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1 Introduction

The last decade has seen a rapid progress in dynamic stochastic general equilibrium

(DSGE) models. The pioneering work of Smets and Wouters (2003) caught the atten-

tion of academics and policy makers as they showed for the first time that these models

can forecast as well as standard atheoretical benchmarks. In recent years, DSGE models

have become an important tool at policy institutions for forecasting and policy analysis

and a lot of research, both at central banks and universities, has been directed towards

developing better and larger models. However at the same time, there remain impor-

tant questions regarding the strengths and weaknesses of these models to check if these

new models being developed are getting better at the intended purpose of monetary

policymaking.

The current state of macro models, and in particular, the DSGE models by design

were essentially silent about the financial crisis as they have no meaningful financial

sectors. It was certainly unusual, but maybe not unwarranted, that this debate about

the adequacy of DSGE models rose to the level of a Congressional hearing. Chari (2010)

testified:

The recent crisis has raised, correctly, the question of how best to improve

modern macroeconomic theory. I have argued we need more of it. After

all, when the AIDS crisis hit, we did not turn over medical research to

acupuncturists. In the wake of the oil spill in the Gulf of Mexico, should

we stop using mathematical models of oil pressure? Rather than pursuing

elusive chimera dreamt up in remote corners of the profession, the best way

of using the power in the modelling style of modern macroeconomics is to

devote more resources to it. (p.9)

Colander (2010) agreed with Chari but emphasized the need for devoting more resources

to interpret rather than develop models:

...increase the number of researchers explicitly trained in interpreting and

relating models to the real world. This can be done by explicitly provid-
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ing research grants to interpret, rather than develop, models. In a sense,

what I am suggesting is an applied science division of the National Science

Foundations social science component. This division would fund work on

the appropriateness of models being developed for the real world. (p.7)

This paper provides tools to aid in the process that Colander argues for. In particular,

we provide new diagnostic tools for evaluating the adequacy of DSGE models for the

intended purpose of monetary policymaking.

Much work in the area of evaluating DSGE models has focussed solely on evaluating

the overall fit of these models. The most notable among these is the analysis suggested

by Del Negro et al. (2007), in which they form a Bayesian comparison of the DSGE

model to a general time series model. They show that the degree to which the data

shifts the posterior plausibility mass along a continuum from the fully articulated struc-

tural model to the general model with no causal interpretability reflects the degree of

misspecification in the structural model. They claim,“. . . the degree of misspecification

in this large scale DSGE model is no longer so large as to prevent its use in day-to-

day policy analysis, yet is not small enough to be ignored. . . ” Besides this, since the

iconic work of Smets and Wouters (2003), a number of papers have evaluated DSGE

models in terms of their out-of-sample forecasting performance and have noted that

richly specified DSGE models now belong in the forecasting toolbox of central banks.1

The current set of evaluation tools, in our opinion, are highly insightful in informing us

about the overall likelihood of different competing models, but offer little guidance on

the evaluation of a particular structural model for its usefulness in day-to-day policy

analysis.

We take the view that current DSGE models are misspecified in some known and

some unknown dimensions and yet may still offer valuable insights for the policy process.

We argue that evaluating a flawed model using an overall fit metric is uninformative

about the specific nature of misspecification. Tiao and Xu (1993), Hansen (2005) and

1Some of the recent papers looking at out-of-sample forecasting performance of DSGE models are
Smets and Wouters (2004), Adolfson et al. (2007), Edge et al. (2009).
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Kydland and Prescott (1996) have argued that model evaluation should be based on a

question asked of the model and not on a global measure of fit, and that models should

be designed and evaluated for a specific question. Therefore, instead of evaluating these

models for their overall fit, we evaluate these models for their usefulness in the task of

monetary policymaking.

In this paper, we first analyze the intended purpose of monetary policy analysis to

highlight particular model features that should be of primary interest. Then we show

how to assess the DSGE model with regards to these selected features and develop a

diagnostic tool to link the discrepancies between the model and the data with regards

to these features to specific structural misspecifications in the model. In particular,

we argue that policymaking at central banks can be characterized as interpreting the

structural sources of unexpected outcomes in the observed data and accordingly acting

upon it.

In the DSGE context this amounts to checking whether the model implied structure

of the one-step (where a step is one decision making period) ahead forecast errors is

consistent with the observed data on two counts: a) forecast accuracy as reflected by

the standard deviations of the one-step ahead forecast errors (FEs) and b) the cross-

correlations among the FEs that are crucial to understanding the correct source of the

structural shocks causing the economy to deviate from its efficient path. These two

requirements of the DSGE models are akin to speed and skill. In any activity if you

focus only on developing one of these and not the other, the end result is most likely

going to be a disaster. For instance, in the sport of endurance horse racing, if the jockey

focusses only on developing speed and not skill, then he might not be prepared to jump

over natural obstacles such as creeks and ditches and very likely might fall into one.

We, therefore, want to emphasize that this paper is not about a horse race for only

achieving a better overall fit and that it differs significantly from the existing literature

that focuses on the forecast accuracy of DSGE models.

We illustrate our approach using the Smets and Wouters (2007) DSGE model, hence-

forth SW. We find, for example, that the one-step ahead FE correlation between output
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growth and inflation for the realized sample implied by the model has a larger magni-

tude of negative correlation than what can be accounted for by the DSGE model. We

similarly find other significant discrepancies between the structure of FEs estimated

on the observed data and that predicted by the model. We trace these discrepancies

to certain structural shocks, suggesting the source of the model misspecification. In

particular, we find that the consistency of the model with the data requires a non-zero

cross-correlation among the smoothed structural shocks of the model: a gross violation

of the model assumption. This can be viewed as one of the following two statements:

One, the realized sample is collectively treated as an outlier from the standpoint of the

DSGE model and it is unlikely for the DSGE model to produce a sample that is similar

to the realized sample. Two, the DSGE model is misspecified and the overidentifying

restrictions of the model are not consistent with the data.

