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Abstract

We study the early adoption of Twitter in the 111th House of Representatives. Our main
objective is to determine whether successes of past adopters have the tendency to speed up
Twitter adoption, where past success is de�ned as the average followers per Tweet (i.e. "Twitter
clout") among all prior adopters. The data suggests that accelerated adoption can be associated
with favorable past outcomes: increasing the average number of followers per Tweet among past
adopters by a standard deviation (of 8 followers per Tweet) accelerates the adoption time by
about 112 days. This acceleration e¤ect is weaker for those who already have adopted Facebook
and those who have access to information about a large number of past adopters. We later
�nd a strong relationship between an adopter�s realized followers per Tweet, and the success of
adopters preceding him/her. Thus, there may exist bene�ts associated with adopting Twitter
based on past successes of others.
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1 Introduction

Social learning can occur under two contexts. Agents within a community can learn from one

another through past actions or outcomes of their peers. While economic theory gives us a rich

set of predictions for both contexts, the general body of empirical literature has primarily focused

on identifying these peer e¤ects under the context of social learning through actions. However,

very little attention has been placed on identifying these e¤ects under the other paradigm; despite

the fact that clean identi�cation of these e¤ects associated with peer behavior is inherently hard

(if not impossible). For one thing, these so-called peer e¤ects may be spurious; and even if they

are not spurious, they are not necessarily caused by learning, as competing explanations involv-

ing crowding and network externalities often play a (larger) role. Using information about past

outcomes would certainly alleviate some of these identi�cation problems. We conjecture that this

void in the literature is likely due to the fact that obtaining data on both agent behavior and their

relevant outcomes is hard to come by. That said, this paper proposes using data from the recent

Twitter adoption craze among American politicians to address some of these de�ciencies in current

research.

Our data about Twitter adoption in the 111th House of Representatives is interesting for two

reasons: 1) we can observe the precise day in which a representative made his/her �rst Twitter

post (i.e., the date of adoption); and 2) their realized and publicly observable success at attaining

followers per Twitter post (i.e., a typical metric for in�uence on Twitter). The order of each

politician�s adoption allows us to measure the potential amount of information available to them at

the time of adoption; that is, for each adopter, we can identify the success of his/her predecessors.

Therefore, we can estimate the link between positive information shocks - in the form of large

averages for the followers/Tweet among past adopters - and the date of adoption for a politician in

question that may exist. Given the novelty of Twitter in general, we expect that these information

signals generated by past adoption behavior to play some role in the decisions of potential adopters.

Even though the monetary cost of opening a Twitter account is zero, politicians may still be

hesitant to adopt Twitter right away if doing so yields lackluster follower/Tweet statistics, thereby

revealing their weak support. However, if they observe that other politicians have been successful

at maintaining a follower base, then adopting soon after may also generate these bene�ts.

We �rst establish a relationship between the incentive to adopt early and favorable signals using

a simple model of delay. In the model, a risk averse agent has to decide whether to adopt a new

technology of uncertain value today, or wait until tomorrow. By waiting until the next period,
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he enjoys the possibility of receiving an additional information signal (on top of the set already

available to him). Because he discounts the future, this updated posterior comes at a price. In

light of favorable signals, the incentive to adopt right away increases: any value that comes from an

additional signal next period will be outweighed by the opportunity cost of missing out on a high

expected payo¤ (based on less information). The model also predicts that the agent will not wish

to wait if his initial prior is already precise. Finally, the impact associated with favorable signals

is dampened as the agent�s prior becomes more precise. In other words, these signals matter very

little to those who are already knowledgeable.

Interpreting the followers/Tweet outcomes among past adopters as information signals, we

estimate the impact that these signals have on the number of days it takes a politician to adopt

Twitter. Our estimates reveal that a standard deviation increase in the average followers/Tweet

among past adopters decreases the time of adoption by about 112 days. Furthermore, those who

have already adopted Facebook begin using Twitter soon, and are less in�uenced by increases in

the average followers/Tweet based on past information. As Facebook and Twitter are very similar,

one may argue that those with Facebook have a more precise prior about the merits of Twitter;

thus, these patterns appear to be consistent with what our simple model would predict. Similarly,

we �nd that the acceleration e¤ect associated with favorable information is also dampened by the

number of past adopters. Those who already have, potentially, access to a large set of signals may

not �nd much value in exploiting favorable signals.

Further analysis of our data reveals an interesting lag structure between a Twitter user�s own

success, and the success of those before him: increasing the average followers/Tweet among past

adopters is associated with an increase in a current adopter�s own followers/Tweet by a proportion-

ate amount. In other words, a politician who follows successful Twitter users may enjoy success

himself. This result suggests that these information signals can actually bene�t Twitter users.

There are a number of confounding factors that can potentially discount our results. The �rst

issue has to do with unobserved heterogeneity, or permanent correlated e¤ects among adopters

around similar time periods using the Manski (1993) terminology. While our data lacks the nec-

essary panel structure for �xed e¤ects estimation, we argue that controlling for the order of entry

may, to some extent control for omitted variables such as unobserved adoption costs. The second

issue has to do with sample selection, in that the adoption times we observe are only for those who

adopted. We also acknowledge that some of the adoption decisions may have been made deter-

ministically around the time of the start of o¢ ce (January 20, 2009), or that information signals
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received by the earliest adopters are based on too few observations. Given that each politician

makes his/her adoption decision in sequence, a relevant concern is temporal correlation of error

terms across adopters around similar time intervals. This issue can be framed under Manski�s

setting as a transitory correlated e¤ect, in that early adopters are likely to face similar shocks that

may lead us to overstate the true impact of the information from past adoption. Finally, contextual

e¤ects may mislead us about the impact of past information. For instance, powerful politicians are

likely to have a strong following on Twitter, and those who adopted soon after may not be doing so

to exploit this information, but instead, to make an attempt to reach out to their peers with clout.

Our estimates appear to be robust to all of these problems, though, the magnitude of the

acceleration e¤ect associated with favorable information drops considerably (but remains positive

at a statistically signi�cant level) when we control for autoregressive errors. This caveat is likely

the result from the fact that these decisions are often made days from one another, thereby making

the environments each adopter face very similar to one another. We view this limitation as a unique

trade-o¤ that our data presents: on the one hand, the sequential nature of observed behavior and

outcomes allow us to circumvent a number of simultaneity problems associated with typical peer

e¤ects model, but on the other hand, this very sequential nature introduces temporal persistence

of shocks that we are unable to control for (i.e., increasing media awareness about the e¤ectiveness

of Twitter as a self-promotion tool).

Why should politicians even care about how many users follow them on Twitter? Users who

follow a politician will continually be updated with that politician�s newest micro-blog entry. Those

who choose to follow a politician are most likely people who actually want to read and pay attention

to his content. Therefore, a person who chooses to add a politician to his follower list essentially

designates this politician as one (of potentially many) opinion leaders (Boynton, 2010). Being an

opinion leader may help a politician push controversial policies or satisfy his need for narcissistic self

promotion. In general, Twitter also cares about how many followers its users have. An important

and e¢ cient way to catalyze user generated content within a social network is to increase the

number of captive followers/friends/readers each user has. Recent studies have shown that content

generation largely depends on the size of a user�s group of friends (Hofstetter, Shriver, and Nair,

2010; Zhang and Zhu, 2010). Twitter�s role is to stimulate group formation, and what it gets in

return is free content from its users. Not surprisingly, many social media outlets now o¤er "friend

recommendations."

Aside from providing us a useful setting to study sequential learning, the use of Twitter in
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politics is itself an interesting and important topic. The desire to get all American politicians

onto Twitter has led to organizations like TweetCongress.org, whose mandate is to encourage all

politicians to adopt Twitter as a means to increase government transparency. Although it is not

obvious whether politicians are using Twitter for outreach or transparency (Chi and Yang, 2010;

Felten, 2009; Golbeck, Grimes, and Rogers, 2010), the role of Twitter represents a shift away

from traditional government operations towards so-called E-Government. Perhaps the strongest

motivation for E-Government is a recent study by Andersen (2009), which �nds that the corruption

index is typically lower for countries who employ E-Government practices.

