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Abstract

In many situations, such as trade in stock exchanges, agents have many instances to

act even though the duration of interactions take a relatively short time. The agents

in such situations can often coordinate their actions in advance, but coordination

during the game consumes too much time. An equilibrium in such situations has to

be sequential in order to handle mistakes made by players. In this paper, we present

a new solution concept for in�nite-horizon dynamic games, which is appropriate for

such situations: a sequential constant-expectation normal-form correlated approx-

imate equilibrium. Under additional assumptions, we show that every such game

admits this kind of equilibrium.

Subject classi�cations: games/group decisions: stochastic. �nancial institutions:

trading.

Area of review: decision analysis.

History: received December 2009, revised: April 2010, September 2010.

1 Introduction

In the modern world there are many situations that last a relatively short time but

in which agents have many instances to act, such as on-line auctions and trade in stock

exchanges. In many cases di�erent agents share similar, though not identical, goals. Such is

the case when the agents work in the same �nancial institution, and they can coordinate

their actions in order to maximize the institution's pro�t, as well as the contribution

of each agent to this pro�t. In this paper we present a game theoretic model for such

interactions, and we propose a new solution concept for these games, that is suitable for

situations where players' utilities share a common part as well as an individual part.

To motivate the study, consider the following situation. Each month the Bureau of La-

bor Statistics publishes a news release on the U.S. employment situation (ES). This news
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release is announced in the middle of the trading day in the European stock markets (on

the �rst Friday of each month at 13:30 London time). The ES announcement has a strong

impact on these markets (see Nikkinen et al., 2006 and the references within). Empirical

studies (see for example, Christie-David, Chaudhry and Khan, 2002) show that a few tens

of minutes elapse before �nancial instruments adjust to such announcements. This gap of

time (the �adjustment period�) may provide an opportunity for substantial pro�t to be

made by quick trading (�news-playing�). Consider the strategic interaction between a few

traders in a �nancial institution who coordinate in advance their actions in the adjustment

period. Each trader can make buy and sell orders for some �nancial instruments that he

is responsible for. The traders share a common objective - maximizing the pro�t of the

institution. In addition to this, each trader also has a private objective - maximizing the

pro�t that is made in �nancial instruments that he is responsible for (which in�uences his

bonuses and prestige). The traders can freely communicate before the ES announcement,

but communication during the adjustment period is costly: each moment that is spent on

communication may slow down the traders and limit their potential pro�ts.

The family of strategic interactions that we study has the following properties: (1)

the interaction lasts a relatively short time but agents have many instances to act; (2)

di�erent agents share similar, though not identical, goals; (3) each agent chooses his

action autonomously; (4) agents can freely communicate before the game starts, but

communication during play is costly or not feasible; (5) agents may occasionally make

mistakes, and not execute the action that they planned to take. Three natural questions

arise when modeling such strategic interactions: (1) Which kind of game should be used?

(2) Which solution concept should be chosen? (3) Does a solution exist, and can we �nd

one?

We begin by dealing with the �rst question. As each agent chooses his actions au-

tonomously, we model this interaction as a noncooperative game (and not as a coalitional

game; see Osborne and Rubinstein, 1994, Section IV, for discussing these two model-

ing approaches). Next we discuss the length of the game. The interaction is relatively

short in absolute terms. Nevertheless, the agents have many opportunities to act (in the

leading example, trade orders can be made in each fraction of a second). In addition,

the point in time where the game ends may not be known to the players in real-time.

Thus, it seems appropriate to model this situation as a stochastic (dynamic) game with

an in�nite-horizon, rather then modeling it as a game with a �xed �nite large number of

stages. See Rubinstein (1991) and Aumann and Maschler (1995, pages 131-137) for dis-

cussions why even short strategic interactions may be better analyzed as in�nite-horizon

games. In�nite horizon games have been used in a wide range of applications, such as:

bargaining (Chatterjee and Samuelson, 1988), inventory control system (Bouakiz and So-

bel, 1992), oligopolistic competition (Bernstein and Federgrauen, 2004), and supply chain

relationships (Taylor and Plambeck, 2007).

The issue raised in the second question - which solution concept is appropriate - has
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several aspects. First, we discuss how each agent evaluates payo�s at di�erent stages of

the in�nite-horizon game. As the interaction is short in absolute time, it is natural to

assume that payo�s are evaluated without discounting. Because, in undiscounted games,

payo�s that are obtained in the �rst T stages do not a�ect the total payo�, for every T ;

yet the interaction in our example is �nite, the solution concept should satisfy uniformity:

it should be an approximate equilibrium in any long enough �nite-horizon game. See

Aumann and Maschler (1995, pages 138-142) for arguments in favor of this notion.

The agents in the family of games that we study, can freely communicate before

the game starts, and coordinate their strategies. Aumann (1974) de�ned normal-form

correlated equilibrium in a �nite game as a Nash equilibrium in an extended game that

includes a correlation device, which sends a private signal to each player before the start

of play. The strategy of each player can then depend on the private signal that he received.

Forges (1986) extended this notion to dynamic games. Under relatively mild conditions,

pre-play non-binding communication among the players can implement a normal-form

correlated equilibrium (see, e.g., Ben-Porath, 1998), and thus this solution concept is

natural in our setup. Forges (1986) also presented the alternative notion of extensive-

form correlated equilibrium, which requires communication at each stage of the game.

This alternative notion is less appropriate to our family of games, because communication

during play is costly or not feasible.

As players may make mistakes, or forget what they were supposed to do in the equilib-

rium, the behavior of the players should also be rational o� the equilibrium path. That is,

players should also use their best response after one player makes a mistake and deviates

from the equilibrium strategy pro�le. This is satis�ed by requiring the equilibrium to be

sequential (Kreps and Wilson, 1982).