In this paper we analyze the SW model using the posterior predictive tools described

in Faust and Gupta (2010a) and uncover strengths and weaknesses of that model from

the standpoint of monetary policymaking. Faust and Gupta (2010b) have used the

same tools of posterior predictive analysis to show that DSGE models are highly un-

likely to produce recessions similar to the ones observed in the post-War US sample,

implying that conditional on these DSGE models, the only available historical dataset

can be viewed as an abnormality. It is these kinds of evaluation tools, we argue, that

are needed to put the development of these DSGE models back on track. We believe

that analysis like that illustrated in this paper can be highly informative for policy-

makers, who—in lieu of an immediate fix—can judgementally allow for these models in

policymaking, and also for model developers, who can use this information to highlight

specific misspecifications in the model and, thus, focus their attention on improving

those portions of the models that are showing stress.

The rest of the paper is organized as follows: Section 2 characterizes the monetary

policy process as assessing the interrelationships among the FEs, provides a structural

diagnosis of the FEs, and describes the posterior predictive analysis used in the paper.

Section 3 illustrates the posterior predictive evaluation approach using the SW model
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and discusses the results, and Section 4 concludes.

2 Model Evaluation Purpose and Tools

In this section, we provide a characterization of model-based monetary policy analysis

that suggests model diagnostics that are particularly illuminating in highlighting certain

policy relevant deficiencies in these models. In the following sections we also show how

these suggested diagnostic tools can help us improve upon these models in their ongoing

development to aid in the monetary policymaking process.

2.1 Policy Analysis

Policy makers meeting at time t do the following things: they observe new data since

the last meeting at t− 1 (thus, t is measured as the index of meetings), set the policy

rate for the current meeting, it|t and make a forecast for the policy rate for the next

meeting, it+1|t.
2 Thus, on an ongoing basis policymakers come into the meeting at

time t with the anticipated policy decided at the previous meeting, it|t−1, and at the

meeting they decide how to update that view of optimal policy in light of information

that has arrived since the last meeting. Under time consistency at least, policy makers

will deviate from their expected policy path, it|t−1 only if they have observed new data

that is not consistent with their expectations.

Practical policymaking at central banks is thus characterized as interpreting the

structural sources of the news in the observed data and accordingly acting upon it. In

the DSGE context, the news is entirely reflected in the one-step ahead forecast errors

for the observable variables, Zt:

νt = Zt − Zt|t−1

Let us suppose that policy is given by a simple Taylor rule (any linear policy rule will

2In a forward looking model, forming the expectations about the future path of policy is an inherent
part of setting policy today.

6



do here),

it|t = a+ bπt|t + cyt|t

where πt|t is the assessment of inflation at t given time t information and yt|t is view of

the output gap at t given information at t. As written, value of these two variables at

t is not perfectly observed at t. Although, inflation is measured pretty well later, the

gap between actual and efficient output remains imprecisely measured indefinitely.

The update in policy rule is written as:

it|t − it|t−1 = a+ b(πt|t − πt|t−1) + c(yt|t − yt|t−1)

The crucial idea is that the update on these two latent variables under the linear and

Gaussian structure of a DSGE model is given by the Kalman filter as a linear function

of the news:  πt|t − πt|t−1

yt|t − yt|t−1

 = Γνt = Γ(Zt − Zt|t−1)

Thus, policy analysis, in this simple structure, is a matter of computing the news or

the surprises in observables. The structural interpretation of this news is then given by

the interrelationship among the structural shocks in the model and the Γs reflect the

implications of this interrelationship for the latent variables.

To see a simple version of this, consider a simple textbook aggregate demand/ aggre-

gate supply (AS/AD) framework where the observables are output and some indicator

of inflation. The basic idea is that if output and prices come in higher than expected,

then we might infer that a positive AD shock has shifted the AD curve outward, which

would raise both output and inflation, and warrant a higher interest rate. If on the

other hand, inflation comes in higher than expected but the output indicator is lower

than expected, then we might infer a negative supply shock has shifted the AS curve

inward, which would reduce output and raise inflation. The optimal policy response is

this case might be to leave rates approximately unchanged if, say, the fall in output is

the efficient response to the adverse supply shock.
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This stylized account of policy suggests that we analyze the structure of ‘news’

according to the model. In particular, the model will imply a correlation matrix for

one-step ahead forecast errors. Given a sample data, we can ask whether the realized

forecast errors implied by the model appear to have the correlation structure that is

implied by the model. This is a different question from pure forecast accuracy. We

are not asking ‘are the errors small?,’ we are asking ‘do the errors have the right

interrelationships?’

2.2 Diagnosis of the One-Step Ahead Forecast Errors: A Sim-

ple Example

Consider a simple model in which the data are generated by two supply shocks that

both push output growth and inflation in the opposite direction: yt

πt

 = A

 yt−1

πt−1

 + Cεt

where εt ∼ iidN(0, I), and the first row of the shock impact matrix, C, is negative and

the second row is positive, e.g.,

C =

 −1 −3

1 1


Setting aside small sample issues, the FEs are given by:

νt = Cεt
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We denote the variance-covariance matrix of FEs, νt, by Ω and that is given by:

Ω = CE(εtε
′
t)C

′

= CC ′

=

 10 −4

−4 2

 (2.1)

We see that the FE covariance for output growth and inflation generated by this simple

model will be negative: both shocks move output and prices in different directions.

Suppose the true model driving the data is as stated above except that one shock

moves both output and inflation in the same direction and the other shock moves them

in opposite direction as before. This can be captured in the above model if we replace

C by:

C̃ =

 −1 3

1 1


so the analyst is using a misspecified model that has two different supply shocks but

in reality the data are generated by a process with one supply and one demand shock.

Since both models have the same A, which we assume for simplicity is known, the

optimal forecast of the two models are identical. We have chosen C and C̃ so that

the variance of the two FEs is the same. This is to emphasize the difference between

the diagonal elements of the variance-covariance matrix of the FEs that tell us about

the accuracy of forecast errors, and the off-diagonal elements that tell us about the

interrelationship among the FEs.

Suppose we observe a large sample of data generated according to the true model

driven by A, C̃ and iid N(0, I) shocks. The FEs estimated on this large realized sam-

ple will then have the variance-covariance matrix approximately equal to C̃C̃ ′, and in
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particular the FE covariance between the two variables will be positive:

Ω̂ = C̃C̃ ′

=

 10 2

2 2

 (2.2)

Note that the diagonal elements of the variance-covariance matrix of FEs given by the

true model in the above equation are equal to those given by the misspecified model in

(2.1).

If one is working with the misspecified model, then all errors would be interpreted as

supply shocks, and policy would be chosen to be the optimal response to the observed

mix of supply shocks. The only misspecification one would observe is that the covariance

of forecast errors estimated on the realized sample would be different from that predicted

by the model (the off-diagonal elements in (2.1) and (2.2)).