2 Related literature

Our work is most related to recent empirical work that aims to identify social learning. There are

two main approaches to identi�cation of social learning1. The �rst is to infer learning based on the

impact that peer behavior/perception has one�s own behavior/perception. Some examples include

the analysis of how average perceptions of HIV/AIDS risk within a social network a¤ects one�s

own perception (Kohler, Behrman, and Watkins, 2007), the increased likelihood of purchasing a

computer if a large proportion of neighbors have already done so (Goolsbee and Klenow, 2002),

and how the adoption of new crops is a¤ected by the adoption choices of farmers within a social

network of friends and family (Bandiera and Rasul, 2006).

The second main approach, which is the one we also use, is to investigate whether past observable

outcomes (a¤ecting peers) has an impact on one�s own behavior. Notable examples include the

analysis of how box o¢ ce surprises in opening weekend demand a¤ect subsequent sales of movies

(Moretti, 2010), whether the performance of schools that use new educational products/programs

has an impact on the propensity that subsequent schools also adopt these products/programs

(Forbes, 2009), and the impact of past farming outcomes within a social network a¤ects a farmer�s

input decision (Conley and Udry, 2010). Our work complements the existing literature by o¤ering

a new perspective about sequential learning: instead of looking at how past outcomes a¤ect the

propensity to adopt, we investigate how past outcomes a¤ect delay of adoption. By focusing on

delay, we allow for the possibility of strategic learning (on top of the statistical Bayesian learning

paradigm); that is, an agent may have an incentive to delay entry into Twitter so as to take full

advantage these informational externalities bring.

Strategic learning is a heavily studied topic in economic theory. Perhaps the most relevant

1Another approach is to incorporate structural econometric estimation, such as Buera, Monge-Naranjo, and Prim-
iceri (2010) in their study of Bayesian learning among policy makers across countries.
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models are those proposed by Caplin and Leahy (1998), and Chamley and Gale (1994). Although

the methods they use to study social learning are di¤erent, they both come to similar conclusions:

the existence of information externalities may delay entry into uncertain environments. This in-

centive to "wait-and-see" has been used to explain a number of economic phenomena, such as slow

recoveries after economic recessions, and investment into local/global markets.

In general, the empirical analysis of social learning is nested within the study of peer e¤ects.

Identifying peer e¤ects is particularly challenging. As Manski (1993) points out, even if endogene-

ity and simultaneity of actions are irrelevant, the identi�cation of peer e¤ects are confounded by

contextual and correlated group e¤ects. In spite of these challenges, a number of interesting ap-

plications have emerged, such as the study of peer e¤ects under the context of school performance

(Sacerdote, 2001), academic research (Waldinger, 2007), and voting behavior among politicians

(Cohen and Malloy, 2010).

Twitter adoption in politics has also received some attention in political science. Two recent

studies by Williams and Gulati (2010) and Lassen and Brown (2010) try to characterize who

adopts Twitter. Aside from �nding a strong correlation between being a Republican and Twitter

use, these two studies are unable to explain why some politicians adopt Twitter, while others do

not. Their studies belong to the stream of research about government communications and political

marketing. Research in economics about political marketing is rather scarce. One notable example

though is the research of Gordon and Hartmann (2010), who build a structural econometric model

of advertising competition.

Finally, one may frame the Twitter adoption decision as Karshenas and Stoneman�s (1993)

interpretation of technology di¤usion2. The authors argue that rank, stock and order e¤ects matter

in the timing of technology adoption. Rank e¤ects are described as the inherent characteristics

that di¤er across potential adopters, stock e¤ects pertain to the idea that the bene�t of technology

adoption may fall as the number of past adopters increases, and order e¤ects may suggest that

early adopters have some form of �rst mover advantage.

3 Data

The setting for our analysis is the recent adoption of Twitter among members in the 111th House

of Representatives. Our sample contains information about 438 politicians, 183 of whom adopted

Twitter. Furthermore, the data can be broken down into four main components. Each variable

2The literature about technology di¤usion is very large. That said, refer to Federica (2002) for a general overview
of these studies.
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is listed and described in Table 1. The �rst and most important subset of variables contains

hand-collected information about each adopter�s Twitter behavior, such as the exact date in which

his/her �rst Twitter post was made3, as well as the number of followers, users followed, and posts

made between the time of adoption and the date of our data collection (May 24, 2010).

With the exception of Eric Cantor, all House Representatives adopted Twitter after President

Barack Obama�s �rst Twitter post on April 29, 2007. That said, we construct our key dependent

variable, the number of days to adopt, to be equal to the number of days it took (relative to the

date of Obama�s �rst Tweet) for an adopter to make his/her �rst Tweet. Figure 1 shows how

politicians adopted Twitter over time: in general, there were not many adopters initially, followed

by a gradual growth in adoption. The average adopter took about 695 days (after Obama) to adopt

Twitter. Clearly, the adoption of Twitter did not occur overnight.

From each politician�s Twitter account, we are able to obtain information about how many

Twitter posts he/she made since becoming a member, as well as his/her following. The status of

many in�uential Twitter users is often measured using a crude measure of clout: the number of

followers divided by the total number of Twitter posts. Presumably, those with a lot of inherent

in�uence need not post many updates on Twitter in order to maintain a strong following. Based on

this crude measure of in�uence, the most successful users of Twitter are Dennis Kucinich (109.6667),

Eric Cantor (104.8368), Ron Paul (97.85263), Gwen Moore (92), and Alan Grayson (75.62376).

Their numbers are quite signi�cant, given that the typical politician obtains a ratio of about 13

followers per Tweet. There is a lot of variation in this ratio; much of this variation cannot be

explained by when a politician adopted as Figure 2 illustrates. Adopting early does not appear to

yield an obvious advantage with respect to this measure of clout.

The second major component of our data consists of aggregated information about his/her con-

stituents, such as the district�s average population, income and racial distribution. This information

was obtained from the most recent U.S. Census. These variables may play a part in the decision to

adopt, as Table 3 illustrates. Running the data through a simple probit reveals that population may

be a key demographic driver in the adoption of Twitter. That is, politicians who govern heavily

populated districts are more likely to adopt than those who govern smaller populations. Income

and race appear to play less of a role in the adoption of Twitter.

We also have information about each politician�s personal and professional characteristics. For

3Note that Twitter adoption and use may not actually be done explicitly by the politician himself. It is often the
case that this task is delegated to a junior level sta¤er. Nevertheless, the politician often has to grant this right to a
sta¤er.
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personal characteristics, we can identify the age, gender, race, degree type and whether he/she

is Catholic. For political characteristics, we can identify whether the politician is an incumbent,

his/her tenure, party allegiance, the number of bills sponsored, the number of committees assigned

to, and whether he/she chairs any committee. These variables may play a role in Twitter adoption.

In particular, Table 3 shows that the number of bills has a positive and signi�cant e¤ect on the

adoption of Twitter, while being a Democrat greatly reduces the likelihood of adoption. The fact

that Republicans are more active in Twitter has generated a lot of media and scholarly attention.

Therefore, party allegiance would certainly be an important control to include in any analysis about

the speed of adoption among adopters.

Finally, we also include dummies for whether each politician adopts MySpace, RSS, Flickr,

Facebook and/or Youtube; all of which are some alternative outlets for social media. Facebook is

perhaps the closest to Twitter, in terms of its functionality and the way it is used by politicians.

Representatives who hold both Facebook and Twitter accounts often post identical updates on

both their Facebook and Twitter pages. Furthermore, Twitter and Facebook have recently made

their interfaces compatible with one another; that is, you can update your Twitter account via

Facebook, and vice versa. This has created some level of synergy between the two social media

outlets. One can certainly see the complementarity between these two technologies in Table 3; a

large proportion of Twitter adopters are also Facebook users. Between the two outlets, Facebook

is the incumbent, having had at least 2 years of a head start over Twitter. That said, many of the

politicians adopted Facebook well before they had to decide whether to adopt Twitter (Williams

and Gulati, 2009).