The above reasoning limits the plausible outcomes of the game to the set of sequential

normal-form correlated equilibria. See Myerson (1986a, 1986b) and Dhilon and Mertens

(1996) who study related notions. As in�nite undiscounted games may only admit ap-

proximate equilibria, we de�ne a sequential normal-form correlated (δ, ε)-equilibrium, as

a strategy pro�le where with probability at least 1 − δ, no player can earn more than ε

by deviating at any stage of the game and after any history of play (as formally de�ned

in Section 2).

Another desirable property in our setup is that the expected payo� of each player be

independent of the pre-play communication. This facilitates the implementation of the

coordination among the players, as none of them may feel discriminated by the coordina-

tion process. Sorin (1998) de�nes a distribution equilibrium in a normal-form �nite game,

as a correlated equilibrium where the expected payo� of each player is independent of his

signal. We generalize Sorin's de�nition, and de�ne an approximate constant-expectation

correlated equilibrium, as a correlated equilibrium where the expected payo� of each player

hardly changes when he receives his signal. Observe that every Nash equilibrium is a
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constant-expectation correlated equilibrium. In Section 6 we discuss the rationale for this

notion and its basic properties.

The �rst contribution of this paper is the presentation of a new solution concept

for undiscounted dynamic games: a sequential uniform constant-expectation normal-form

correlated approximate equilibrium.

We now deal with the third question: proving the existence of this equilibrium. In this

paper we prove existence under the simplifying assumption that, throughout the game,

the agents have symmetric information. This assumption is reasonable in many situations.

For example, in the leading example, each trader can electronically access the data on

all the prices of the di�erent markets. Although in reality each trader may actually focus

only on the information that is more relevant for the �nancial instruments that he is

responsible for, he may obtain the relevant information of other players, when necessary.

A second simplifying assumption is that each player has a �nite number of actions.

In the leading example, each trader has a �nite set of �nancial instruments that he is

responsible for, and for each such instrument he chooses a time to buy or a time to sell.

Thus, it can be assumed that a trader's strategy is a vector of buy and sell times, one for

each �nancial instrument that he is responsible for.

The model we study also applies to situations of a di�erent nature, for example:

• Several countries plan to ally in a war against another country. The allying countries

share a common objective - maximizing their military success against the common en-

emy. In addition, each country has private objectives, such as maximizing the territories

and resources it occupies during the war, and minimizing its losses. This situation has

similar properties to the leading example: (1) The war is relatively short in absolute

time (a modern war typically lasts a couple of weeks), but it consists of an unknown

large number of stages. (2) The leaders of each country can communicate and coordinate

their future actions before the war begins. On the other hand, secure communication

and coordination during the war may be costly and noisy. (3) Finally, usually only a

few of the battle�eld actions of each country are crucial to the outcome of the war (such

as the timing of the main military attack).

• A few male animals compete over the relative positions they shall occupy in the so-

cial hierarchy or pack order. This competition is often settled by �a war of attrition�

(Maynard Smith, 1974). In most cases, the animals use �ritualized� �ghting and do not

seriously injure their opponents. The winner is the contestant who continues the war for

the longest time. Excessive persistence has the disadvantage of waste of time and energy

in the contest. This situation also shares similar properties with the leading example:

(1) The war of attrition is short in absolute time (usually a few hours or days), but

consists of an unknown large number of stages. (2) Shmida and Peleg (1997) discuss

how a normal-form correlation device can be induced in biological setups by phenotypic
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conditional behavior, and Sorin (1998) discusses why the constant-expectation require-

ment is necessary for the stability of the population in evolutionary setups (see Section

6). (3) Finally, each animal in the war of attrition acts only once, by choosing when to

quit the contest.

Under the assumptions discussed earlier, all these strategic interactions are modeled as

follows. There is an unknown state variable on which players receive symmetric partial

information during play. For each player i (from a �nite set of players), there is a �nite

number, Ti, that limits the number of actions he may take during the game. At stage 1

all the players are active. At every stage n, each active player declares, independently of

the others, whether he takes one of a �nite number of actions or �does nothing�. A player

who acted Ti times, becomes passive for the rest of the game and must �do nothing� in

all subsequent stages. The payo� of a player depends on the history of actions and on

the state variable. By induction one can show that the problem of equilibrium existence

reduces to the case when Ti = 1 for every player i. Moreover, one can show that the

problem further reduces to the case where each player has a single �stopping� action, and

that the game ends as soon as any player stops (see Section 5).

Such a game is called a (discrete undiscounted) stopping game. The literature includes

two variants for the de�nition of stopping games. Some papers (see, e.g., Shmaya and

Solan, 2004) assume that the game ends as soon as any player stops. Other papers (see,

e.g., Ramsey, 2007) assume that after one player stops, the other players continue to play.

In this paper, we formally follow the �rst de�nition, and we show in Section 5 how our

result can be applied to the second variant as well.

Stopping games were introduced by Dynkin (1969), and later used in several models

in economics, management science, political science and biology, such as research and

development (see e.g., Fudenberg and Tirole, 1985; Mamer, 1987), struggle of survival

among �rms in a declining market (see e.g., Fudenberg and Tirole, 1986), auctions (see

e.g., Krishna and Morgan, 1997), lobbying (see e.g., Bulow and Klemperer, 2001), con�ict

among animals (see e.g., Nalebu� and Riley, 1985), and duels (see, e.g., Karlin, 1959).

Stopping games where players are allowed to stop more than once (Ti > 1) are investigated,

among others, in Szajowski (2002), Yasuda and Szajowski (2002) and Laraki and Solan

(2005).

Much work has been devoted to the study of undiscounted two-player stopping games.

This problem, when the payo�s have a special structure, was studied by Neveu (1975),

Mamer (1987), Morimoto (1986), Ohtsubo (1991), Nowak and Szajowski (1999), Rosen-

berg, Solan and Vieille (2001), Neumann, Ramsey and Szajowski (2002), and Shmaya and

Solan (2004), among others. Those authors provided various su�cient conditions under

which (Nash) approximate equilibria exist.

