance formula for time-invariant variables is too small.

Proof. As shown in the proof of Theorem 2, (X ′QDX)−1 ≥ (X ′Q[Z,h]X)−1 with
almost certain strict inequality, so the last term in the fevd variance formula (20)
understates the corresponding term in the correct variance expression (21). The
only exception would be the unlikely event that X and Z are exactly orthogonal,
causing those terms to vanish. But even then, the fevd variance formula will be
an understatement because it omits the term Tσ2

u(Z
′Z)−1, which must be positive

definite whenever there are random group effects.
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In general the fevd variance formula for γ is systematically biased and incon-

sistent. The usual reported standard errors will be too small. The extent of the
downward bias is unbounded. The correct variance expression includes a term that
is directly proportional to the number of observations per group T and to the vari-
ance of the group effects σ2

u. In contrast the fevd variance formula, and hence the
standard errors, are unaffected by these parameters. By increasing either or both
of these parameters, with everything else held constant, the extent of the downward
bias in the fevd variance formula becomes arbitrarily large.

Empirical Example

Reported results from the applied empirical literature align with these theoretical
results. Table 1 presents our replication of Table 1 in Belke and Spies (2008), and
shows results for pooled ols (pols), fe, fevd, and ht. We add a column for the
results from Stage 2 of fevd and a row for the coefficient δ that arises in Stage 3 to
further illustrate our theoretical results.3 The first six variables only are shown for
brevity. They include logged nominal GDP of the importing country lngdim, logged
nominal GDP of the exporting country lngdpex and logged bilateral real exchange
rate lrer, as time-varying variables. The time-invariant variables shown are logged
great circle distance in km ldist, border length in km border, and dummy for one
or both countries being landlocked ll. Results are estimated from a panel sample of
N = 420 trading pairs for T = 14 years giving 5262 observations.

The coefficients for the first three (time-varying) variables are the same for fe

and fevd, as shown by Theorem 1. To illustrate the second aspect of Theorem 1, the
coefficients for the next three (time-invariant) variables are exactly equal in Stage
2 and FEVD, and the solution for δ is one. Theorem 2 is illustrated by the way
the first three fevd reported standard errors are systematically smaller than the fe
ones, in an order of 0.01, 0.01 and 0.01, against 0.11, 0.07 and 0.06, even though
the coefficients themselves are identical and the standard error formula for fe is well
established as being correct under the assumptions of the model.

It is a little harder to illustrate Theorem 3, which says that the fevd standard
errors on the time-invariant variables are similarly understated. However the ht

estimator is just-indentified in this case, which is the reason the ht coefficients
and standard errors for time-varying variables are exactly the same as fe. It is no
surprise, then, that the coefficient estimates of three time-invariant variables (which

3We are grateful to those authors for supplying their data. We found some occasional small
differences in reported standard errors, probably due to use of “robust” standard errors in the
published results.
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Table 1: Partial replication of Belke and Spies (2008).
(1) (2) (3) (4) (5)

POLS FE Stage 2 FEVD HT

lngdpim 0.88*** 0.68*** . 0.68*** 0.68***
(0.04) (0.11) . (0.01) (0.11)

lngdpex 0.89*** 0.71*** . 0.71*** 0.71***
(0.03) (0.07) . (0.01) (0.07)

lrer -0.01 0.13** . 0.13*** 0.13**
(0.01) (0.06) . (0.01) (0.06)

ldist -1.27*** . -1.41*** -1.41*** -1.75***
(0.11) . (0.04) (0.00) (0.16)

border -0.00 . 0.00** 0.00*** -0.00
(0.00) . (0.00) (0.00) (0.00)

ll -0.16* . -0.23*** -0.23*** -0.16
(0.10) . (0.04) (0.00) (0.14)

... ... ... ... ...

δ . . . 1.00*** .
. . . (0.00) .

Notes: One, two, and three asterisks reflect significance at the 0.10, 0.05, and 0.01 confidence levels,

respectively. Robust standard errors are in parentheses.

are all exogenous) are generally similar for pols, fevd, and ht. As expected, the
ht standard errors are slightly larger but very close to those for pols, in an order of
0.16, 0.00 and 0.14 against 0.11, 0.00 and 0.10. However the fevd standard errors
are very small, at 0.00 in every case for the precision that is shown. This is most
implausible, because one would not expect pols to be generally less efficient, given
the structure of this example.