4 Simple model of adoption delay

Consider a two period model in which a potential adopter�s decision is whether to employ a new

technology today, or tomorrow (with a discount rate of � < 1). Suppose that this has received

n signals about the technology�s quality. This technology comes at no cost, and has value � �

N(0; 1=��). Each signal is de�ned as sn = � + "n, with "n � N(0; 1=�"). Denote the history of

observed signals as sn = fs1; :::; sng. Provided that the potential adopter is Bayesian, the updated

mean and variance of � are given by

E(�jsn) =
s1 + :::+ sn

n

8



V (�jsn) =
1

�� + n�"

Suppose that the agent has a very simple mean-variance utility,

E(U j�) = E(�j�)� V (�j�)

where  measures the agent�s degree of risk aversion. For simplicity, set  = 1. If the agent adopts

today, he receives an expected utility of E(U jsn) = E(�jsn) � V (�jsn). Waiting until tomorrow

can yield two possible outcomes: 1) The number of signals is still n with probability �; or 2) the

number of signals has increased to n + 1 with probability 1 � �. Therefore, the utility associated

with adopting tomorrow (with the information available today) is

E[E(U jsn+1)jsn] = �f�E(U jsn) + (1� �)[E(�jsn)� V (�jsn+1)]g

= �fE(�jsn) + [(1� �)=(�� + (n+ 1)�")]g

Note that the equation above uses the result that E[E(�jsn+1)jsn] = E(�jsn):

E[E(�jsn+1)jsn] = E(
s1 + :::+ sn + sn+1

n+ 1
jsn)

= E(
nE(�jsn) + � + "n+1

n+ 1
jsn)

=
nE(�jsn) + E(�jsn)

n+ 1

= E(�jsn)

Therefore, the net bene�t of adopting today over tomorrow is

NB(E(�jsn); ��) = (1� �)�
(1� �)(�� + n�") + (1� ��)�"
E(�jsn)(�� + n�")(�� + n�" + �")

The �rst observation that comes to mind is that the constant term (1��)(��+n�")+(1���)�"
is strictly greater than zero. This means that for certain values of E(�jsn), the net bene�t of

adopting right away may be negative. However, for large enough values of E(�jsn), the agent

would certainly prefer to adopt today rather than tomorrow. Therefore, the incentive to adopt

today increases (non-trivially) with E(�jsn).

The net bene�t of adopting today has limiting values of
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lim
��!0

NB(E(�jsn); ��) =
n(1� �)[(n+ 1)�" � 1]� (1� ��)

n(n+ 1)�"

lim
��!1

NB(E(�jsn); ��) = (1� �)

From these limiting values, we see that

lim
��!1

NB(E(�jsn); ��)� lim
��!0

NB(E(�jsn); ��) = n(1� �) + (1� ��) > 0

Therefore, the net bene�t of adopting today is larger when the agent�s prior is very precise (i.e.

�� ! 1) as compared to when the agent�s prior is very di¤use (i.e. �� ! 0). Intuitively, this

result should be obvious: an agent who is given a choice between a certain payo¤ today, versus the

same payo¤ tomorrow should certainly choose to receive the payo¤ today. Further investigation of

the marginal e¤ect of E(�jsn) on the net bene�t of adopting today reveals additional predictions.

Given that the marginal e¤ect of E(�jsn) is

@NB(E(�jsn); ��)
@E(�jsn)

=
1

E(�jsn)2
� (1� �)(�� + n�") + (1� ��)�"

(�� + n�")(�� + n�" + �")
> 0;

we can obtain its limiting values:

lim
��!1

@NB(E(�jsn); ��)
@E(�jsn)

= 0

lim
��!0

@NB(E(�jsn); ��)
@E(�jsn)

=
1

E(�jsn)2
� n(1� �) + (1� ��)

n(n+ 1)�"
> 0

The marginal e¤ect of E(�jsn) is smaller when the agent�s prior is very precise as compared

to when his prior is very di¤use. One can show in a similar manner that the marginal e¤ect of

E(�jsn) falls as the number of past signals tends to in�nity. In general, favorable signals should

only matter for those with little prior information. To summarize, this simple model generates the

following testable predictions:

1. A large and favorable signal E(�jsn) induces an agent to adopt the new technology sooner.

2. An agent with a precise prior �� will adopt the new technology sooner.

3. The acceleration e¤ect that E(�jsn) has on technology adoption is small for an agent with a

precise prior ��.
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4. The acceleration e¤ect that E(�jsn) has on technology adoption is small for an agent who

has already received a large number of signals.

5 Empirical strategy

We �rst outline the set of regressions aimed to test the three predictions as motivated by our

simple model. This is followed by proposed estimations to evaluate whether adopting after favorable

information signals actually pays o¤. The �nal part discusses potential identi�cation problems that

we may face with the data.

5.1 Do favorable signals speed up Twitter adoption?

Each politician is indexed by i = 1; :::; N , in the order in which they adopted Twitter, 1 being the

�rst adopter, and N being the last adopter. In our sample, N = 183. For each adopter i, we observe

the exact date in which they adopted. Using each exact date, we construct the "days to adopt"

variable, ti, by calculating the distance between the actual date of adoption, and Barack Obama�s

adoption date of April 29, 2007. By construction, t1 < t2 < ::: < tN . Each politician i has access

to the information signals regarding the success of past Twitter adopters, �i. We measure the

information signal i receives using the average number of followers/Tweet for all �i < i, denoted

by f�i. The variable f�i captures the potential in�uence on Twitter that adopter i may have

should he/she adopt. Finally, for each adopter i, we include controls xi that may capture rank

e¤ects (Karshenas and Stoneman, 1993). Therefore, our main regression can be written as

ti = �+ � � f�i + x0i + "i

where "i satis�es the usual OLS assumptions. With this regression, we can test the �rst prediction

from our model: a large favorable signal speeds up Twitter adoption. For our data to support the

prediction, we need H0 : � < 0. That is, the earliest adopters should have followed a sequence of

successful adopters with a large number of followers/Tweet.

It may also be interesting to study whether politicians discriminate across these signals. The

easiest way to group the sequence of observed signals is to classify them as coming from the adopters

belonging to the same or di¤erent political party as the potential adopter. Using this grouping,

we construct the variables f�i;own and f�i;other to measure the average number of followers/Tweet

among past adopters belonging to the same and other party as i respectively. Our model does not

guide us to an obvious direction. What these variables may (or may not) tell us is whether the
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origin of information matters. For example, politicians from the same political party may have a

greater awareness of one another, and therefore, greater awareness of their adoption outcomes.

To test the latter two predictions from our model, we need some variable that captures a politi-

cian�s prior about social media. Given the positive correlation between Facebook and Twitter

adoption (Table 3), along with similar user interfaces, we argue that Facebook may be an appropri-

ate indicator of weather a politician is familiar with the merits of social media or not. Furthermore,

as Facebook adoption took place well before Twitter adoption (Williams and Gulati, 2009), con-

cerns about simultaneity between the two decisions may not be that relevant. The reader is asked

to interpret Facebook adoption as such: those with Facebook accounts, and therefore, familiar with

social media should have a more precise prior about the merits of Twitter than those without Face-

book accounts. Therefore, setting the Facebook dummy equal to 1 is our way of approximating the

case in which �� !1. That said, our regression to test the �nal two predictions is:

ti = �+ �1 � f�i + �2 � Facebooki + �3 � f�i � Facebooki + x0i + "i

For our data to support the second and third predictions, we need H0 : �2 < 0, and H0 : �3 > 0.

Firstly, Twitter adoption should occur faster for those with Facebook accounts. Secondly, the

acceleration e¤ect that favorable past outcomes have on adoption speed should be dampened if

the politician already holds a Facebook account. Similarly, to test the last hypothesis, we run the

following estimation:

ti = �+ �1 � f�i + �2 � (i� 1) + �3 � f�i � (i� 1) + x0i + "i

where (i � 1) is the number of past adopters prior to i (i.e., the order of i�s entry into Twitter).

For the last hypothesis to hold, we need H0 : �3 > 0. All in all, these regressions should tell us

whether adopters are making use of the information available, and whether those who appear to

react strongly to this information are those who are likely to �nd this information valuable.

5.2 Are favorable signals from the past associated with successful Twitter adop-
tion today?

The estimations above tell us nothing about whether politicians are using their available information

to increase their payo¤. In this section, we outline the strategy used to assess whether politicians

are making use of their information. Although we have no way of measuring the channels between

information and adoption, then adoption to success, we can analyze the direct channel between

past information and own success. Our model stipulates that those who receive positive signals
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are more likely to enter earlier. This behavior should intuitively generate a positive correlation

between positive signals and own success should they be acting optimally.