Undiscounted multi-player stopping games have mostly been modeled in the existing
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literature as cooperative (coalitional) games. Assaf and Samuel-Cahn (1998a, 1998b) and

Glickman (2004) have studied a model where players can only stop by an unanimous

decision, and that the group's stopping rule maximizes a speci�c function of the expected

payo� of each player. Other papers have investigated the use of cooperative solution

concepts in this setup: the core (Ohtsubo, 1996), Pareto-optima (Ohtsubo, 1995, 1998)

and Shapley value (Ramsey and Cierpial, 2009). Another model, which is more related

to our noncooperative framework, is a stopping game with a voting procedure. In such

games, each player votes at each stage whether or not he wishes to stop the game, and

there is some monotonic rule (for example, majority rule) that determines if the set

of players who voted to terminate, has the power to stop the game (see Section 5 for

discussing the extension of our model to include a voting procedure). This model has

been studied, among others, in Kurano, Yasuda and Nakagami (1980), Yasuda, Nakagami

and Kurano (1982), Szajowski and Yasuda (1997), and Ferguson (2002). All these papers

assume a simplifying assumption, which is not assumed in our model, that the payo�s to

the players only depend on the stage in which the game stops, but not on the identity of

the stopping players. In contrast with the two-player case, there is no existence result for

approximate equilibria in multi-player stopping games without this assumption.

Our main result states that for every δ, ε > 0, a multi-player stopping game admits

a sequential uniform constant-expectation normal-form correlated (δ, ε)-equilibrium. We

further show that the equilibrium's correlation device has two appealing properties: (1)

it is canonical - each signal is equivalent to a strategy; and (2) it does not depend on the

speci�c parameters of the game. The proof relies on a stochastic variation of Ramsey's

theorem (Shmaya and Solan, 2004) that reduces the problem to that of studying the

properties of correlated ε-equilibria in multi-player absorbing games (stochastic games

with a single non-absorbing state). The study uses the result of Solan and Vohra (2002)

that any multi-player absorbing game admits a correlated ε-equilibrium.

Another interesting question is characterizing the properties of the set of equilibrium

payo�s, and present methods for selecting a speci�c equilibrium with corresponding payo�

that satis�es some appealing properties, like Pareto-e�ciency, maximizing the sum of

payo�s (utilitarianism, e�ciency), or maximizing the minimal payo� (egalitarianism).

Such methods are important for the use of the model in applications, such as the leading

example. Our proof is not constructive, and this question, with general payo� structure,

remains open for future research. The reader is referred to Ramsey and Szajowski (2008),

and the references therein, who study this problem in a two-player stopping game.

The paper is arranged as follows. Section 2 presents the model and the result. A sketch

of the proof appears in Section 3. Section 4 contains the proof. In Section 5 we discuss

how to apply our result, which formally deals only with �simple� stopping games, to more

general situations, such as the leading example. Section 6 discusses the rationale of the

notion of constant-expectation correlated equilibrium.
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2 Model and Main Result

In the introduction, we presented an example of the strategic interaction among traders

when some macroeconomic news is published (the leading example), and discussed how

to model it by a stopping game. In this section we present the formal de�nitions, and

state our main result.

A stopping game is de�ned as follows:

De�nition 1 A stopping game is a 6-tuple G = (I,Ω,A, p,F , R) where:

• I is a �nite set of players;

• (Ω,A, p) is a probability space;

• F = (Fn)n≥0 is a �ltration over (Ω,A, p);
• R = (Rn)n≥0 is an F -adapted R|I|·(2

|I|−1)-valued process. The coordinates of Rn are

denoted by Ri
S,nwhere i ∈ I and ∅ 6= S ⊆ N .

A stopping game is played as follows. At each stage n, each player is informed which

elements of Fn include ω (the state of the world), and declares, independently of the

others, whether he stops or continues. If all players continue, the game continues to the

next stage. If at least one player stops, say a set of players S ⊆ I, the game terminates,

and the payo� to player i is Ri
S,n. If no player ever stops, the payo� to everyone is zero.

Remark 2 According to De�nition 1, a stopping game ends as soon as one of the play-

ers stops. As discussed earlier, the literature also includes another de�nition (see, e.g.,

Ramsey, 2007), according to which, when one player stops, the others continue to play. In

Section 5 we discuss how to apply our result to the alternative de�nition, and to a more

complicated strategic interaction, as in the leading example, in which players have a more

than one action, and may act more than once during the game.

We model the pre-play communication possibilities of the players by a correlation device:

De�nition 3 A (normal-form) correlation device is a pair D = (M,µ): (1)M = (M i)i∈I ,

where M i is a �nite space of signals the device can send player i, and (2) µ ∈ 4 (M) is

the probability distribution according to which the device sends the signals to the players

before the stopping game starts.

As discussed earlier, cheap talk communication among the players can be used to �mimic� a

correlation device. Speci�cally, when there are at least three players, under mild conditions

on the set of Nash equilibrium payo�s, any correlated equilibrium can be implemented as

a sequential equilibrium of an extended game with pre-play cheap talk (Ben-Porath, 1998;

see also Heller, 2010a for an implementation that is resistant to coalitional deviations).

This is also true for two players, under additional cryptographic assumptions (Urbano

and Vila, 2002).
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Throughout the paper we denote the signal pro�le that the players receive from the

correlation device by m. Given a normal-form correlation device D, we de�ne an extended
game G (D). The game G (D) is played exactly as G, except that, at the outset of the

game, a signal pro�le m = (mi)i∈I is drawn according to µ, and each player i is privately

informed of mi. Then, each player may base his strategy on the signal he received.

As mentioned earlier, Shmida and Peleg (1997, Section 5) discuss how a normal-

form correlation device can be induced in nature by phenotypic conditional behavior.

Speci�cally, they present an example of butter�ies who compete for sunspot clearings in

a forest in order to fertilize females. When two butter�ies meet in a sunspot, they engage

in a war of attrition. The period of time each butter�y was in the spot before the �ghting,

is used as a normal-form correlation device: a �senior� butter�y stays for a long time in

the war, while a �new� butter�y gives up quickly.