Belke and Spies (2008) is the only paper to our knowledge that reports results
for all methods including pols, fe, fevd, and ht. Several other applications report
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both fe and fevd results (e.g. Caporale et al., 2009; Mitze, 2009; Krogstrup and
Wälti, 2008). In the studies we examined, the fe t-statistics were consistently smaller
than those reported for fevd time-varying variables — and often much smaller —
except for few cases affected by robust standard error formulae. Again, this is despite
the fact that the coefficient estimators were actually identical by construction.

4. COMPARISON TO ALTERNATIVE ESTIMATORS

The fevd estimator was introduced as an alternative to the ht instrumental variable
estimator. By also expressing fevd in its instrumental variable representation we
are able to develop insights into their comparative properties. Hausman and Taylor
showed that the standard fixed effects estimator is equivalent to an iv estimator with
instrument set QDX . To that, they add any exogenous elements of X or of Z as
further instruments.4

To see the relationship more clearly, decompose X and Z into exogenous and
potentially endogenous sets: X = [X1, X2] and Z = [Z1, Z2], where the subscript 1
indicates exogenous variables and the subscript 2 indicates endogenous variables. The
ht procedure is then an iv estimator which uses the instrument set [QDX,X1, Z1].
In contrast, the fevd procedure is an iv estimator which uses the instrument set
[QDX,Z1, Z2].

The first essential difference between these estimators is that the fevd instrument
set excludes the exogenous time-varying variables X1. Of course, X1 may have no
members. In that case, the ht estimator for endogenous Z is not identified, so no
useful comparisons can be made.5 However, if X1 has known members, then a more
efficient estimator than fevd could be created by augmenting the instrument set
with X1. The second essential difference is that the fevd instrument set includes

the potentially endogenous time-invariant variables Z2. If these variables are in fact
correlated with the group effect, then the fevd estimator is inconsistent.

The fevd and ht estimators coincide exactly when there are no exogenous ele-
ments ofX and no endogenous elements of Z.6 The fevd procedure is thus primarily
of interest when some Z may in fact be endogenous. The essential question raised by

4Hausman and Taylor describe PDX as the additional instrument, but this interpretation follows
Breusch et al. (1989).

5Ideally, one would have theoretical grounds for identifying which elements of X are exogenous.
As a practical matter, one could also use an over-identification test to confirm this assumption,
since the fixed effects estimator of β is consistent.

6More precisely, the two estimators are identical when all elements of X are treated as if en-
dogenous and all elements of Z are treated as if exogenous, regardless of the actual endogeneity
status.
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Plümper and Troeger is then whether it is better to use a biased and inconsistent but
lower-variance estimator, or a consistent but higher-variance estimator. The ques-
tion of whether a weak-instruments cure is worse than the disease is a sound one,
which has been considered in other contexts by a variety of authors; see for example
Bound et al. (1995).

Under a mean-squared error (mse) loss function, neither the fevd procedure
nor the ht procedure will uniformly dominate the other. mse can be expressed as
variance plus bias squared. Thus, a consistent estimator such as ht will be preferable
to the fevd for sufficiently large sample size.7 In contrast, for a small sample with a
small endogeneity problem, it might be preferable to include the the time-invariant
endogenous variables Z2 as instruments, as fevd does. A more efficient estimator of
this type than fevd would be the iv estimator which augments the set of all valid
instruments with Z2, forming the instrument set [QDX,X1, Z].

One conventional approach to finding a balance would be to select between the
competing estimators based on a specification test (Baltagi et al., 2003). If the test
rejects the null hypothesis of no difference between estimators, then ht would be
selected. Otherwise, the efficient estimator estimator would be selected because the
evidence of endogeneity is too weak. Selection of a final estimator based on the
results of a preliminary test is known as a pretest procedure. Inference based on
the standard errors of the final selected estimator alone may be misleading; however,
bootstrap techniques which include the model selection step can circumvent this
problem (Wong, 1997).

Since the work of James and Stein (1961), statisticians have understood that
shrinking (biasing) an estimator toward a low-variance target can lower the mse. An
extensive literature suggests shrinkage approaches based on using a weighted aver-
age of two estimators when one estimator is efficient and the other is consistent; see
for example Sawa (1973), Feldstein (1974), Mundlak (1978), Green and Strawder-
man (1991), Judge and Mittelhammer (2004), or Mittelhammer and Judge (2005).
We consider a shrinkage estimator which combines the consistent but inefficient ht
estimator and the efficient but possible inconsistent iv estimator. For purposes of
illustration, we choose a particularly simple shrinkage approach, but the literature
contains many variations on the basic theme, which will have different strengths
and weaknesses. If the bias, variance, and covariance of two estimators are known,
it is algebraically straightforward to find the weight which minimizes the mse of a
combined estimator. In particular, suppose one estimator φ is unbiased. The other
estimator χ is biased, but has lower variance. The shrinkage estimator then has
the form χ + w(φ − χ), where w is the weight placed on the consistent estimator.