We can diagnose the above symptom to provide a structural analysis of the mis-

specified model that would help us in figuring out the true model. In particular, any

estimate of the FEs, ν̂t, will imply an estimate of the structural shocks, ε̂t. Under the

model, we know that:

ν̂t = Cε̂t

The estimate of the variance-covariance matrix of FEs implied by the misspecified model

on the realized sample is then given by:

Ω̂ = CE(ε̂tε̂
′
t)C

′

= CΣ̂C ′

⇒ Σ̂ = C−1Ω̂C ′−1

where Σ̂ is the sample variance-covariance matrix of the estimated structural shocks.
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For our example values:

Σ̂ =

 10 −6

−6 4


Thus, the structure of this misspecified model reflected in C, along with the realized

variance-covariance matrix of the FEs, Ω̂, implies a realized value for the variance-

covariance matrix of the structural shocks that does not obey the assumptions of the

model. In other words, the estimated structural shocks on the realized sample turn out

to be correlated to accommodate the misspecification in the model.

The symptom of misspecification we observe is that our estimate of the realized

supply shocks on the observed sample, that is the ε̂′s, have a negative sample correlation.

The intuition: in the misspecified model both shocks move output and inflation in

different directions, but in the realized sample output and inflation tended to move

in the same direction. In order to reconcile the misspecified AS/AD model with the

realized sample, we need that the two supply shocks work together in just the right way.

That is we need just the right mix of negative correlation between the two structural

shocks. When one shock is positive and tends to raise output and prices, the other is

negative and tends to lower output and prices, and the positive effect dominates. In

this very simple case, when observing that the model ‘needed’ the two supply shocks to

be negatively correlated to explain the sample, we quickly deduce that what we need is

a shock that moves output and inflation in the same direction—a demand shock. In the

next section we show how to apply this analysis in the case of a more complex DSGE

model.

2.3 Diagnosis of the One-Step Ahead Forecast Errors in the

DSGE Context

The analysis works the same in a larger and more complex DSGE model, but given

higher dimensions, the diagnosis is a bit more subtle. The diagnosis of the one-step
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ahead forecast errors in the DSGE context focusses on three additional subtleties we

abstracted from in the simple case: a) sampling fluctuation in estimated parameters

and sample variance-covariance matrices, b) the model may be misspecified in terms of

the conditional mean, which was not the case above, and c) the DSGE models generally

imply a vector autoregression-moving average (VARMA) structure.

We will take account of a), sampling fluctuations, using posterior predictive analysis

as discussed in the next section. Issue b), misspecified conditional mean, adds no real

problems and it simply adds to the list of problems we may detect. Issue c) requires a

bit more discussion.

Regarding the third point, standard DSGE models imply a VARMA process for the

data instead of a pure vector autoregression as assumed in the simple example above.

In the VAR case, conditional on initial conditions we observe the ε’s, but this is not

the case with MA components. Thus, we must work with our best estimate of the ε’s,

which will be implied by the Kalman filter and/or Kalman smoother. Therefore, rather

than working with εt, we can work with the updated structural shocks, ε̂t|t that reflect

only the information up to period t, or the smoothed structural shocks, ε̂t|T .3 To see

the effects of the MA terms, write the MA representation of the observables as,

Zt =
∞∑
i=0

Ciεt−i

where Ci denotes the coefficients for the MA parts and C0 is the lag zero impact matrix

equivalent to C in the example above. Taking expectations conditional on information

available at time t− 1, we get:

Zt|t−1 =
∞∑
i=1

Ciε̂t−i|t−1

3In this paper I only report the results using εt|t to be consistent with the one-step ahead decision
making problem of the policymakers. However, one might want to look at the smoothed shocks to
reflect on how the model relates to the full information case. The results are not noticeably different
for the two cases.

12



The forecast errors, νt, are then given by:

νt = C0εt +
∞∑
i=1

Ci(εt−i − ε̂t−i|t−1)

= C0εt + err

This is an identity that must hold under the model for all versions of the shocks. For

example, for the updated shocks we analyze:

νt|t = C0εt|t + err

where the err includes the revision to the ε’s due to the new information made available

this period relative to the previous period. In the simple VAR example we did’t have

this additional err term. It turns out that this term in practice is small and so we only

focus on explaining the relation between νt and εt using the lag zero impact matrix C.

2.4 Describing Posterior Predictive Analysis

The literature on prior and posterior predictive analysis was popularized by Box (1980)

and has since then been extended by many others including Gelman et al. (1996),

Bernardo (1999), Geweke (2007). A complete description of this prior and posterior

predictive analysis as applied to the DSGE context is provided in Faust and Gupta

(2010a). We provide a brief sketch over here for the sake of completeness.

Posterior predictive analysis relies on a simple idea: if the available sample is collec-

tively an outlier from the standpoint of the model+posterior, then perhaps the model

or prior should be refined. It provides formal tools for judging the degree to which

relevant features of a sample are freakish from the standpoint of the model+posterior.

If the realized value is too surprising, then that calls into question the practical validity

of the model in further exercises.

In a standard Bayesian estimation approach, we have an economic model (the DSGE

model) that describes the full joint distribution of observed variables, Y , in terms of
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unobservable parameters, θ. We define a descriptive feature, h(Y ), as one that can

be described as a function of Y alone. The model+posterior will imply a marginal

distribution for this feature that is known as the posterior predictive distribution.4

This distribution is given by:

Fh(c) ≡ pr(h(Y rep) ≤ c)

where Y rep is a random sample drawn according to the model+posterior of the same

size as the realized sample. The implied posterior predictive density of this descriptive

feature is then denoted by fh(x) and this allows us to check how freakish the realized

sample, Y r, is by comparing the observed value, h(Y r), against this density. We define

the posterior predictive p-value of a one-tail test in the upper tail as the proportion of

points in the upper tail of this density, fh(x), relative to h(Y r).

1− Fh(h(Y r))

In this paper I consider only structural features, h(Y, θ), that depend upon θ in addition

to the sample. The structural features that I consider are the mean value and the

correlations of the optimal one-step ahead model consistent forecast errors and the first

and second moments of the updated structural shocks, εt|t.