For simplicity of notation, let the singleton set {i} be denoted as i, and let −i = I\ {i}
denote the set of all players besides player i. A (behavior) strategy for player i in G (D)

is an F -adapted process xi = (xin)n≥0, where x
i
n : (Ω×M i) → [0, 1]. The interpretation

is that xin (ω,mi) is the probability by which player i stops at stage n when he received

a signal mi.

Let θ be the �rst stage in which at least one player stops, and let θ =∞ if no player ever

stops. If θ <∞ let Sθ ⊆ I be the set of players that stops at stage θ. The expected payo�

of player i under the strategy pro�le x = (xi)i∈I is given by γi (x) = Ex

(
1θ<∞ ·Ri

Sθ ,θ

)
where the expectation Ex is with respect to (w.r.t.) the distribution Px over plays induced

by x. Given an event E ⊆ Ω and a set of signal pro�les M ′ ⊆M , let γi (x|E,M ′) be the

expected payo� of player i conditioned on E and on the signal pro�le being in M ′. Given

m′ ∈M ′, let γi (x|E,M ′,m′i) denote the expected payo� of player i conditioned on E, on

the signal pro�le being in M ′, and on the signal of player i being equal to m′i.

The strategy xi is an ε-best reply for player i when all his opponents follow x−i if

for every strategy yi of player i: γi (x) ≥ γi (x−i, yi) − ε. Similarly, xi is ε-best reply

conditioned on E and M ′ if γi (x |E ,M ′) ≥ γi (x−i , y i |E ,M ′)− ε.

We say that a pro�le x in G (D) is ε-constant-expectation conditioned on E and M ′,

if whenever the state is in E ⊆ Ω and the signal pro�le is in M ′, the expected payo� of

each player changes by at most ε when he obtains his signal. We say that x is a (δ, ε)-

constant-expectation if this holds for some E and M ′ with probability at least 1− δ.

De�nition 4 Let G (D) be an extended stopping game (where D = (M,µ)), M ′ ⊆ M

and E ⊆ Ω. The strategy pro�le x in G(D) is a (δ, ε)-constant-expectation (where ε, δ ≥ 0)

if there is a set M ′ ⊆M and an event E such that µ(M ′) ≥ 1− δ, p(E) ≥ 1− δ, for every
i ∈ I and m′ ∈M ′: |γi(x|E,M ′,m′i)− γi(x|E,M ′)| ≤ ε.

The de�nition of an approximate constant-expectation correlated equilibrium generalizes
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Sorin (1998)'s de�nition of distribution equilibrium for �nite normal-form games. As dis-

cussed earlier, constant-expectation correlated equilibria are more easily implemented in

economic setups such as the leading example, as none of the players may feel discrimi-

nated against by the coordination process. In Section 6 we discuss the rationale of this

notion and its basic properties.

Given ω ∈ Ω, let Hn (ω) ⊆ Fn be the collection of all events in Fn that include

ω: Hn (ω) = {Fn ∈ Fn|ω ∈ Fn}. Hn (ω) denotes the public history of play up to stage

n, when the true state is ω. Let Hn be the collection of all such histories of length n:

Hn = {Hn (ω) |ω ∈ Ω}, and letH =
⋃
n=1..∞Hn be the set of all histories. Let G(Hn,D,m)

be the induced stopping game that begins at stage n, when each player i has received the

private signal mi ∈M i, and the public history is Hn ∈ Hn. For simplicity of notation, we

use the same notation for a strategy pro�le in G (D) and for the induced strategy pro�le

in G(Hn,D,m).

As discussed earlier, we require players to also be rational o� the equilibrium path.

This is satis�ed by requiring the equilibrium to be sequential (Kreps and Wilson, 1982).

In what follows we adapt the de�nition of sequential equilibrium in a �nite extensive-form

game, to our framework of in�nite extended stopping games. The adaptation includes two

parts: (1) Simplifying the belief system because the only source for imperfect information

on past events is due to the private signals the players received from the correlation device

before the game starts. (2) De�ning an approximate variation of sequential equilibrium

due to the in�niteness of stopping games. Observe that we adopt the notation of Osborne

and Rubinstein (1994, Chapters 6 and 12), and do not consider simultaneous moves as a

source of imperfect information.

We begin by de�ning a belief system in an extended stopping game G (D) as a pro�le

of functions (qi)i∈I . Each function qi : H×M i →4 (M−i) assigns a distribution over the

signals of the other players. The distribution is interpreted as follows: after receiving a

signal mi and observing a public history H, player i assigns probability qi (H,mi) (m−i)

to the signal pro�le of the other players being m−i. Given M ′ ⊆ M , let qi (H,mi|M ′) be

the belief of player i over the signal pro�le, conditional on the signal pro�le being in M ′.

An assessment in an extended stopping gameG (D) is a pair (x, q) where x is a strategy

pro�le and q is a belief system. An assessment is ε-sequentially rational, conditioned on

an event E and on M ′, if every player ε-best replies whenever the signal pro�le is in M ′

and the state is in E. When ε = 0 it coincides with the standard de�nition of sequential

rationality (Kreps and Wilson, 1982). Formally:

De�nition 5 Let G (D) be an extended stopping game (where D = (M,µ)), ε ≥ 0,

M ′ ⊆M , and E ⊆ Ω. An assessment (x, q) is ε-sequentially rational in G (D) conditioned

on E and M ′, if for every i ∈ I, ω ∈ E, n ∈ N, and signal pro�le m ∈M ′, xi is an ε-best

reply for player i conditioned on E and on M ′ in the induced game G(Hn (ω) ,D,m),
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when his opponents play x−i, and his beliefs over the signal pro�le are qi (Hn (ω) ,mi|M ′).