Denoting own success at attaining followers/Tweet as fi, we carry out the following estimation

fi = �+ � � f�i + x0i + "i

If favorable past signals are any indication of own success, we should see H0 : � > 0. We repeat

the same exercise as the previous section by running similar regressions that involve f�i;own and

f�i;other, as well as regressions that include interaction terms between Facebook adoption and f�i.

5.3 Identi�cation problems

Although our data puts us in a unique position to analyze the impact of past available information

on adoption speed, there are a number of issues that may prohibit us from clean identi�cation.

We now outline the numerous problems that may weaken our results, as well as ways in which we

address them.

5.3.1 Unobserved heterogeneity

The data we use contains a lot of information about each politician. Nevertheless, a rich set of co-

variates is an insu¢ cient solution to unobserved heterogeneity. It could very well be that those who

face low and unobserved adoption costs are also those who also likely to generate observed favorable

signals. Low adoption costs may also be correlated with their technologically savvy. Furthermore,

those with low adoption costs are also likely to enter the Twittersphere �rst. Therefore, those with

low (but not the lowest) adoption costs who immediately follow these technologically politicians

need not be doing so because of the favorable information they observe, but because of their own

skill that is correlated with adoption cost. Without panel data, it is di¢ cult to address these

concerns.

Our imperfect solution is to make two assumptions about the individual �xed e¤ect, !i. The �rst

assumption is that it monotonically increases with i. That is, it can be interpreted as: politicians

who adopt later may also be those who have high adoption costs, characterized by the �xed e¤ect.

The second assumption is that each individual�s �xed e¤ect is equally spaced; i.e., !i � !i�1 = �.

These two assumptions allow us to write the �xed e¤ect recursively as !i = (i�1)�+ !1. Including

this term into the original estimation equation yields

ti = (�+ !1) + � � f�i + x0i + (i� 1)�+ "i

13



While this approach does not free us completely of issues related to unobserved heterogeneity,

it provides us some way to add skepticism/conservatism to the estimates for �. In some respects,

the inclusion of each adopter�s order of entry captures both the order and rank e¤ects as described

by Karshenas and Stoneman (1993).

5.3.2 Autocorrelated shocks

Because adoption time is at such a granular level, and the time of adoption between two adopters

can potentially be just days, we should expect that the error terms of consecutive adopters may

be correlated. For instance, those who adopted on di¤erent days, but within the same week may

have received similar information shocks about the use of Twitter in politics, say, through the NY

Times or Wall Street Journal. The impact of past shocks may confound our identi�cation of the

so-called acceleration e¤ect. Positive shocks that a¤ected past adopters may have coincidentally

boosted their followers/Tweet, may also induce subsequent adopters to enter soon after; therefore,

early entry need not be explained by the presence of favorable information through past adopters�

outcomes, but instead by the presence of favorable information through some other mechanism,

say news media, that simply carries over through time.

To address this relevant concern, we allow the error terms to be serially correlated with an

AR(1) process. Therefore, we estimate

ti = �+ � � f�i + x0i + "i

"i = �"i�1 + �i

where �i is assumed to be white noise. Recall that each adopter is ordered, so we are essentially

specifying an empirical model that allows a current adopter�s error to depend on the error associated

with the adopter before him/her.

5.3.3 Selection bias

Our sample of Twitter adopters is a selected sample among the entire population of congressional

members. Therefore, early adopters may not necessarily be reacting to positive information shocks,

but instead, to their own ability to use social media.

We can interpret the adoption and timing decisions as a two-step process. In the �rst step, a

representative decides whether to open up a Twitter account. Once they have decided to become
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a member, they must decide when. The �rst stage decision can be modelled using the Probit

estimates obtained in Table 3. This �rst stage will provide us the Heckman correction term as

described by the Mills ratio �̂i
�i
from the �rst-stage adoption Probit estimates. To correct for this

sample selection bias, we estimate the following second-stage regression with a Heckman correction

term

ti = �+ � � f�i + x0i + � �
�̂i
�i
+ "i

An analogous strategy is employed for the analysis of own followers/Tweet.

5.3.4 Confounding temporal factors

There is a clustering of Twitter adoption around the beginning of session, January 20, 2009. There-

fore, we have cause for concern that some of these late adopters may not be adopting late because of

bad signals, but simply because it was when congressional sta¤ers were hired and assigned to man-

age members�Twitter accounts. We consider a sub-sample of politicians for which their adoption

decisions are unlikely to be a¤ected by this temporal shock; that is, the sub-sample of politicians

who entered Twitter, but not around the start of session within a 200 day window (i.e., 100 days

before January 20, 2009, and 100 days after that date).

One may also argue that the measure f�i is very inaccurate for the initial adopters, as the

averages may be computed with very few observations. This measure may therefore lack credibility

for the early entrants. Consequently, we consider using estimations using only the sub-sample of

adopters who follow at least 50 past users. Using this approach, we ensure that each politician�s

signal is calculated using at least 50 observations.

5.3.5 Manski critique

As we are looking at the average outcomes of past adopters, our analysis can be framed under

Manski�s (1993) linear peer e¤ects model. To some extent, the sequential and granular nature

of our data frees us of some issues related to simultaneity of adoption decisions. What remains

to be shown is that our results are robust to the correlated and contextual e¤ects. Correlated

e¤ects describe the fact that early adoption (followed by fellow early adopters) may not be caused

by favorable information shocks from their peers, but instead, the fact that early adopters share

similar unobserved bene�ts/costs associated with Twitter adoption.

These unobserved components can either have a permanent component, or transitory compo-

nent. For example, the 10th adopter may have opened up a Twitter account early because he

behaves in the same way as other tech savvy politicians. To some extent, permanent unobserved
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group e¤ects can be addressed using our earlier prescription to unobserved heterogeneity: con-

trolling the order of entry may also control for these permanent correlated e¤ects across adopters

among similar cohorts. Transitory group e¤ects may include the fact that early adopters face sim-

ilar idiosyncratic shocks as other early adopters. This identi�cation problem can be framed using

our solution to autocorrelation. Finding a large estimate for � would suggest that these group

e¤ects are persist over time.

Contextual e¤ects could be that observed characteristics (which are correlated with the favorable

information signals) are the main driver for early adoption. They may even proxy for alternative

stories for seeing a so-called acceleration e¤ect, such as those involving network externalities and/or

signalling. For the network externalities explanation, past adopters who happen to also come from

Ivy league schools may have stronger alumni ties that would be correlated with their clout on

social media sites, like Twitter. Some politicians may be induced to enter early not because of their

observed Twitter clout, but because they wish to connect with these Ivy league politicians as a

means to access their elite social network. Alternatively, some politicians may wish to adopt early

if fellow early adopters are also those who have power and/or are viewed in high esteem. Adopting

early may signal to their constituents that they too should be well respected members of congress.

In order to control for these contextual e¤ects, we include average characteristics of all past

adopters, x�i into the following regression

ti = �+ � � f�i + x0i + x0�i + "i

6 Main results

Many of our results support the predictions generated by the model. In the �rst column of Table 4,

we see that increasing the followers/Tweet signal by 8 yields a statistically signi�cant decrease in

adoption time by nearly 112 days. Given that the average adopter takes about 695 days to adopt,

this would amount to a reduction in delay by over 10%. Interestingly, the politicians do not appear

to be discriminating across signals based on party, in that signals coming from their own and other

party have about the same impact.

A slightly unexpected result in the �rst two columns is that Facebook adoption increases delay

by over 58 days. It is quite possible that Facebook may also exhibit competitive e¤ects on Twitter,

in that loyal Facebook users may �nd it hard to allocate time to Twitter use.

Note however that in the third and fourth columns, holding a Facebook account speeds up the
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adoption of Twitter by at least 147 days. In the speci�cations that allow for Facebook adoption to

interact with the averaged followers/Tweet, our results are consistent with the idea that Facebook

account holders may have a more precise prior about the value of Twitter, and therefore, have less

incentive to delay for the possibility of more information. Furthermore, we �nd that the acceleration

e¤ect associated with the past adopters�signals is dampened by about 20 days for the speci�cation

in the third column.

Interestingly, when signals are categorized by party, we �nd that holding a Facebook account

dampens the acceleration e¤ect associated with the averaged signals from adopters belonging to

the same party, but not for the averaged signals from adopters belonging to a di¤erent party. This

result, found in the fourth column of Table 4, suggests that while politicians do not appear to be

discriminating signals based on parties, the way in which they use these signals may di¤er depending

on where these signals come from. One possible explanation is that the signals coming from a rival

party may not enter a politician�s utility through some learning mechanism, but through some

competition model, in which a politician feels pressure to compete with his/her ideological rivals

who have garnered signi�cant support on Twitter.