Any feature when evaluated on the realized sample, Y r, is referred to as the realized

value of the feature. When talking about realized features, an important difference

arises between a descriptive feature and a structural feature. While the former is

defined completely by the realized sample at hand, Y r, the latter is not, because of the

dependence on the unknown θ.

Due to the dependence of the realized value of the feature on θ, computing the

p-value is slightly more complex for the structural features. However, conditional on a

4I only consider posterior predictive distribution for different features in this paper. One could simi-
larly look at the model+prior and that will imply the prior predictive distribution for the corresponding
feature.
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fixed θ∗, one can compute the realized value of the structural feature, h(Y r, θ∗), and

therefore the probability that the value for this feature in repeated sampling will be

greater than the realized value for a fixed θ∗ is given by:

pr(h(Y rep, θ∗) > h(Y r, θ∗))

In order to compute the posterior predictive p-value, one can now integrate out the

dependence on θ using the posterior distribution for the parameters to get the p-value

as follows:

pr(h(Y rep, θrep) > h(Y r, θrep))

where (Y rep, θrep) are drawn according to the model+posterior and Y rep is of the same

sample size as Y r.

In practical terms, computing the pair h(Y rep, θrep), h(Y r, θrep) for enough values of

(Y rep, θrep) drawn from the model+posterior will allow us to characterize the posterior

predictive distribution for the structural feature and the posterior distribution for the

realized sample value. To analyze these two distributions jointly we can look at a scatter

plot with h(Y r, θrep) on the horizontal axis and h(Y rep, θrep) on the vertical axis. The

p-value described above is then simply the proportion of points above the 45 degree line

for a one-tail (upper tail) test of the posterior predictive density. For example, if the

upper tail p-value is 0.05, we will see only 5% of the scatter plot above the 45 degree

line. Summarizing a distribution with a single number such as a p-value can hide a

lot of information. Such crude summaries should, therefore, be used with caution, and

we will largely report the entire predictive density. Still at times, p-values provide a

convenient and compact summary.

If the realized structural feature is not surprising from the standpoint of model

+posterior then one should expect to see most of the scatter cloud to lie around the

45 degree line. On the other hand, if the entire scatter cloud lies either mostly above

or mostly below the 45 degree line, then it says that for essentially no value of the

posterior parameter is the model able to produce a value similar to that observed on
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the realized sample. This implies that either the realized sample is freakish from the

standpoint of the DSGE model and we will almost never observe a sample like that

again, or that the DSGE model is misspecified with regards to that feature.

3 Application

In this section, we evaluate the iconic SW DSGE model for the task of monetary policy

analysis using the diagnostic tools of posterior predictive analysis as described in the

previous section. We chose this model over many other competing models because this

was the first model that was shown to forecast as well as certain atheoretical benchmarks

like Bayesian VARs. It introduces a rich set of frictions and as many structural shocks

as observed variables, most of which have meaningful economic interpretations. In

addition, this is one of the best known medium-scale DSGE models available for policy

analysis. In the rest of this section I first briefly discuss the model, and then discuss

the results of the posterior predictive evaluation of this model and their implications

for model assessment.

3.1 DSGE Model: Smets and Wouters (2007)

SW is an extension of the standard DSGE model with sticky wages and sticky prices,

largely based on Christiano et al. (2005)5. This model allows for sticky nominal wage

and price settings with backward inflation indexation. Other features include habit

formation in consumption, investment adjustment costs, variable capacity utilization,

and fixed costs in production. The model introduces seven orthogonal structural shocks

that include productivity, investment, risk premium, government spending, wage and

price mark-up, and monetary policy shocks.

Households maximize a non-separable utility function in consumption and labor.

Consumption depends on the previous period’s consumption and the degree of habit

5The log-linearized equations of the model are provided in appendix A. Readers are referred to
Smets and Wouters (2007) for a thorough explanation of the model equations and frictions.
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formation is given exogenously. Labor is differentiated, so households have some market

power over wages. Due to wage rigidity à la Calvo (1983), households set their optimized

wages only periodically, and the households that do not optimize, partially index the

wages to the previous period’s inflation. Households own the capital stock and rent

it out to firms. They decide how much to invest given the investment adjustment

costs and also determine the rate of capital utilization in order to minimize costs.

Labor aggregator firms purchase the differentiated labor input from the households

and transform it into aggregate labor using the Kimball aggregator. A continuum of

intermediate firms purchase this aggregated labor and rent capital from households and

produce differentiated goods that are sold to the final producers. Similar to households,

intermediate firms face nominal rigidities and set prices à la Calvo (1983). Prices that

are not optimized are partially indexed to the previous period’s inflation. The final

goods firm then takes the prices of these intermediate goods as given and transforms

them into a composite good sold to consumers, investors, and the government. The

model is closed with a Taylor type monetary policy reaction function, where the interest

rate is adjusted gradually in response to the output gap and inflation.

This model has been estimated with Bayesian techniques using quarterly U.S. data

for seven key macro-economic variables from 1966 to 2004: real GDP growth, real

consumption growth, real investment growth, inflation, real wage growth, hours worked,

and the nominal interest rate. GDP, personal consumption expenditure and private

fixed investment are all deflated using GDP price deflator and divided by a population

index, thus making them real per capita variables. Hours worked is computed by

multiplying civilian employment with the average weekly hours worked by all persons

in the non-farm business sector. This is divided by the population index to make the

series per capita. Real wage is computed by deflating the hourly compensation of all

persons in the non-farm business sector by the GDP deflator. Inflation is defined as the

log difference in the GDP deflator, and the nominal interest rate used is the quarterly

effective federal funds rate. All growth rates are computed using quarter-to-quarter log

differences.
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3.2 Variance-Covariance Matrix of One-Step Ahead Forecast

Errors

In this paper, we compare the realized value of the elements of the variance-covariance

matrix of the FEs, Ω, implied by the model+posterior with the corresponding posterior

predictive distribution.6 The matrix Ω can be broken down into the diagonal elements,

the standard deviations of the one-step ahead FEs (FESTDs), and the normalized off-

diagonal elements, the one-step ahead FE correlations (FECs). We demonstrate that it

is informative to evaluate these off-diagonal elements of Ω. To begin with, we provide

a comparison of the point estimates at the posterior mode for the realized value and

the population value. However, these are only meant to provide a benchmark reference

point and we later look at the full posterior predictive distribution.