A strategy pro�le is completely mixed if each player assigns positive probability to every

action (stop or continue) after every history. An assessment (x, q) is consistent if it is the

limit of a sequence of assessments ((xn, qn))∞n=1 with the following properties: (1) each

strategy pro�le xn is completely mixed; (2) each belief system qn is derived from xn using

Bayes' rule. An assessment is a sequential ε-equilibrium conditioned on E and M ′, if it is

ε-sequentially rational (conditioned on E and M ′) and consistent. Formally:

De�nition 6 Let G (D) be an extended stopping game (where D = (M,µ)), ε ≥ 0,

M ′ ⊆M , and E ⊆ Ω. An assessment (x, q) is sequential ε-equilibrium inG (D) conditioned

on E andM ′, if it is both ε-sequentially rational conditioned on E andM ′ and consistent.

De�nition 6 extends the standard de�nition of sequential equilibrium. That is, when ε = 0,

M = M ′ and E = Ω, it is equivalent to the standard de�nition of sequential equilibrium

(Kreps and Wilson, 1982).

An assessment is a sequential (δ, ε)-equilibrium if it is a sequential ε-equilibrium con-

ditioned on E and M ′, where E and M ′ have probabilities of at least 1− δ. Formally:

De�nition 7 Let G (D) be an extended stopping game and let δ, ε ≥ 0. An assessment

(x, q) is a sequential (δ, ε)-equilibrium of G (D) if there exists an event E ⊆ Ω and a set

of signal pro�les M ′ ⊆ M , such that p(E) ≥ 1− δ, µ(M ′) ≥ 1− δ, and x is a sequential

ε-equilibrium of G (D) conditioned on E and M ′.

Abusing notation, we say that a strategy pro�le x is a sequential (δ, ε)-equilibrium ofG (D)

if there is a belief system q, such that the assessment (x, q) is a sequential (δ, ε)-equilibrium

in G (D). Observe that when the correlation device is trivial (|M | = 1) sequentiality

is equivalent to subgame perfectness (Selten, 1965, 1975). Speci�cally, when |M | = 1,

the de�nition of a (δ, ε)-sequential equilibrium is equivalent to the de�nition of a (δ, ε)-

subgame-perfect equilibrium in Mashiah-Yaakovi (2009). Without the limitation |M | = 1,

every (δ, ε)-sequential equilibrium is a (δ, ε)-subgame-perfect equilibrium, but the converse

is not true.

We now de�ne a sequential correlated (δ, ε)-equilibrium.

De�nition 8 Let G be a stopping game and let δ, ε > 0. A sequential correlated (δ, ε)-

equilibrium is a pair (D, x), where D is a correlation device and x is a sequential (δ, ε)-

equilibrium in G (D).

We end this subsection by de�ning another appealing property of a correlation device:

canonicality. A correlation device D = (M,µ) is canonical if each signal is equivalent to

a strategy.

De�nition 9 Let G be a stopping game. A correlation device D = (M,µ) is canonical
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given the strategy pro�le x in G (D) if for each player i there is an injection between M i

and his set of strategies in G. That is x (mi) 6= x (m′i) for each mi 6= m′i.

The standard de�nition of a canonical correlation device for �nite games (Forges, 1986)

is that the set of signals is equal to the set of strategy pro�les. De�nition 9 is di�erent

because the set of signals is �nite, while the set of strategies is in�nite.

Our main result is the following:

Theorem 10 Let G = (I,Ω,A, p,F , R) be a multi-player stopping game with integrable

payo�s (supn∈(N
⋃
∞) ‖Rn‖∞ ∈ L1(p)). Then for every δ, ε > 0, G has a sequential (δ, ε)-

constant-expectation normal-form correlated (δ, ε)-equilibrium with a canonical correla-

tion device. Moreover, the correlation device only depends on the number of players and

ε, and is independent of the payo� process.

The fact that the correlation device is independent of the payo� process allows the players

to use the same correlation device in every stopping game (assuming the number of

players and ε are �xed), and avoid the di�culties of constructing a new device for each

stopping game. Thus, the traders in the leading example can construct, once and for all,

a correlation device, and then use it for all future strategic interactions (regardless of the

speci�c implications of the macroeconomic news that is going to be released).

Remark 11 The (δ, ε)-equilibrium that we construct is uniform in a strong sense: it is

a (δ, 3ε)-equilibrium in every �nite n-stage game, provided that n is su�ciently large.

This can be seen by the construction itself (Proposition 17) or by applying a general

observation made by Solan and Vieille (2001).

3 Sketch of the Proof

We begin our sketch by focusing on a simple kind of stopping games - periodic stopping

games on �nite trees. These are stopping games with a �nite �ltration, where after a �nite

number of stages, if not stopped earlier, the game restarts at the �rst stage. Such games

are a special kind of absorbing games (stochastic games with a single non-absorbing state,

see Sorin, 2002, 5.5). Solan and Vohra (2002) studied these games and proved that they

admit a correlated ε-equilibrium. Adapting their result to our framework, implies that

every periodic stopping game has either (1) a stationary equilibrium; or (2) a set of nodes

in the tree (ṽi)i∈I , and a distribution ζ over the players, such that if player i is chosen

according to ζ, and is asked to stop in node ṽi, then this procedure induces a correlated

equilibrium (each player has an incentive to stop only when being asked to).

We strengthen the result of Solan and Vohra (2002) if case (1) holds, by showing

that there is a stationary sequential ε-equilibrium (by �perturbing� the game to continue

11



with positive probability at each stage). If case (2) holds, we modify the procedure in

which players are being asked to stop in two ways. First, we ask each player to stop with

probability 1 − ε (and not with probability 1 as in Solan and Vohra, 2002), to prevent

players from being able to deduce that they are o� the equilibrium path (even when other

players deviate). This allows us to obtain sequentiality. Second, we make sure that with

high probability, when a player receives his signal, he cannot deduce, which player has

been asked to stop. This modi�cation guarantees constant-expectation (which trivially

holds in the �rst case). Finally, we adapt the methods of Shmaya and Solan (2004), to

extend our result to periodic games with in�nite �ltrations, and to show that each such

game admits a correlated (δ, ε)-equilibrium.