Table 5 reveals that the interaction between an adopter�s order (i.e., the number of those

preceding him) and the average number of followers/Tweet among past adopters has a positive and

signi�cant coe¢ cient. This �nding may provide some support for the fourth hypothesis generated

by our simple model. Unlike the interactions between Facebook adoption and positive information

signals, we �nd that the dampening e¤ect associated with the number of past adopters has the

expected sign (+) regardless of whether they are interacted with the signals coming from those of

the same or other political party.

The estimates for our control variables are in general quite noisy. Nevertheless, some though

have interesting signs. Members who belong to a large number of committees tend to take longer

to adopt Twitter. This may highlight the fact that being in a number of committees results in a

larger workload/responsibility, and therefore, less time/resources to devote towards social media

management. It is also worth noting that not only are Democrats less likely to adopt Twitter

(Table 3), they are also slower at adopting Twitter.

Our estimates in the �rst two columns of Table 6 reveal a strong relationship between a

politician�s own number of followers/Tweet, and the average followers/Tweet of adopters prior

to him/her. An increase in the past adopters�aggregated signal by 8 yields an increase in own

followers/Tweet by over 8. This e¤ect is slightly more pronounced when the signals come from
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past adopters�belonging to the same party, as shown in the second column. When the Facebook

adoption interactions are introduced, the acceleration e¤ect is slightly smaller; but this is perhaps

because the interacted term between Facebook adoption and past adopters�signal is also positive.

Indeed, those who receive favorable signals and are Facebook adopters than those who receive

favorable signals but are not Facebook adopters.

Unfortunately, the model presented earlier cannot explain this result. Nevertheless, the observed

phenomenon may still be consistent with the idea of Facebook as an indicator for preciseness of a

politician�s prior on social media value. Politicians who are more comfortable with social media

may be able to better utilize the information available to them, while politicians who are not

as comfortable with social media, while reacting strongly to positive signals, may not turn their

adoption decision into realized success. Although past adopters�provide some idea as to the demand

for politicians on Twitter, much of a politician�s success on Twitter largely depends on his/her

ability to keep followers captivated with insightful and informative Twitter updates.

Our sensitivity analysis displayed in Table 8 reveals that the estimates for the acceleration e¤ect

are of the correct sign and statistically signi�cant regardless of whether our regression accounts for

unobserved heterogeneity, autocorrelation, or self selection. Note however that the magnitude of

the e¤ect drops signi�cantly when we allow the error terms to have an AR(1) structure. In fact,

we �nd that the magnitude of a the e¤ect falls to about 3 days (for an increase of 8 average

followers/Tweet for past adopters). Furthermore, the Durbin-Watson test leads to a rejection of

the null hypothesis of no autocorrelation. Therefore, much of the e¤ect associated with the past

adopters�aggregate signal confounds temporal shocks. Nevertheless, we �nd it encouraging that

the signals still play some, albeit small, role in the timing decision for Twitter adoption.

Table 9 shows that for the most part, our results are robust to the aforementioned identi�cation

problems. The estimated positive e¤ect of past adopters�success on a current adopter�s own success

falls under the AR(1) model; note however that we are unable to reject the null hypothesis of no

autocorrelation using the Durbin-Watson test. Therefore, the results in the second column lack

statistical credibility.

Our results are preserved when we only use sub-samples of our original sample. The �rst

column of Table 10 shows that the acceleration e¤ect holds even when we only consider adopters

who started using Twitter outside the time interval pertaining to the start of o¢ ce. Similarly,

the second column of Table 10 demonstrates that this e¤ect holds when we exclude the earliest

adopters, who have very little past adoption information to go on. Much the same can be said for
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the results in Table 11, which show that the favorable information from the past lead to better

realized outcomes.

The e¤ect of past adopters� success appears to be preserved when we add contextual e¤ects

as the last column of Table 12 shows. Nevertheless, some of the estimated contextual e¤ects are

worth mentioning. The strongest contextual e¤ects are the average number of incumbents and

the average number of committee chairs. Increasing the average number of incumbents by one

standard deviation speeds up the time of adoption by 476 days, and increasing the average number

of committee chairs by one standard deviation speeds up adoption by at least 75 days. The average

number of past adopters who are black, Catholic, law degree holders and Ivy league graduates also

accelerate the adoption process. All in all, these contextual e¤ects are consistent with our intuition

that some politicians may be adopting Twitter not necessarily because of the information they

receive from their peers, but a desire to connect with their peers; especially those with political

power (i.e., incumbents and chairs), or those with access to rich social networks (i.e., former lawyers

and Ivy league alumni). To some extent, our data suggests that politicians may also be bene�ting

from these contextual e¤ects in Table 13. For instance, their realized number of followers/Tweet

are positively associated with the average number of Catholics and Ivy league alumni among past

adopters, as well as the average number of adopters who are chairs of congressional committees.

What makes these contextual e¤ects especially interesting is the observation that own charac-

teristics are unable to explain adoption timing nor own adoption success. Unfortunately, a �nding

like this also limits our ability to say that social learning is the sole driver for the patterns we see:

the alternative explanations involving network externalities and/or signalling are certainly plau-

sible, as peer characteristics related to skill (i.e., political power) and peer characteristics related

to networking (i.e., social characteristics) matter. Not surprisingly, the e¤ect associated with past

information falls as more of these contextual e¤ects are included to each regression.

6.1 Extension: new information vs old information

Our analysis certainly suggests that the success of past adopters plays some role in the timing

decision of Twitter adoption. What we don�t know though is whether politicians take into account

all of the signals. It seems unlikely that the politicians (or their sta¤ers) will pay attention to the

success rates for each and every past adopter; especially for the late adopters who have over 100

possible signals to take in. In this section, we wish to test the hypothesis that only recent signals

matter. To test this hypothesis, we compare the following speci�cations:
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1. One in which we only consider the 10 most recent past adopters when calculating the average

followers/Tweet.

2. One in which we only consider the 20 most recent past adopters when calculating the average

followers/Tweet.

3. One in which we consider the latter 10 (of the 20 most recent) past adopters when calculating

the average followers/Tweet.

When we pass the data through these three di¤erent speci�cations, some interesting patterns

emerge as displayed in Table 14. First, the e¤ect associated with past adoption success is stronger

for the �rst speci�cation than for the latter. This pattern means that when looking at the 20

most recent adopters, politicians more strongly to the 10 most recent outcomes than to the 10

latter outcomes. Under the sequential learning paradigm, this result would suggest that newer

information matters more. However, the e¤ect is strongest in the second speci�cation, in which all

of the 20 recent outcomes are included when calculating the average. Although newer information

trumps older information, politicians are not acting as though old information is completely useless.

7 Conclusion

Our analysis exploits a unique feature about the adoption of Twitter in Congress: knowing the

exact date of adoption allows us not only to analyze the speed of adoption, but all the information

available at the time of adoption. Knowing who the past adopters are, as well as their success at

attaining followers/Tweet, gives a current adopter valuable information about the value of Twitter

as a mode for in�uence. Given that Twitter is essentially a broadcasting device for politicians,

being able to assess its ability to reach out to constituents is especially important to politicians.

Guided by our simple model of adoption delay, we �nd that many patterns found in our data

are consistent with the value of past adopters�successes as information. In particular, we �nd that

favorable information leads to quicker adoption, and especially so for those who di¤use priors as the

model would predict. Furthermore, we �nd that politicians who adopt Twitter following favorable

information signals bene�t via increased clout for their own Twitter presence once they adopt. Not

only do good signals induce rapid adoption, but they also precede good results for those who adopt.

Although our results are suggestive of social learning, we cannot completely rule out alternative

explanations such as network externalities or quality signalling.
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The unique feature of our data su¤ers from some of the problems associated with time series

analysis. Given that the adoption decisions are at times clustered near one another, persistent

temporal shocks limit our ability to make any strong statements regarding the impact of information

on adoption speed. Fortunately, we are still able to produce an e¤ect consistent with our model�s

main prediction in light of this autocorrelation.

Our analysis assumes a very simple way in which politicians use the signals from past adopters.