7Of course, consistency does require that valid instruments correlated with Z2 exist.
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Straightforward calculus shows that optimal weight which minimizes mse is

w =
µ2
χ + σ2

χ − σχφ

µ2
χ + σ2

χ + σ2
φ − 2σχφ

, (22)

where bias is indicated by µ and where variance is indicated by σ.
Of course, the exact bias and variances will usually not be known; however, prac-

tical estimates of these terms are readily available for iv estimators. Mittelhammer
and Judge (2005) show that plugging in such empirical estimates produces a prac-
tical weighted-average estimator. They choose a single w to minimize the sum of
mse over all coefficients. Since we are primarily interested in the mse of a single
coefficient in this analysis, we apply the solution for w, as presented in (22) which
is the single-covariate case of equation 3.5 of Mittelhammer and Judge. We use
standard empirical estimates of the variance and covariance terms from application
of the basic iv formula (13). The difference between the two estimators provides
our estimate of the bias of the efficient estimator, since ht is asymptotically unbi-
ased. Mittelhammer and Judge provide detailed discussion on calculating bootstrap
percentiles and standard errors, through application of Efron’s bias-corrected and
accelerated bootstrap (Efron, 1987). The only change needed for the present context
is to account for the panel structure, which is most simply done by resampling at
the group level rather than resampling single observations independently.

5. MONTE CARLO EVIDENCE

In this section we compare the practical performance under a range of conditions
of various estimators for an endogenous time-invariant Z. In addition to the fevd

and ht estimators, we consider a pretest estimator and a shrinkage estimator. The
pretest estimator selects between ht and the iv estimator based on the instrument
set set [QDX,X1, Z], which treats all Z as exogenous (as fevd does) in addition to
using the ht instruments. The pretest selection is based on the 95% critical value
of the Durbin-Wu-Hausman specification test for exogeneity of Z (see e.g. Davidson
and MacKinnon, 1993, p. 237). The shrinkage estimator assigns weights for the two
estimators according to a first-stage empirical estimate of formula (22).

Plümper and Troeger argue for the superiority of the fevd procedure over the
ht approach based on Monte Carlo evidence. While our simulation design stays
close to the original design where appropriate, our design differ from theirs in two
fundamental respects.8 The first difference is that in the Plümper and Troeger Monte

8The authors graciously provided the original simulation code upon request.

13



Carlo study, the ht estimator was not actually consistent. This is because their data
generating process had no correlation between X and Z. The fact that the available
instruments had, by construction, zero explanatory power for the endogenous variable
contrasts sharply with their characterization of the Monte Carlo results (p. 130):
“the advantages of the fevd estimator over the Hausman-Taylor cannot be explained
by the poor quality of the instruments.” Plümper and Troeger note (in footnote 11)
that the advantage of fevd persists in their experiments regardless of sample size.
However, the asymptotic bias of an iv estimator is the same as the bias of ols when
the instruments are uncorrelated with the endogenous variable, and thus irrelevant
(Han and Schmidt, 2001). In contrast, with a valid and relevant instrument, the
bias of the iv estimator will approach zero asymptotically. We therefore consider
scenarios in our simulation where the ht estimator is consistent, that is at where at
least one instrument for the endogenous Z is valid and relevant.

The second difference is that our simulations account for random variation in the
group effect, while the Plümper and Troeger code holds the effect (u) fixed across
all replications. Mundlak (1978) shows there is no loss of generality in assuming the
effect is random, because the fixed-effects estimator and its related procedures can
be described as inference conditional on the realizations of the effect in the sample.
Further, the effect needs to be at least potentially random if the relationship between
the effect and the regressors is to be described as correlation. As Mundlak shows,
if the random effect is correlated with the group-averages of regressors in unknown
ways, then the optimal linear estimator in the random-effects model is in fact the
fixed-effects estimator.