The last step in the proof adapts the methods of Shmaya and Solan (2004) to ex-

tend the equilibrium existence result to in�nite non-periodic stopping games. Shmaya

and Solan proved a stochastic variation of Ramsey's Theorem (1930) that allows us to di-

vide an in�nite non-periodic stopping game into an in�nite sequence of periodic stopping

games, and to concatenate the correlated (δ, ε)-equilibrium in each periodic game, into a

correlated (δ, ε)-equilibrium in the original in�nite non-periodic game. We verify that the

sequentiality and constant-expectation of each equilibrium in the periodic games imply

the same properties for the equilibrium in the in�nite game. Moreover, we show that the

concatenated correlated equilibrium uses a correlation device which is normal-form, and

only depends on the number of players and ε.

4 Proof

This section includes �ve parts. Subsection 4.1 includes some notation that is used

later in the proof, and shows that one can focus on proving equilibrium existence in an

induced game that begins after some bounded stopping time is reached. Subsection 4.2

presents a special form of stopping games - stopping games on �nite trees, and shows that

such games can approximate periodic stopping games with in�nite �ltrations. Subsection

4.3 adapts the result of Solan and Vohra (2002) and shows that every stopping games on a

�nite tree admits a sequential correlated equilibrium. Subsection 4.4 presents a stochastic

variation of Ramsey's theorem, which is adapted from Solan and Shmaya (2004). Finally,

Subsection 4.5 uses all the previous results to prove that every (in�nite and non-periodic)

stopping game admits a sequential correlated equilibrium with the properties required in

Theorem 10.

4.1 Preliminaries

If with probability at least 1 − δ, the di�erence between the payo�s of two stopping

games G and G̃ is at most ε, then any sequential (δ, ε)-equilibrium in G is a sequential
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(3δ, 3ε)-equilibrium in G̃. Hence now �x a stopping game G and assume without loss of

generality (w.l.o.g.) that the payo� process R is uniformly bounded and that its range is

�nite. In fact, we assume that for some K ∈ N, Ri
S,n ∈

{
0,± 1

K
,± 2

K
, ...,±K

K

}
for every

n ∈ N. LetD =
∏
i∈I, ∅6=S⊆I

{
0,± 1

K
,± 2

K
, ...,±K

K

}
be the set of all possible one-stage payo�

matrices of the stopping game G. Let Rn(ω) be the payo� matrix at stage n.

We now �x ε, δ > 0. Given any payo� matrix d ∈ D, let Ad ⊆
∨
n∈NFn be the event

that d occurs in�nitely often (i.o.): Ad = {ω ∈ Ω|i.o. Rn(ω) = d}, and let Bd,k ⊆
∨
n∈NFn

be the event that d never occurs after stage k : Bd,k = {ω ∈ Ω|∀n ≥ k, Rn(ω) 6= d}. Since
all Ad andBd,k are in

∨
n∈NFn, there existN0 ∈ N and FN0-measurable sets

(
Ād, B̄d

)
d∈D
∈

FN0 that approximate Ad and Bd,N0 . That is: (1) For each d ∈ D: Ād
⋂
B̄d = ∅ and(

Ād
⋃
B̄d

)
= Ω. (2) ∀d ∈ D, p

(
Ad|Ād

)
≥ 1− δ

3·|D| . (3) ∀d ∈ D, p
(
Bd,N0|B̄d

)
≥ 1− δ

3·|D| .

Let Φ =
⋃
d∈D

({
ω ∈ Ād|ω /∈ Ad

}⋃{
ω ∈ B̄d|ω /∈ Bd,N0

})
be the event that includes

all the approximation's �errors�. That is, Φ includes all states where a payo� matrix d

does not repeat in�nitely often even though ω ∈ Ād, and all states where a payo� matrix

d occurs after N0 even though ω ∈ B̄d. Observe that p(Φ) < δ
3
. For any H ∈ H let

D (H) =
{
d ∈ D|∃F ∈ H, s.t.F ⊆ Ād

}
be the set of payo� matrices that repeat in�nitely

often after history H (outside Φ). For each player i ∈ I, let αiH = max
(
di{i}|d ∈ D (H)

)
be the maximal payo� a player can get by stopping alone in one of the matrices in D (H).

Consider an induced game that begins after some bounded stopping time τ is reached.

The following standard lemma shows that in order to prove Theorem 10, it is enough to

show that each such game has an approximate constant-expectation sequential correlated

equilibrium with a canonical correlation device that depends only on |I| and ε.

Lemma 12 Let D = (M,µ) a canonical correlation device that depends only on |I| and
ε, M ′ ⊆M a set satisfying µ(M ′) > 1− δ, E ⊆ Ω an event such that p(E) > 1− δ, and τ
a bounded stopping time. Assume that for every ω ∈ E, m ∈M ′, and H = Hτ(ω) ∈ Hτ(ω),

there is a constant-expectation sequential ε-equilibrium, xH , in G(H,D,m) conditioned on

E and M ′. Then G (D) admits a (δ, ε)-constant-expectation sequential (δ, ε)-equilibrium.

This implies thatG admits a sequential (δ, ε)-constant-expectation normal-form correlated

(δ, ε)-equilibrium with a canonical device, which depends only on |I| and ε.

PROOF. It is well known that any �nite-stage game admits a sequential 0-equilibrium.

Since τ is bounded, p(E) ≥ 1− δ and µ(M ′) ≥ 1− δ, the following strategy pro�le x is a

(δ, ε)-constant-expectation sequential (δ, ε)-equilibrium:

• Until stage τ , play a sequential equilibrium, which is trivially a constant-expectation

equilibrium, in the �nite stopping game that terminates at τ , if no player stops before

that stage, with a terminal payo� γi(xH).
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• If the game has not terminated by stage τ , from that stage on, play the pro�le xH in

G(H,D,m).

Observe that for the concatenated pro�le x to be a normal-form correlated equilibrium, it

is necessary that each induced game's equilibrium would be constant-expectation. Other-

wise, the signal a player receives before the game starts may change his expected payo�s

in the induced games, and this may create pro�table deviations from x. It is also necessary

that all the correlated equilibria in the induced games use the same correlation device M .