Although politicians do not appear to react di¤erently to signals coming from di¤erent parties,

it is plausible that they may react strongly to signals coming from those they frequently contact.

Unfortunately, identifying learning within social networks is particularly di¢ cult within this con-

text. Some possible networks/groupings that could be considered may be based on geography

of the politician�s home district, or the committees that a politician belongs to. A challenge of

using these de�nitions is that network/group formation may take place around the same time as

Twitter adoption. Instead, future work could incorporate the use of alumni networks, as in Cohen

and Malloy (2010), and investigate whether signals coming from alumni have a stronger e¤ect at

accelerating Twitter adoption than signals coming outside the alumni network.

To completely rule out the competing network e¤ects story, we believe that better data is needed.

With better data, we can then settle the question: is most of the 2-way communication on Twitter

between politicians and non-politicians, or politicians and politicians? Recent textual analysis by

Golbeck, Grimes and Rogers (2010) hints that Twitter is being used as a 1-way broadcasting device

as a means to spread information about relevant news about them; furthermore, communication

that takes place are 7% more likely to be with non-politicians than fellow politicians.
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Table 1: Variable de�nitions
Variable Description
Days to adopt Days it takes politician to adopt relative to Barack Obama�s �rst Tweet
fi Ratio of followers per Tweet for i
f�i Average ratio of followers per Tweet for adopters prior to i
f�i;own Average ratio of followers per Tweet for adopters in same party as i
f�i;other Average ratio of followers per Tweet for adopters in di¤erent party as i
Month-time Discretized time variable at a monthly level
log(Population) Log of the population for politician i�s governing district
log(Income) Log of the income for politician i�s governing district
Percentage black Percentage of Black constituents in politician i�s governing district
Gender Dummy set equal to 1 if female
Black Dummy set equal to 1 if black
Catholic Dummy set equal to 1 if Catholic
Law Dummy set equal to 1 if holds law degree
Ivy Dummy set equal to 1 if holds degree from an Ivy League school
Age Age of politician
Incumbent Dummy set equal to 1 if politician was in o¢ ce prior to the 2008 elections
Tenure How many years a politician has been in o¢ ce
Democrat Dummy set equal to 1 if belongs to Democratic party
Bills The total number of bills introduced by politician
Chair Dummy set equal to 1 if chairs a committee
Number of committees The total number of committees that politician belongs to
MySpace Dummy set equal to 1 if holds a MySpace account
RSS Dummy set equal to 1 if holds an RSS account
Flickr Dummy set equal to 1 if holds a Flickr account
Facebook Dummy set equal to 1 if holds a Facebook account
Youtube Dummy set equal to 1 if holds a Youtube account
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Table 2: Summary statistics.
Variable Mean Std. Dev. Min. Max.

Days to adopt 695.148 200.487 -2 1116
fi 12.946 17.145 1.0813 109.667
f�i 11.629 6.932 5.409 104.837
f�i;own 11.417 7.306 4.111 104.837
f�i;other 12.2 5.913 0 55.731
Month-time 17.352 6.089 2 36
log(Population) 13.364 0.214 10.96 15.2
log(Income) 10.643 0.262 9.620 11.43
Percentage black 12.637 15.963 0 96.400
Gender 0.167 0.373 0 1
Black 0.082 0.275 0 1
Catholic 0.292 0.455 0 1
Law 0.352 0.478 0 1
Ivy 0.098 0.298 0 1
Age 57.333 10.16 28 86
Incumbent 0.861 0.347 0 1
Tenure 9.550 8.711 0 54
Democrat 0.598 0.491 0 1
Bills 18.018 12.45 0 96
Chair 0.103 0.304 0 1
Number of committees 1.936 0.826 0 4
MySpace 0.014 0.116 0 1
RSS 0.573 0.495 0 1
Flickr 0.151 0.358 0 1
Facebook 0.571 0.496 0 1
Youtube 0.731 0.444 0 1

N 183
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Table 3: Characterization of who adopts Twitter using a Probit model of adoption. Dependent
variable is equal to 1 if politician adopts Twitter.

(1)
Adopt Twitter

log(Population) 0.872� (0.378)
log(Income) 0.0921 (0.287)
Percentage black 0.00616 (0.00548)
Gender 0.214 (0.180)
Black -0.427 (0.326)
Catholic 0.0892 (0.159)
Law 0.0402 (0.144)
Ivy 0.377 (0.227)
Age -0.0120 (0.00791)
Incumbent -0.336 (0.216)
Tenure -0.00844 (0.0113)
Democrat -0.932��� (0.160)
Bills 0.0184�� (0.00559)
Chair -0.0244 (0.234)
Number of committees -0.0391 (0.0865)
MySpace 0.820 (0.728)
RSS 0.220 (0.142)
Flickr 0.405� (0.188)
Facebook 0.702��� (0.153)
Youtube 0.120 (0.177)
Constant -12.39� (5.831)
Observations 438
R2 0.2051

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 4: The relationship between the speed of adoption and the follower success of past adopters.
Days to adopt is de�ned as the total number of days it takes politician i to adopt relative to Barack
Obama�s �rst Tweet on April 29, 2007.

(1) (2) (3) (4)
Days to adopt Days to adopt Days to adopt Days to adopt

Month-time 5.718��� (1.077) 3.883��� (0.809) 5.429��� (0.950) 3.706��� (0.736)
log(Population) -47.20 (36.46) -43.88 (29.87) -67.77 (34.52) -62.86� (24.83)
log(Income) -53.02 (43.06) -52.36 (36.37) -66.99 (40.43) -64.86 (34.25)
Percentage black -0.281 (0.680) -0.413 (0.528) -0.237 (0.647) -0.707 (0.482)
Gender 30.95 (26.37) 14.44 (20.69) 32.06 (25.11) 13.95 (19.46)
Black -30.66 (38.98) -34.71 (31.68) -32.41 (37.28) -17.94 (32.76)
Catholic -5.102 (26.24) -8.413 (19.37) 14.17 (24.53) -4.256 (17.75)
Law 2.821 (21.16) 2.911 (17.21) 7.974 (19.53) 5.017 (15.75)
Ivy 32.36 (42.03) 13.25 (32.12) 1.530 (31.99) -8.901 (28.20)
Age 0.904 (1.139) 0.745 (0.856) 0.884 (1.049) 0.889 (0.783)
Incumbent -23.40 (24.88) -0.206 (19.75) -43.53 (23.23) -7.209 (19.25)
Tenure 2.803 (1.875) 1.091 (1.408) 4.227� (1.671) 1.076 (1.395)
Democrat 43.51 (26.41) 17.40 (25.61) 40.02 (24.52) 8.253 (23.15)
Bills -1.070 (0.894) -0.451 (0.675) -0.903 (0.853) -0.327 (0.575)
Chair -7.556 (44.00) 16.61 (30.19) -5.171 (42.45) 7.640 (27.43)
Number of committees 11.98 (10.82) 12.34 (8.340) 9.446 (9.802) 5.600 (7.657)
MySpace -59.52 (31.36) -32.56 (21.67) -66.15 (35.21) -33.40 (20.63)
RSS -7.650 (22.31) 1.941 (16.84) 1.406 (21.34) 10.54 (15.73)
Flickr -32.57 (26.00) -33.23 (20.29) -42.69 (24.82) -39.86 (20.52)
Facebook 77.35�� (28.42) 58.30�� (20.86) -285.8��� (73.29) -147.6 (79.01)
Youtube -31.67 (42.55) -24.28 (31.65) -29.29 (39.14) -32.03 (26.67)
f�i -14.42�� (4.964) -32.32��� (2.527)
f�i;own -16.45��� (3.623) -28.23��� (1.993)
f�i;other -19.16��� (1.637) -19.01��� (1.647)
Facebook * f�i 20.96��� (4.378)
Facebook * f�i;own 13.67��� (3.394)
Facebook * f�i;other -1.843 (2.841)
Constant 1956.7� (784.9) 2298.4��� (664.6) 2697.7��� (766.3) 2911.0��� (604.0)
Observations 183 183 183 183
R2 0.5874 0.7639 0.6649 0.8067

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 5: The relationship between the speed of adoption and the follower success of past adopters.
Days to adopt is de�ned as the total number of days it takes politician i to adopt relative to Barack
Obama�s �rst Tweet on April 29, 2007.