The code used by Plümper and Troeger does not simply fix the replicated effects
at some sample realization, rather it uses the Stata command ‘corr2data’ to fix the
sample moments of the variables and the group effects exactly in every replication.
The vector of effects is thereby ‘fixed’ by making it exactly orthogonal to the ex-
ogenous variables, effectively excluding any practical influence of the group effect
in the simulated data. That process does not simulate a fixed-effects model, but
rather one in which there is no group effect at all! By contrast, our random-effects
simulation represents the situation where the analyst is uncertain of the magnitudes
of the group effects.

We run a series of experiments which vary the degree of endogeneity and strength
of instrument. The data generating process for our simulation is

yit = 1 + 0.5x1 + 2x2 − 1.5x3 − 2.5z1 + 1.8z2 + 3z3 + ui + eit. (23)

Here, [x1, x2, x3] is a time-varying mean-zero orthonormal design matrix, fixed across
all experiments. [z1, z2] is a time-invariant mean-zero orthonormal design matrix,
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fixed across all experiments. z3 is fixed for all replications in each experiment. z3
has sample mean zero and variance 1, and is orthogonal to all other variables except
x1. The sample covariance of the group mean of x1 with z3 is set exactly to an
experiment-specific level, which allows us to vary the strength of the instrument
across experiments.9 The idiosyncratic error term e is standard normal. The random
effect u is drawn from a normal distribution in each replication. The expectation
of u conditional on z3 is ρz3, where ρ works out to be the value of cov(z3, u) set
in the experimental design. All other variables are uncorrelated with u, and the
variance of u conditional on all variables is 1.10 The level of endogeneity is varied
across experiments by changing the value of cov(z3, u). Each experiment has 1000
replications, which vary the random components u and e. There are 30 groups (N)
and 20 periods (T ), as reported in Plümper and Troeger (2007a). In implementing
the estimators [x1, x2, z1, z2] are treated as known exogenous, while [x3, z3] are treated
as potentially endogenous.

Figure 1 illustrates the simulation results for varying instrument strengths and
endogeneity levels. The vertical axis in each panel is the square root of mse of
various estimators for the endogenous time-invariant variable z3. The horizontal
axis of each panel is the covariance between the random effect u and z3. Each panel
illustrates different instrument strength, as indicated by stronger instruments having
higher correlation between the group-means of x1 and the endogenous variable z3.
The four panels display the experiments for corr(x̄1, z3) = 0.15, 0.30, 0.45, and 0.60
respectively.11 Note that, within each panel, the ht results are unchanging as a
consequence of the experimental design. Also, across panels, the fevd results are
unchanging by design.

The most notable feature of Figure 1 is that neither ht nor fevd uniformly
dominates the other. If reasonably strong instruments are available to implement
the ht procedure, and endogeneity is an issue, ht can greatly outperform fevd as
shown in Panel 4 because the higher variance of ht is compensated by lower bias.12

For all cases when endogeneity is absent (or is mild), fevd will be the most efficient
estimator, as shown at the far left of all panels, because fevd exploits the true (or

9Conditional on a non-zero sample correlation of the endogenous variable and the instrument,
the moments of the iv estimator exist, so the Monte Carlo mse is well-defined.

10The specified pattern of covariance is implemented through a Choleski decomposition approach.
11Because variances of x̄1 and z3 are both 1, the covariance of these variables equals their corre-

lation.
12The discussion here focuses on the small sample properties. When N is very large, ht will

always outperform fevd if there is endogeneity and valid and relevant instruments exist. For a
modest example of relative estimator performance as N grows, see the Appendix, where the case
of N = 300 and T = 2 is illustrated.

15



Figure 1: Performance of the four estimators for varying instrument strengths
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approximately true) restriction that z3 is uncorrelated with u. If the investigator has
strong prior reason to believe that endogeneity is not an issue, it makes sense to use
that information. Indeed, with informative priors over endogeneity, using a Bayesian
procedure which minimizes risk against that prior would be the ideal approach.
However, usually, the investigator will be using fe, or ht, or fevd precisely because
of concern that endogeneity might be a significant problem.