Table 1 compares the posterior mode value for the elements of Ω, Ω(θ∗), to the

realized value for these features computed at the posterior mode, Ω(Y r, θ∗). For the

FESTDs, the posterior mode values implied by SW are “close” to the realized values im-

plied by the model at the posterior mode. This closeness in point estimates is confirmed

by the posterior distributions around these point estimates. The first row in Figure 3

graphs the scatter plots of the the FESTDs, the diagonal elements of Ω. These scatter

plots provide a natural way to compare the posterior predictive density (vertical axis)

to the posterior density for the realized sample (horizontal axis) for these structural

features. For instance, for the FESTD of interest rates (Figure 3, row 1, column 7),

the scatter cloud centers on the 45 degree line. This says that a typical sample drawn

according to the model+posterior will have its interest rate FESTD similar to what is

observed in the sample at hand. Except for output growth and hours (for which the

scatter cloud lies mainly over the 45 degree line), this is true for all the other observed

variables. The p-values reported on the upper left corner for the panels for the FESTD

of output growth and hours indicates that the model+posterior produces much higher

6All computations are done using the software DYNARE. The posterior predictive distributions
and the posterior distributions for the realized structural features are based on 60000 random draws
from the posterior distribution of the estimated parameter vector θ in SW.
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volatility in these variables than what it estimates on the realized sample. Overall,

we observe that the SW model does well with regards to matching the forecast error

accuracy as measured by the diagonal elements of the Ω matrix.

The second half of Table 1 compares the posterior mode value of the off-diagonal

elements of Ω, the FECs, to the realized value for these features computed at the

posterior mode. SW performs poorly with regards to some key FECs. The scatter

plots comparing the posterior predictive values to the posterior values for the realized

sample for these FECs are graphed in rows 2,3 and 4 in Figure 3.

As an illustration, we focus on the FEC(Hours,∆W ) graphed separately in Figure 1

in panel (a).7 In this case, the entire scatter cloud lies above the 45 degree line implying

that the FEC(Hours,∆W ) is much higher in predictive samples than what is observed

in the realized sample. The posterior predictive values (on the vertical axis) are centered

around zero, whereas the posterior values for the realized sample (on the horizontal axis)

show a negative correlation.

The diagnosis of this discrepancy guides us to the structural misspecification in

this model using the structural accounting provided in section 3.3. The remaining

panels of Figure 1 graph the scatter plots for the correlations among the updated

structural shocks that account for why the posterior values for the realized sample of

the FEC(Hours,∆W ) differ substantially from its posterior predictive values. Table 6

provides a quantitative accounting at the posterior mode for how much of the negative

realized value of FEC(Hours,∆W ) is accounted for by these correlated shocks.

The economic rationale behind why the model needs correlated shocks to generate

the negative FEC(Hours,∆W ) shown in Figure 1 is as follows. The models needs

a shock that raises wages and lowers hours at the same time to produce the negative

correlation between the forecast errors for hours and wage growth. Productivity and

wage-mark up shocks are the only potential candidates in a model with uncorrelated

shocks. First consider the productivity shock. A positive productivity shock in this

7The point estimate for this correlation, given in Table 1, is -0.01 for the posterior mode value
relative to -0.30 for the realized value.

19



model results in an increase in a firm’s mark-up as sticky prices prevent the firm’s

prices from rising and sticky wages stall the rise in wages until the next period of

optimization. Because this wedge between the marginal productivity of labor and real

wage is expected to decrease over time, real wages are expected to rise in the future.

This generates an intertemporal substitution effect that causes households to reduce

their labor supply contemporaneously. Also, due to predetermined prices, real balances

and, thus, aggregate demand remain unchanged and the same output can be produced

using fewer hours. In the presence of sticky wages, the model+posterior is unable to

produce a big enough increase in wage growth. Therefore, in response to a productivity

shock alone, the model+posterior is quantitatively unable to account for the negative

one-step ahead forecast error correlation between hours and wage growth realized in

the observed sample. The wage growth shock, on the other hand, bypasses the wage

stickiness and increases wages on impact but has a limited negative impact on hours

worked as the negative wealth effect is countered by the positive substitution effect.

Overall, whatever little negative correlation is generated by the productivity and

wage mark-up shocks is countered by positive correlation generated between hours and

wage growth by other shocks. The model, therefore, requires certain pairs of shocks

estimated on the realized sample to happen together in order to produce the negative

value of realized FEC(Hours,∆W ). For instance, a positive correlation between the

productivity and wage mark-up shocks causes wages to rise and hours to fall on impact

thereby explaining some of the additional negative realized value of FEC(Hours,∆W ).

The negative realized structural shock correlation between government spending and

wage mark-up also accounts for the negative realized value of FEC(Hours,∆W ). As

discussed earlier, a positive wage mark-up shock that raises wages but does not have a

significantly negative impact on hours, when accompanied by a negative spending shock

causes hours worked to fall substantially producing a negative correlation in the FEs

for hours and wage growth. Similarly, the other correlated shock pairs can be shown to

account for the observed FEC(Hours,∆W ) using the lag zero shock impact matrix,
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C, provided in Table 3.8

This diagnosis tells us that the SW DSGE model+posterior is highly unlikely to

produce samples with a negative value for FEC(Hours,∆W ). This symptom of mis-

specification then tells us that the model needs a shock that raises wages and lowers

hours worked at the same time and does so in a quantitatively significant way. A

leisure preference shock, that amounts to people being voluntarily unemployed, could

do the trick. However, this is not a satisfactory explanation and we argue that other

potential channels such as the role of labor market frictions and efficiency wages should

be explored within the framework of these DSGE models to account for this observed

discrepancy.

Figure 2 and Table 7 provide a similar accounting analysis for the realized value

of the FEC(∆Y, π). Figure 2, panel (a), graphs the scatter plot for FEC(∆Y, π) and

the remaining panels plot the correlated pairs of structural shocks that account for

the realized value of this FEC. We see that even though this correlation tends to be

negative for the posterior values for the realized sample, the posterior predictive values

can produce such a low negative correlation only about nine percent of the times.

This might be considered as a crucial issue if the model is to be taken seriously for

use in policy analysis as output growth and inflation are the two key policy variables.