(1) (2) (3) (4)
Days to adopt Days to adopt Days to adopt Days to adopt

(i� 1) 3.117��� (0.153) 2.957��� (0.272) 0.369 (1.241) 1.371 (0.984)
Month-time -1.905�� (0.574) -1.628� (0.680) -1.571�� (0.595) -1.502� (0.732)
log(Population) -21.92 (17.14) -17.66 (19.75) -19.80 (16.89) -24.71 (21.12)
log(Income) -15.86 (20.28) -23.14 (22.89) -16.87 (19.66) -26.09 (22.73)
Percentage black -0.434 (0.330) -0.549 (0.365) -0.459 (0.331) -0.547 (0.381)
Gender -1.308 (10.68) -0.460 (11.03) -0.757 (10.44) -3.093 (11.25)
Black -11.32 (20.63) -5.227 (22.74) -14.55 (19.53) -12.08 (22.73)
Catholic -24.27� (10.80) -25.40� (11.33) -22.59� (10.53) -22.68� (11.29)
Law -3.578 (9.282) -6.744 (9.655) -7.072 (9.285) -8.657 (9.821)
Ivy 6.284 (13.68) 4.192 (14.39) 3.989 (13.36) 0.950 (14.53)
Age -0.356 (0.526) 0.0305 (0.588) -0.470 (0.520) -0.289 (0.572)
Incumbent 6.572 (11.78) 8.273 (12.95) 4.369 (11.75) 3.387 (13.07)
Tenure -0.881 (0.827) -1.242 (0.947) -0.549 (0.803) -0.897 (0.904)
Democrat 2.681 (9.888) 16.83 (16.88) 3.892 (9.879) -17.58 (28.44)
Bills 0.311 (0.278) 0.285 (0.283) 0.382 (0.274) 0.431 (0.300)
Chair 9.975 (15.11) 8.018 (14.89) 6.164 (14.80) 5.947 (14.53)
Number of committees 0.642 (5.402) 1.059 (5.590) -0.789 (5.277) -0.267 (5.518)
MySpace 34.72 (28.17) 35.16 (29.73) 34.26 (25.07) 40.28 (26.16)
RSS 3.494 (10.23) 4.377 (10.54) 4.396 (10.28) 6.080 (10.78)
Flickr -3.440 (11.06) -7.234 (12.35) 0.682 (11.17) -5.066 (12.23)
Facebook 24.32� (10.66) 24.85� (11.71) 21.56� (10.09) 25.97� (11.11)
Youtube -17.08 (14.72) -24.06 (15.18) -20.95 (14.72) -28.29 (16.19)
f�i -6.707��� (1.621) -6.119��� (1.534)
f�i;own -6.615��� (1.543) -6.135��� (1.449)
f�i;other -3.065 (3.141) -1.963 (2.952)
(i� 1) * f�i 0.230� (0.105)
(i� 1) * f�i;own 0.115� (0.0548)
(i� 1) * f�i;other 0.0242 (0.0380)
Constant 1027.0�� (379.6) 1091.4� (446.9) 960.5� (373.7) 1182.3� (454.5)
Observations 183 183 183 183
R2 0.9302 0.9190 0.9324 0.9223

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 6: The relationship between own follower success and the follower success of past adopters.
Followers/Tweet (fi) is an approximation based on the total number of followers divided by the
total number of Twitter posts at the time of data collection.

(1) (2) (3) (4)
Followers/Tweet Followers/Tweet Followers/Tweet Followers/Tweet

Days to adopt 0.0130 (0.0109) 0.0324�� (0.0103) 0.00439 (0.0130) 0.0295� (0.0117)
Month-time 0.0681 (0.146) 0.0490 (0.140) 0.104 (0.151) 0.0745 (0.147)
log(Population) -6.064 (4.360) -6.344 (3.963) -7.411 (4.579) -6.866 (4.292)
log(Income) -7.466 (4.486) -6.484 (4.137) -8.560 (4.683) -7.415 (4.347)
Percentage black -0.197 (0.106) -0.177 (0.101) -0.198 (0.106) -0.156 (0.0966)
Gender 0.954 (2.810) 0.857 (2.793) 1.271 (2.738) 1.148 (2.754)
Black 8.369 (10.91) 8.512 (10.65) 8.025 (10.92) 7.705 (10.57)
Catholic 0.857 (2.664) 1.465 (2.632) 1.695 (2.751) 2.103 (2.690)
Law -1.138 (2.566) -0.786 (2.567) -0.878 (2.551) -0.809 (2.641)
Ivy 5.924 (5.726) 5.552 (5.643) 4.791 (5.980) 4.622 (6.097)
Age 0.138 (0.156) 0.0919 (0.155) 0.145 (0.157) 0.0988 (0.156)
Incumbent 0.292 (3.103) -0.548 (3.076) -0.830 (3.216) -1.551 (3.238)
Tenure -0.172 (0.173) -0.112 (0.163) -0.0830 (0.179) -0.0145 (0.173)
Democrat 0.606 (2.903) -1.270 (3.194) 0.820 (2.849) -0.341 (3.307)
Bills 0.156 (0.152) 0.150 (0.149) 0.155 (0.146) 0.142 (0.141)
Chair -3.116 (3.880) -3.057 (3.844) -3.071 (3.578) -3.076 (3.718)
Number of committees 0.188 (1.115) 0.133 (1.082) 0.175 (1.078) 0.344 (1.056)
MySpace 22.91�� (7.740) 22.73�� (7.229) 22.10�� (7.482) 21.77�� (7.144)
RSS 0.291 (2.909) 0.363 (2.899) 0.640 (2.869) 0.306 (2.841)
Flickr -4.951� (2.124) -4.014� (2.025) -5.694� (2.224) -4.504� (2.046)
Facebook -4.192 (4.403) -4.836 (4.263) -20.14� (9.283) -28.99 (16.38)
Youtube -0.846 (4.953) 0.487 (4.587) -1.009 (4.818) 0.855 (4.359)
f�i 1.059��� (0.188) 0.116 (0.487)
f�i;own 1.454��� (0.237) 0.974 (0.535)
f�i;other 0.941� (0.385) 0.405 (0.338)
Facebook * f�i 0.959 (0.511)
Facebook * f�i;own 0.568 (0.530)
Facebook * f�i;other 0.839 (0.514)
Constant 141.9 (92.96) 101.7 (79.06) 192.6 (104.0) 136.6 (93.28)
Observations 183 183 183 183
R2 0.2827 0.3216 0.3007 0.3405

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 7: The relationship between own follower success and the follower success of past adopters.
Followers/Tweet (fi) is an approximation based on the total number of followers divided by the
total number of Twitter posts at the time of data collection.

(1) (2) (3) (4)
Followers/Tweet Followers/Tweet Followers/Tweet Followers/Tweet

Days to adopt 0.0524�� (0.0178) 0.0425� (0.0174) 0.0401� (0.0175) 0.0393� (0.0181)
(i� 1) -0.148� (0.0743) -0.0452 (0.0593) -1.209�� (0.375) -0.370� (0.183)
Month-time 0.204 (0.173) 0.0942 (0.154) 0.314 (0.182) 0.169 (0.161)
log(Population) -5.404 (4.149) -6.304 (3.972) -4.827 (4.095) -5.608 (3.932)
log(Income) -7.138 (4.289) -6.405 (4.112) -7.734 (4.297) -6.192 (3.954)
Percentage black -0.179 (0.103) -0.171 (0.100) -0.194 (0.107) -0.188 (0.103)
Gender 1.265 (2.813) 0.940 (2.814) 1.469 (2.893) 1.617 (2.987)
Black 8.659 (10.78) 8.410 (10.61) 7.227 (9.754) 8.485 (10.15)
Catholic 1.967 (2.953) 1.809 (2.860) 2.341 (2.954) 1.851 (2.836)
Law -0.945 (2.557) -0.668 (2.551) -2.388 (2.576) -1.328 (2.604)
Ivy 5.885 (5.705) 5.558 (5.655) 5.044 (5.089) 4.972 (5.366)
Age 0.162 (0.161) 0.0954 (0.157) 0.112 (0.150) 0.0768 (0.167)
Incumbent -0.207 (3.108) -0.675 (3.084) -1.008 (3.086) -0.754 (3.206)
Tenure -0.108 (0.172) -0.0869 (0.168) 0.0143 (0.154) -0.0344 (0.157)
Democrat 0.828 (2.924) -1.436 (3.122) 1.346 (2.882) 3.768 (8.017)
Bills 0.133 (0.155) 0.143 (0.152) 0.165 (0.148) 0.155 (0.154)
Chair -3.649 (3.667) -3.093 (3.779) -5.052 (3.436) -3.646 (3.688)
Number of committees 0.253 (1.100) 0.182 (1.090) -0.312 (1.135) -0.269 (1.143)
MySpace 20.79�� (7.345) 22.02�� (7.275) 21.03�� (6.662) 21.59�� (7.188)
RSS 0.0640 (2.901) 0.306 (2.901) 0.468 (2.762) 0.639 (2.910)
Flickr -5.049� (2.145) -4.078 (2.071) -3.442 (1.990) -3.140 (1.963)
Facebook -4.725 (4.336) -4.910 (4.259) -5.533 (4.172) -5.971 (4.184)
Youtube -0.290 (4.648) 0.728 (4.465) -2.048 (4.450) 0.0344 (4.157)
f�i 1.261��� (0.180) 1.414��� (0.166)
f�i;own 1.469��� (0.247) 1.589��� (0.259)
f�i;other 0.888� (0.352) 0.809�� (0.295)
(i� 1) * f�i 0.0920�� (0.0310)
(i� 1) * f�i;own 0.00708 (0.0121)
(i� 1) * f�i;other 0.0199� (0.00967)
Constant 108.9 (85.43) 97.08 (79.15) 94.85 (84.39) 79.10 (77.41)
Observations 183 183 183 183
R2 0.3005 0.3233 0.3459 0.3426