Also observe that the sequentiality and constant-expectation of each equilibrium in the

induced games, imply that x has these two properties.

4.2 Periodic Stopping Games on Finite Trees

Generally, a stopping game is non-periodic, has an in�nite length and has an in�nite

�ltration. We now consider a special kind of stopping game, which is periodic (with �nite

length) and has a �nite �ltration. Such a game can be modeled by a game on a �nite tree.

The game starts at the root and is played in stages. Each node in the tree has a matrix

payo� (in case players stop at that node), and a distribution over its o�spring nodes,

which determines the probability that the game would continue to each of these nodes, if

no player stops. Given the current node, and the sequence of nodes already visited, the

players decide, simultaneously and independently, whether to stop or to continue. Let S

be the set of players that decides to stop. If S 6= ∅, the play ends and the terminal payo�

to each player i is determined by the node's payo� matrix. If S = ∅, a new node is chosen

according to the node's distribution over its o�spring. The process now repeats itself, with

the o�spring node being the current node. When the players reach a leaf, the new current

node is the root. A game on a tree is essentially played in rounds, where each round starts

at the root and ends once it reaches a leaf. Formally:

De�nition 13 A stopping game on a �nite tree (or simply a game on a tree) is a tuple

T =
(
I, V, Vleaf , r, (Cv, pv, Rv)v∈V \Vleaf

)
, where:

• I is a �nite non-empty set of players;

•
(
V, r, (Cv)v∈V \Vleaf

)
is a tree, V is a nonempty �nite set of nodes, Vleaf ⊆ V is a

nonempty set of leaves, r ∈ V is the root, and for each v ∈ V \Vleaf , Cv ⊆ V \ {r} is a
nonempty set of o�spring of v. We denote by V0 = V \Vleaf the set of nodes which are

not leaves;

and for every v ∈ V0:

• pv is a probability distribution over CV ; we assume that ∀ṽ ∈ Cv: pv(ṽ) > 0;

• Rv =
(
Ri
v,S

)
i∈I,∅6=S⊆I

∈ D is the payo� matrix at v if a nonempty set of players S stops

at that node.
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Given a bounded stopping time n < σ and history Hn ⊆ Hn, let Gn,σ (Hn) be the induced

stopping game that begins at stage n , when the players are informed of Hn, and the game

restarts at stage n (where a new ω ∈ Hn is randomly chosen), if no player stopped before

reaching stage σ(ω). A simple adaptation of the methods of Shmaya and Solan (2004,

Sections 5-6) shows that Gn,σ (Hn) can be approximated by a game on a tree, Tn,σ (Hn),

such that every ε-equilibrium in Tn,σ (Hn) is a 3ε-equilibrium in Gn,σ (Hn). In the following

paragraph we sketch the main idea behind this approximation. The reader is referred to

Shmaya and Solan (2004) for the formal details.

For simplicity of presentation let σ be constant: σ = m > n. All that matters to the

players at stage m, is the payo� matrix at this stage (because if no player stops, the game

restarts at stage n with a new random ω ∈ Hn, which is independent of the information

the players have on the current ω). Thus we can cluster together the Fm-measurable
sets according to their payo� matrices, and have at most |D| leaves in the �nite tree. At

stage m − 1, players care about both the current payo� matrix and the distribution of

the payo� matrices at the next stage. Using a �nite approximation to this distribution

(rounding each probability up to ε/2m), enables clustering of Fm−1-measurable sets into

a �nite number of vertices as well. Similarly, one can show by a recursive procedure that

the entire game Gn,σ (Hn) can be approximated by a stopping game on a �nite tree.

Assuming that n > N0 we perturb the game on a tree Tn,σ (Hn) by not allowing players

to stop in any node v̄ with a payo� matrix Rv̄ is in B̄d. That is, in such nodes, players

must continue and the game goes on to one of v̄'s o�spring.

4.3 Equivalence of Periodic Games and Absorbing Games

A stopping game on a �nite tree T = Tn,σ (Hn) is equivalent to an absorbing game

(Solan and Vohra, 2002; Sorin, 2002, 5.5), where each round of T corresponds to a single

stage of the absorbing game. As an absorbing game, T has two special properties: (1) it

is a recursive game: the payo� in the non-absorbing state is zero; (2) there is a unique

non-absorbing action pro�le.

Given a game on a tree T , let gi be the maximal payo� player i can get by stopping

alone. Let ṽi be a node that gives player i his maximal payo� gi. Adapting Proposition

4.10 in Solan and Vohra (2002) to the two special properties gives the following:

Proposition 14 Let T be a game on a �nite tree. One of the following holds:

(1) There is a stationary absorbing sequential ε-equilibrium x.

(2) There is a stationary non-absorbing sequential equilibrium where all the players

always continue.

(3) There is a distribution ζ ∈ ∆(I) over the players such that:
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(a) For each player j ∈ I, Eζ′

(
Rj
{i},ṽi

)
=
∑
i∈I ζ (i) · Rj

{i},ṽi ≥ gj, where ζ ′ denote

the distribution over payo� vectors
{
R{i},ṽi

}
i∈I

that is induced from ζ as follows:

player i is chosen according to ζ, and ṽi is the node de�ned above. That is, we

require that the expected payo� of each player j from the induced distribution

ζ ′ is as high as his maximal payo� when stopping alone.

(b) Let the players in the support of ζ (ζ (i) > 0) be denoted as the stopping players.

For every stopping player i there exists a player ji 6= i, the punisher of i, such

that: gi ≥ Ri
{ji},ṽji . That is, each stopping player prefers to stop alone at ṽ

i rather

than having his punisher ji stopping alone at ṽ
ji .

These two properties of ζ are used in Subsection 4.5 to construct a correlated equi-

librium with payo�s that are induced by ζ ′. The �rst property prevents players from

deviating by stopping when they are not asked to stop, and the second property

prevent players from deviating by continuing when they are asked to stop.