As was shown in our simple example in section 3.2, it is important for the model to

get right not only the standard deviation of the FEs in output growth and inflation,

but more importantly how these two forecast errors are correlated. The diagnosis of

this FEC depends, once again, on the nature of the realized estimate of structural

shock correlations and the shock impact matrix, C, that shows that productivity and

mark up-shocks are the only candidates to generate a negative correlation between

the FEs for output growth and inflation. However, these shocks are not large enough

to get the desired negative correlation on their own and the model requires certain

shocks to happen together. The problem here seems to be that the model+posterior is

8It is important to note that matrix C reports the impact effect of a one standard deviation shock
and not a one unit shock.
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putting too much emphasis on demand shocks and in order to counter-act this effect, the

model requires a combination of positive and negative correlations among the various

structural shocks as shown in Table 7. Faust and Gupta (2010a) highlight that the

model+prior in the SW model heavily leans towards a bigger role for the demand

shocks. In light of that result, to fix this issue at hand, one could either change the

prior or think of a new model specification that has a larger role for supply shocks

in these models. However, since we are looking at a general equilibrium model, it is

not certain how this would affect the overall likelihood of the model. This analysis,

nevertheless, provides a starting point for future model refinement as it highlights a

crucial weakness of the model.

Figure 3 graphs the scatter plots for all the elements of Ω; Figure 4 graphs the

scatter plots for all the elements of Σ. We could repeat the above analysis for all the

elements of Ω by relating them to the elements of Σ using the impact matrix, C.

3.3 Mean of One-Step Ahead Forecast Errors

It might seem surprising that the mean value of the structural shocks happens to be non-

zero in the SW DSGE model. This is, however, because the mean is not freely estimated

in the model. Thus, as in a regression with no intercept term, the residuals need not

be mean zero.9 Output and investment growth, are both being under-predicted by the

model (evaluated at posterior mode) by approximately 0.5% per quarter and investment

growth by as much as 1.27% per quarter. On the other hand, inflation and interest rate

variables have independent parameters estimating the trend value for these variables

and these turn out to be under-predicted (at the posterior mode) by approximately

0.1% per quarter which could be ascribed to sampling or model uncertainty. Edge et al.

(2008) disaggregate US private demand into four categories of private expenditures and

confirm that these expenditure categories tend to have different average trend growth

9In particular, the model parameterizes the same deterministic trend value for all the real growth
variables namely, output growth, consumption growth, investment growth and real wage growth. It is
precisely these variables that tend to have a much higher mean value of the FEs.
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rates. Therefore, if the different expenditure categories are constrained to a common

trend growth rate as in the analyzed SW model for the US economy then the lack of

free parameters shows up in the mean value of the FEs. Given these mean FEs are

non-zero, it is nevertheless interesting to ask whether the observed in-sample bias is

consistent with errors obtained by real-world forecasters on this sample.

In this section, we compare the posterior distribution for the realized value of the

mean of the in-sample FEs with some simple model-free benchmarks. These are: (i)

the median Survey of Professional Forecasters (SPF) FEs for the observed variables—

output growth, consumption growth, investment growth, and inflation; and (ii) the

federal funds futures (FFF) FEs.10 The one-quarter ahead SPF and federal funds fu-

tures are both real-time forecasts and, as a result, are disadvantaged in comparison with

the model forecasts on two counts: first, they are out-of-sample forecasts; second, the

current quarter information for most variables is not available for real-time forecasts

and they, instead, have to be conditioned on the nowcast—the forecast for the current

quarter for the variable concerned. The in-sample DSGE model forecast, on the other

hand, assumes full knowledge of current period information, including all information

for the current quarter that is made available in the future. Having noted the differ-

ences in the timing conventions, these real-time forecasts are meant to provide only a

benchmark for the mean value of the FEs over the sample period.

As an illustration, we discuss the mean value of the FE’s for investment growth

graphed in the bottom row in Figure 5. The grey band shows the 90% posterior distri-

bution for the realized value of this forecast error. This band consistently lies over the 0

line for most part of the sample and the mean realized value of the forecast error in in-

vestment growth for the full sample from 1966 to 2004, implied by the model+posterior

is 1.27% on a quarterly basis. This value is given in Table 4. The median Survey

of Professional Forecasters mean FE for investment growth for the sample from 1981

10The SPF forecasts for the next quarter are made in the middle of the current quarter. For instance,
the second-quarter SPF forecasts are made in the middle of February. The FFF forecasts are made
at the end of the current quarter. Here, we use the average FFF forecast for the month of January,
February, and March made at the last day of December.
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to 2004 is 0.39%. The realized value for the corresponding sample, implied by the

model+posterior, is 1.12% per quarter. One can use the similar diagnostic analysis as

used for the variance-covariance matrix of FEs, to diagnose the realized mean value

of the one-step ahead investment growth FE using the impact matrix C and the real-

ized mean value of the updated structural shocks given in Table 5. The main non-zero

mean values for the structural shocks that contribute to the non-zero FE for investment

growth are the productivity shock, the investment technology shock, the risk-premium

shock and the government spending shock.

The posterior distributions for the realized value of the mean structural shocks are

given in Figure 7. Except the monetary policy shock and the wage mark-up shock, all

other shocks have a non-zero realized mean value.

4 Conclusion

This paper provides a way to analyze the monetary policy process using the posterior

predictive analysis described in Faust and Gupta (2010a). The paper characterizes

monetary policy analysis as being divided into two steps: first, estimating the first

and second moments of the FE’s and, second, filtering the structural implications of

these forecast errors using the shock impact matrix, C, and the realized value of the

estimated structural shocks. The paper illustrates the application of these tools to the

SW model, highlighting the model’s strengths and weaknesses. The model+posterior

does reasonably well on the FESTDs but performs poorly with regards to certain key

FECs. In addition, the mean FE’s for the observables implied by the model+posterior

are nonzero. The paper also highlights specific misspecifications in the model with

regards to the structural shocks. We show that the model is highly over-identified and

the only way it can accommodate the observed data is by assigning nonzero cross-

correlations and nonzero means to the realized value of the one-step ahead forecast

errors and this is not consistent with a structural interpretation of the shocks.