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 8: Robustness of results. The �rst column controls for the order of entry, the second column
controls for serial correlation, and the third column controls for sample selection using the 2-step
Heckman method.

(1) (2) (3)
Days to adopt Days to adopt Days to adopt

f�i -6.707��� (1.621) -0.458� (0.201) -14.39��� (1.325)
(i� 1) 3.117��� (0.153)
Controls Yes Yes Yes
� 0.980
� -141.7 (187.0)
Observations 183 182 438
R2 0.9302 0.1251
Durbin-Watson statistic 0.432990
Wald statistic 325.26

Standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001

Table 9: Robustness of results. The �rst column controls for the order of entry, the second column
controls for serial correlation, and the third column controls for sample selection using the 2-step
Heckman method.

(1) (2) (3)
Followers/Tweet Followers/Tweet Followers/Tweet

f�i 1.261��� (0.180) 0.481 (0.363) 1.065� (0.470)
(i� 1) -0.148� (0.0743)
Controls Yes Yes Yes
� -0.0756
� 50.94 (51.63)
Observations 183 182 438
R2 0.3005 0.1575
Durbin-Watson statistic 2.062
Wald statistic 107.30

Standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 10: Robustness of results with respect to temporal events. The �rst column considers the
subsample of adopters who did not adopt Twitter before and after the start of session (January 20,
2009) by 100 days. The second column considers the subsample of adopters i > 50.

(1) (2)
Days to adopt Days to adopt

f�i -14.98�� (4.766) -108.9��� (11.97)
Controls Yes Yes
Observations 95 133
R2 0.6472 0.7166

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001

Table 11: Robustness of results with respect to temporal events. The �rst column considers the
subsample of adopters who did not adopt Twitter before and after the start of session (January 20,
2009) by 100 days. The second column considers the subsample of adopters i > 50.

(1) (2)
Followers/Tweet Followers/Tweet

f�i 1.004��� (0.251) 8.017� (3.120)
Controls Yes Yes
Observations 95 133
R2 0.3508 0.2817

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 12: Robustness of results with respect to contextual e¤ects. Note here that the average
values are with respect to the past adopters.

(1) (2) (3)
Days to adopt Days to adopt Days to adopt

f�i -14.68��� (4.155) -7.909� (3.471) -6.917� (3.259)
Average log(Population) 1745.5��� (151.1) 248.2 (193.3) 338.2 (278.5)
Average log(Income) -2269.2��� (185.8) -504.0� (225.7) -401.4 (336.1)
Average percentage black 36.93��� (7.865) -12.11 (9.949) -6.469 (8.932)
Average number of females 1207.5��� (328.9) 1391.9��� (290.9)
Average number of blacks -615.7 (949.6) -1404.7 (752.3)
Average number of catholics -353.0 (264.3) -384.6 (290.0)
Average number of law degree holders -240.4 (161.9) -143.8 (152.0)
Average number of Ivy league alumni 365.7 (201.7) -346.3 (216.0)
Average age 31.88��� (8.325) 12.87 (9.115)
Average number of incumbents -702.1�� (244.2) -1904.3��� (292.3)
Average tenure 69.58��� (20.17) 115.3��� (19.10)
Average number of Democrats 1431.6��� (217.9) 1113.5��� (183.7)
Average number of bills 9.348 (7.821) 16.49� (7.646)
Average number of chairs -3135.5��� (323.3) -2502.5��� (306.9)
Average number of committees 108.7 (133.8) -205.3 (126.9)
Average number of MySpace users -1506.5�� (570.2)
Average number of RSS users -25.36 (109.1)
Average number of Flickr users -72.41 (232.3)
Average number of Facebook users 1554.5��� (252.7)
Average number of Youtube users -1258.9��� (214.6)
Constant 3218.9��� (696.7) 1252.0�� (451.4) 979.9� (391.7)
Controls Yes Yes Yes
Observations 183 183 183
R2 0.8615 0.9701 0.9800

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 13: Robustness of results with respect to contextual e¤ects. Note here that the average
values are with respect to the past adopters.

(1) (2) (3)
Followers/Tweet Followers/Tweet Followers/Tweet

f�i 3.663� (1.834) 3.856� (1.851) 3.571� (1.672)
Average log(Population) 41.70 (29.66) 37.69 (49.25) 122.2 (96.26)
Average log(Income) -30.76 (40.30) 2.613 (58.19) -129.5 (107.0)
Average percentage black -0.393 (1.588) 0.959 (3.591) -1.221 (4.020)
Average number of females -46.15 (142.7) -76.38 (143.5)
Average number of blacks 120.0 (341.2) 65.46 (336.2)
Average number of catholics 120.8 (73.86) 202.1� (95.93)
Average number of law degree holders -95.32 (56.32) -39.43 (61.83)
Average number of Ivy league alumni 71.71 (92.44) 142.1 (125.0)
Average age -3.362 (3.767) -1.538 (3.455)
Average number of incumbents -160.2 (103.5) -131.3 (135.2)
Average tenure -1.559 (8.408) -1.049 (8.939)
Average number of Democrats -123.2 (81.10) -257.5� (119.7)
Average number of bills 1.176 (1.694) 1.347 (1.847)
Average number of chairs 177.5 (245.3) 119.0 (227.2)
Average number of committees -4.814 (70.41) 20.58 (72.73)
Average number of MySpace users 453.6 (285.2)
Average number of RSS users 4.991 (47.62)
Average number of Flickr users 158.2 (99.41)
Average number of Facebook users -58.14 (104.8)
Average number of Youtube users 90.29 (104.1)
Constant -115.0 (171.9) -146.1 (203.1) -115.7 (188.9)
Controls Yes Yes Yes
Observations 183 183 183
R2 0.3276 0.3809 0.4061

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001
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Table 14: Which information signals matter? The �rst speci�cation (Column 1) de�nes f�i to be
the average followers/Tweet among the 10 most recent adopters prior to i, the second speci�cation
(Column 2) de�nes f�i to be the average followers/Tweet among the 20 most recent adopters prior
to i, and the third speci�cation (Column 3) de�nes f�i to be thea average followers/Tweet among
the latter 10 (of the 20 most recent adopters).

(1) (2) (3)
Days to adopt Days to adopt Days to adopt

f�i -14.75��� (2.982) -17.51��� (4.136) -6.619 (3.456)
Controls Yes Yes Yes
Observations 173 163 163
R2 0.3878 0.4007 0.3346

Robust standard errors in parentheses
�p < 0:05, ��p < 0:01, ���p < 0:001

Figure 1: Distribution of the speed of adoption relative to Barack Obama�s �rst Tweet on April
29, 2007.
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Figure 2: Weak correlation between Followers/Tweet and time of adoption. Here, time is discretized
by months using the Month-time variable.
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