Rather than relying solely on prior information about the degree of endogeneity,
the investigator can rely on evidence from within the dataset. Both the shrinkage and
the pretest estimators are in this spirit. The shrinkage estimator in particular exhibits
remarkably good risk characteristics across all ranges of all four panels, and it clearly
dominates the pretest approach under mse loss. Indeed the shrinkage estimator often
has an mse lower than both ht and fevd, and never is much worse than the better of
the two. The Monte Carlo evidence suggests that a shrinkage estimator would almost
certainly be the best choice in the absence of prior information that the endogeneity
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problem is quite small.13 More generally, if incomplete or uncertain prior information
is available, alternatives which explicitly model that information, such as traditional
Bayesian techniques or recent variants such as Bayesian model averaging (Hoeting
et al., 1999), will likely be the best approach.

6. CONCLUSIONS

The fevd estimator of Plümper and Troeger (2007a) offers the analyst of panel
data a way to include time-invariant (and slowly-changing) variables in the presence
of group effects that are possibly correlated with the explanatory variables. Thus
it appears superior to the existing leading approaches of fixed-effects (which omits
the time-invariant variables) and Hausman-Taylor (which requires specifying the
exogeneity status of each explanatory variable). Plümper and Troeger’s motivation
for the procedure was mostly heuristic and their evidence came from Monte Carlo
experiments showing that fevd often displays better mean-squared error properties
than both fe and ht. The procedure can be implemented in three easy stages,
or even more conveniently in the Stata package provided by Plümper and Troeger
(2007b). This procedure has proved popular with panel data analysts.

Our analytical results and revised Monte Carlo experiments challenge the value
of fevd. Is it still a useful tool?

We find that the coefficients of all the time-varying variables after the three stages
of fevd are exactly the same as fe in the first stage. This fact is sometimes seen in
the empirical applications but rarely commented upon with any clarity. Obviously,
there is no gain in using fevd over the simpler fe if these coefficients are the objects
of interest. Further, if something is known about the exogeneity of explanatory vari-
ables then these estimates are inefficient because they ignore the extra information.
What is worse, unlike the simple first-stage fe, the standard errors from fevd are
too small — sometimes very much too small, judging from our empirical example
and other published applications. In this case fevd is a definite step backwards.

The main attraction of fevd is its ability to estimate coefficients of time-invariant
explanatory variables. But, again the third stage is questionable. The same coef-
ficient estimates are given in the second stage, which is a simple regression of the
group-averaged residuals from fe on the time-invariant variables. The purported

13While our focus is on estimator performance, it is worth noting that the Monte Carlo results
do confirm that the asymptotic variance formula in (13) provides unbiased estimates of the ht

and fevd sampling variance, when σ2
e and σ2

u are calculated with appropriate degrees of freedom
corrections for small sample. Further, the bootstrap quantiles for the shrinkage estimator are
reasonably accurate, confirming the results of Mittelhammer and Judge (2005).
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value of the third stage is to correct the standard errors, but this reasoning is now
known to be false. Indeed there will be cases where the second-stage standard errors
— even though they are known to be wrong — will be more accurate than those from
the third stage. The example we have provided in Section 3 shows this possibility.

So if fevd is the label to describe the three-stage procedure, it cannot be recom-
mended for making inferences about any of the coefficients. The coefficient estimator,
however, also represents a particular choice of instruments in standard iv. Dropping
the three-stage methodology and reverting to an explicit iv approach would allow
correct standard errors to be obtained in the cases where the estimator is consistent.
However, since all of the time-invariant variables are used as instruments, the fevd

estimator will be inconsistent if any of these are endogenous. The value of this es-
timator relative to others then depends on the trade-off between inconsistency and
inefficiency.

When the objective is reduced mean-squared error, the literature is replete with
other methods such as shrinkage estimators known to have good properties. We
have provided one such estimator that clearly dominates the fevd estimator over
much of the parameter space and also limits the risk in regions where the fevd

risk is unbounded. In undertaking these investigations we have also uncovered an
explanation for the misleading evidence favouring fevd that was suggested in the
previous Monte Carlo studies.
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APPENDIX

Monte Carlo results for large N and small T .

Figure 2: Relative estimator performance when N = 300 and T = 2
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In applications such as labor market studies the number of groups can be quite
large, often in the tens of thousands, since there may be a distinct group for each
individual in the study. Figure 2 presents a modest example of the relative behavior
of the four estimators as the number of groups grows larger. Each panel in Figure 2
illustrates the same parameter settings as the corresponding panel in Figure 1. The
simulation code for the figures is identical, except for the N and T settings. While
the overall number of observations is the same in the two figures, the larger number
of groups provides more information about the time-invariant variables. Panel 4
illustrates that the relative performance of fevd can be quite poor for reasonable
parameter settings and a modest number of observations.
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