The ultimate goal of any model evaluation tool should be to highlight specific flaws
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in the structure of the model and identify possible areas of improvement for future

model building. The evaluation tools discussed in this paper diagnose the problem

areas in these models at a structural level and highlight what pairs of shocks in these

models are the trouble areas. We strongly encourage the use thee tools as it can help

the DSGE modelling experts to concentrate their efforts in model refinement in areas

that are particularly troublesome from the standpoint of policymaking.
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5 Appendix

5.1 Log-linearized Model equations

The consumption Euler equation is given by:

ĉt =
h/γ

1 + h/γ
ĉt−1 +

1

1 + h/γ
Etĉt+1 +

(σc − 1)(W h
∗ L∗/C∗)

σc(1 + h/γ)
(l̂t − Etl̂t+1)

− 1− h/γ
σc(1 + h/γ)

(r̂t − Etπ̂t+1 + ε̂bt)

Current consumption depends on a weighted average of past and expected future con-

sumption, the ex-ante real interest rate(r̂t − Etπ̂t+1), expected employment growth

(l̂t − Etl̂t+1) and a risk-premium shock, ε̂bt . h represents the habit formation coeffi-

cient, σc is the inverse of the intertemporal elasticity of substitution and γ represents

the labor-augmenting deterministic growth rate in the economy. The investment Euler

equation is given by:

ît =
1

1 + βγ1−σc
ît−1 +

βγ1−σc

1 + βγ1−σc
Etît+1 +

1

(1 + βγ1−σc)γ2ϕ
q̂t + ε̂it

Current investment, ît, depends on past and expected future investment, the value of

the existing capital stock, q̂t, and an investment-specific technology shock, ε̂it. β is the

rate of time preference and ϕ is the steady-state elasticity of the investment adjustment

cost function. The value of capital is given by:

q̂t = βγ−σc(1− δ)Etq̂t+1 + (1− βγ−σc(1− δ))Etr̂kt+1 − (r̂t − Etπ̂t+1 + ε̂bt)

The value of the capital stock depends positively on its expected future value and the

expected rental rate of capital, Etr̂
k
t+1, and negatively on the ex-ante real interest rate

and the preference shock. The current capital used in production, k̂st is given by:

k̂st = k̂t−1 + ẑt
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Current capital used in production is equal to the capital installed in the previous

period, k̂t, plus the degree of capital utilization, ẑt. The degree of capital utilization as

determined by the rental rate of capital is given by:

ẑt =
(1− ψ)

ψ
r̂kt

where ψ reflects the capital utilization adjustment costs. The rental rate of capital is

given by:

r̂kt = −(k̂t − l̂t) + ŵt

The capital accumulation equation is given by:

k̂t =
(1− δ)
γ

k̂t−1 + (1− (1− δ)
γ

)̂it + (1− (1− δ)
γ

)(1 + βγ1−σc)γ2ϕε̂it

where δ is the rate at which capital depreciates. On the supply side, aggregate produc-

tion is given by:

ŷt = φp(αk̂
s
t + (1− α)l̂t + ε̂at )

Output is produced using capital and labor where α denotes the share of capital in

production. ε̂at represents the productivity shock, while φp represents the fixed costs in

production. On the demand side, the aggregate resource constraint is given by:

ŷt = (1− gy − iy)ĉt + (γ − 1 + δ)ky ît +Rk
∗kyẑt + ε̂gt

The demand for output comes from consumption, investment, capital utilization costs,

and government spending. The coefficients on consumption and investment represent

the steady-state consumption-output ratio and the steady-state investment-output ratio

respectively. ky is the steady-state capital-output ratio and Rk
∗ is the steady-state rental

rate of capital. The price mark-up defined as the negative of the real marginal cost is

given by:

µ̂pt = m̂plt − ŵt = α(k̂t − l̂t) + ε̂at − ŵt
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Price mark-up, µ̂pt , is equal to the difference between the marginal product of labor,

m̂plt, and the real wage rate, ŵt. The price equation illustrating the profit maximization

behavior of the firms is given by:

π̂t =
ιp

1 + βγ1−σcιp
π̂t−1+

βγ1−σc

1 + βγ1−σcιp
Etπ̂t+1−

1

1 + βγ1−σcιp

(1− βγ1−σcξp)(1− ξp)
((φp − 1)εp + 1)ξp

µ̂pt+ε̂
p
t

Current inflation depends on past and expected future inflation, the marginal cost,

−µ̂pt , and a price mark-up shock, ε̂pt . ιp is the degree of indexation to past inflation,

(1 − ξp) is the Calvo probability of being allowed to re-optimize prices, and εp repre-

sents the curvature of the Kimball goods market aggregator. A higher εp increases the

complementarity with other prices, and, therefore, slows the speed of adjustment to the

desired mark-up. The wage mark-up defined as the difference between real wage and

the marginal rate of substitution is given by:

µ̂wt = ŵt − m̂rst = ŵt − (σl l̂t +
1

1− h/γ(ĉt − h/γĉt−1)
)

The wage equation is given by:

ŵt =
1

1 + βγ1−σc
ŵt−1 +

βγ1−σc

1 + βγ1−σc
(Etŵt+1 + Etπ̂t+1)− 1 + βγ1−σcιw

1 + βγ1−σc
π̂t

+
ιw

1 + βγ1−σc
π̂t−1 −

1

1 + βγ1−σc

(1− βγ1−σcξw)(1− ξw)

((φw − 1)εw + 1)ξw
µ̂wt + ε̂wt

Current real wage depends on past and expected real wages, past, current, and expected

inflation, the wage mark-up, µ̂wt , and a wage mark-up shock, ε̂wt . ιw is the degree of

wage indexation to past inflation, (1− ξw) is the Calvo probability of being allowed to

re-optimize wages, εw represents the curvature of the Kimball labor market aggregator,

and (φw − 1) is the steady-state labor market mark-up. The model is closed using a

Taylor type monetary policy reaction function given by:

r̂t = ρr̂t−1 + (1− ρ)[rππ̂t + ry(ŷt − ŷpt )] + r∆y[(ŷt − ŷpt )− (ŷt−1 − ŷpt−1)] + ε̂rt
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The monetary authorities gradually adjust the interest rate in response to output gap

and inflation. Output gap is defined as the difference between actual and potential

output, ŷpt . Potential output is defined as the efficient level of output that would prevail

in the absence of price and wage rigidity, i.e. under flexible prices and wages. rπ, ry,

and r∆y are coefficients of the monetary policy reaction function, and ρ represents the

interest rate smoothing in the policy function.
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Table 1: Ω, Variance-Covariance Matrix of FE’s, νt, at Posterior Mode.
Variables Standard Deviations

Posterior Realized Value
∆GDP 0.85 0.74

∆C 0.56 0.62
∆I 1.75 1.84

hours 0.61 0.54
∆W 0.52 0.55

inflation 0.29 0.28
interest rate 0.24 0.24

Correlations
∆GDP, ∆C 0.50 0.56
∆GDP, ∆I 0.59 0.48

∆GDP, hours 0.63 0.49
∆GDP, ∆W 0.19 0.12

∆GDP, inflation -0.05 -0.16
∆GDP, interest rate 0.04 0.14

∆C, ∆I 0.22 0.36
∆C, hours 0.38 0.22
∆C, ∆W 0.04 0.26

∆C, inflation -0.08 -0.28
∆C, interest rate 0.05 0.07

∆I, hours 0.41 0.48
∆I, ∆W 0.14 0.02

∆I, inflation 0.01 -0.04
∆I, interest rate 0.03 0.14

Hours, ∆W -0.01 -0.30
Hours, inflation 0.12 0.11

Hours, interest rate 0.29 0.38

∆W, inflation -0.09 -0.20
∆W, interest rate -0.03 -0.09

inflation, interest rate 0.31 0.17
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Table 2: Σ, Variance-Covariance Matrix of Structural Shocks, εt|t, at Posterior Mode.

Shocks Standard Deviations
Posterior Realized Value

productivity 0.45 0.46
risk premium 0.24 0.26
govt spending 0.52 0.54

investment 0.45 0.47
monetary policy 0.24 0.24
price mark-up 0.14 0.14
wage mark-up 0.24 0.25

Correlations (Posterior Mode Value=0)
productivity, risk premium -0.19
productivity, govt spending 0.03

productivity, investment -0.27
productivity, monetary policy -0.01

productivity, price mark-up -0.13
productivity, wage mark-up 0.17

risk premium, govt spending 0.27
risk premium, investment -0.09

risk premium, monetary policy -0.12
risk premium, price mark-up 0.25
risk premium, wage mark-up -0.03

govt spending, investment -0.22
govt spending, monetary policy 0.18
govt spending, price mark-up 0.25
govt spending, wage mark-up -0.13

investment, price mark-up 0.02
investment, inflation 0.06

investment, wage mark-up -0.22

monetary policy, price mark-up -0.06
monetary policy, wage mark-up -0.05

price mark-up, wage mark-up -0.06
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Table 3: Lag Zero Shock Impact Matrix, C at Posterior Mode
Variables→ ∆Y ∆C ∆I hours ∆W π interest

Shocks↓ rate
productivity 0.33 0.07 0.32 -0.28 0.07 -0.05 -0.07
risk premium -0.42 -0.51 -0.35 -0.29 -0.04 -0.02 -0.11
govt spending 0.50 -0.06 -0.12 0.34 0.01 0.01 0.03

investment 0.37 -0.04 1.64 0.25 0.03 0.04 0.04
monetary policy -0.19 -0.19 -0.28 -0.13 -0.03 -0.04 0.18
price mark-up -0.12 -0.05 -0.23 -0.05 -0.28 0.24 0.06
wage mark-up -0.03 -0.08 -0.07 -0.06 0.43 0.13 0.04
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Table 4: SPF vs DSGE Model: Mean Value of FE’s, E(νt).
Variables Period SPF DSGE DSGE(full sample)
∆GDP 81Q4 — 04Q4 0.03 0.40 0.56

∆C 81Q4 — 04Q4 0.16 0.38 0.50
∆I 81Q4 — 04Q4 0.39 1.12 1.27

inflation 69Q1 — 04Q4 0.02 0.10 0.10
interest rate∗ 89Q1 — 04Q4 -0.02 0.11 0.13
∗Interest rate forecast errors are based on federal funds futures.
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Table 5: Mean Value of Structural Shocks, E(εt|t), at Posterior Mode.

Realized Value
productivity 0.16
risk premium -0.25
govt spending -0.12

investment 0.27
monetary policy 0.01
price mark-up 0.05
wage mark-up 0.00

*Posterior mode value=0
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Table 6: Accounting the Realized Value of FEC(Hours,∆W ), at Posterior Mode
Shock Contribution to

Main Correlated Shock Pairs Correlation FEC(Hours,∆W )
(productivity, wage mark-up) 0.17 -0.07

(govt spending, wage mark-up) -0.13 -0.06
(investment, wage mark-up) -0.22 -0.08

(govt spending, price mark-up) 0.25 -0.08
(risk premium, price mark-up) 0.25 0.07
FEC(Hours,∆W ) with uncorrelated shocks= -0.01
FEC(Hours,∆W ) with correlated shocks= -0.30
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Table 7: Accounting for Realized Value of FEC(∆Y, π), at Posterior Mode
Shock Contribution to

Main Correlated Shock Pairs Correlation FEC(∆Y, π)
(productivity, price mark-up) -0.13 -0.05
(risk premium, price mark-up) 0.25 -0.13
(govt spending, price mark-up) 0.25 0.15

(investment, wage mark-up) -0.22 -0.05
FEC(∆Y, π) with uncorrelated shocks= -0.05
FEC(∆Y, π) with correlated shocks= -0.16
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Figure 1: Scatter plots of correlated shocks that account for FEC(Hours,∆W ).
Panel a) plots FEC(Hours,∆W ); remaining panels plot the correlated shocks that
account for the negative values of this correlation on the realized sample (see Table
6). Horizontal axis plots the posterior density for the realized sample; vertical axis
plots the posterior predictive values. The number in the upper left gives the smaller
share of points on either side of the 45 degree line.
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Figure 2: Scatter plots of correlated shocks that account for FEC(∆Y, π). Panel a)
plots FEC(∆Y, π); remaining panels plot the correlated shocks that account for the
negative values of this correlation on the realized sample (see Table 7). Horizontal
axis plots the posterior density for the realized sample; vertical axis plots the
posterior predictive values. The number in the upper left gives the smaller share
of points on either side of the 45 degree line.
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Figure 5: FE’s in output growth, consumption growth, and investment growth.
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Figure 6: FE’s in inflation and interest rate.
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Figure 7: Scatter plots for the mean value of the updated structural shocks, εt|t.
Horizontal axis plots the posterior values for the realized sample; vertical axis plots
the posterior predictive values. The number in the upper left gives the smaller
share of points on either side of the 45 degree line.
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