Remark 15 Solan and Vohra (2002) do not guarantee that the stationary absorbing

equilibrium in case (1) is sequential . Speci�cally, players may play irrationally after

some player i is supposed to stop with probability 1 according to xi. To prevent this,

we perturb the game T . Let Tε be a game similar to T , except that when a non-empty

set of players wishes to stop at some node, there is a probability ε that the �stopping

request is ignored�, and the game continues to the next stage. Tε is also equivalent to an

absorbing game, and Solan and Vohra (2002)'s proposition can be applied. In Tε no node

is ever o� the equilibrium path, and thus any Nash equilibrium in Tε is subgame perfect,

which is equivalent to being sequential, as the correlation device is trivial (as discussed

after De�nition 7). Any such stationary sequential equilibrium in Tε naturally de�nes a

strategy pro�le in T . One can see that this pro�le is a stationary sequential ε-equilibrium

in T .

4.4 A Stochastic Variation of Ramsey's Theorem

Solan and Shmaya (2004) present a stochastic variation of Ramsey's theorem (Ramsey,

1930), and a method to use it to disassemble an in�nite (non-periodic) stopping game into

games on �nite trees with special properties. In this subsection we sketch the main ideas

of this method, while leaving some of the formal details to the appendix.

Let C be a �nite set of �colors�. An F -consistent C-valued NT-function (or simply an

NT-function) is a function that attaches a color cn,σ (ω) = cn,σ (Hn (ω)) to every induced

stopping game Gn,σ (Hn (ω)). Given an NT-function and two bounded stopping times

τ1 < τ2, let cτ1,τ2(ω) = cτ1(ω),τ2(ω). Thus cτ1,τ2 is an Fn-measurable random variable.

Shmaya and Solan (2004, Theorem 4.3) proved the following proposition :

Proposition 16 For every �nite set C, every C -valued F-consistent NT -function c, and

every ε > 0, there exists an increasing sequence of bounded stopping times 0 < σ1 < σ2 <
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σ3 < ... such that: p (cσ1,σ2 = cσ2,σ3 = ...) > 1− ε.

We now present a somewhat simpli�ed version of the NT-function that would be used to

prove Theorem 10; the exact function is described in the appendix.

Let W =
∏
i∈I

{
0,± 1

K
, ...,±K

K

}
be a �nite 1/K-approximation of [−1, 1]|I|. Let C =

{{1, 2, 3} ×W ×W} be a set of colors, where the �rst component denotes which case

of Proposition 14 holds in Tn,σ (Hn (ω)); the second component denotes the approximate

equilibrium payo�, and the third component denotes the payo� of each player when he

stops alone in case 3. That is, cn,σ (ω)=(case, w, g) is de�ned as follows:

• case = 1 if there is a stationary absorbing equilibrium in Tn,σ (Hn (ω)) (that is, case

(1) of Proposition 14 holds). Otherwise, case = 2 if there is a sequential non-absorbing

equilibrium in Tn,σ (Hn (ω)). Otherwise, case = 3 and then case (3) of Prop. 14 holds.

• w is the equilibrium payo� in cases (1) and (2), and it is the payo� that is induced from

the distribution η′ in case (3): w = Eζ′

(
Rj
{i},ṽi

)
=
∑
i∈I ζ (i) ·Rj

{i},ṽi (where ṽ
i is a node

that maximizes player i's reward when stopping alone).

• g is the maximal payo� each player can get by stopping alone in Tn,σ (Hn (ω)) in case

(3), and it is arbitrarily set to 0 in cases (1) and (2).

By Proposition 16 there exists an increasing sequence of bounded stopping times 0 < σ1 <

σ2 < σ3 < ... such that: p (cσ1,σ2 = cσ2,σ3 = ...) > 1− δ
3
. We assume w.l.o.g. that σ1 > N0.

Let E = Ω\
(
Φ
⋃{

ω ∈ Ω|∃n s.t. cσn,σn+1 (ω) 6= c1,2 (ω)
})

be the event where there are no

approximation errors (as de�ned in Subsection 4.1) and the color of all �nite trees after

σ1 is the same. Observe that P (E) > 1− 2
3
δ > 1− δ.

4.5 Constant-Expectation Sequential Correlated Equilibrium

We conclude this section by proving Theorem 10: showing that every (non-periodic)

stopping game admits a sequential (δ, ε)-constant-expectation normal-form correlated

(δ, ε)-equilibrium with a canonical correlation device. By Lemma 12, Theorem 10 is im-

plied by the following proposition:

Proposition 17 Let E and σ1 be de�ned as in the previous subsection. There is a canon-

ical correlation device D = (M,µ), and a subset M ′ ⊆M satisfying µ (M ′) > 1− δ, such
that for every m ∈ M ′ and every ω ∈ E, there is a sequential ε-constant-expectation ε-

equilibrium conditioned on E andM ′, xH , in the game G(H,D,m), where H = Hσ1(ω)
(ω).

PROOF. Let c = cσ1,σ2 (ω)=(case, w, g) be the color of the game Gσ1(ω),σ2 (H). Solan and

Shmaya (2004) investigated 2-player stopping games, when case is equal either to 1 or 2

(case 3 is only relevant to games with more than two players). They show that one can

concatenate the sequential stationary Nash ε/11-equilibria of each approximating game on
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a tree Tσk(ω),σk+1

(
Hσk(ω) (ω)

)
into a sequential ε-equilibrium (conditioned on E), xH , in

the induced game without pre-play correlation G(H). The pro�le xH naturally induces a

sequential ε-constant-expectation ε-equilibrium conditioned on E and M ′ in G(H,D,m),

given any correlation device D and any signal pro�le m.

For this concatenation to work when case = 1, Solan and Shmaya (2004) provided

appropriate minimal bounds to the probability of termination in the �rst round of the

stationary approximate equilibrium of each game on a tree Tσk(ω),σk+1

(
Hσk(ω) (ω)

)
, that

guarantee that the concatenated pro�le, xH , is absorbed with probability 1. With mi-

nor adaptations, Shmaya and Solan (2004)'s method works also in multi-player stopping

games, as described in the appendix.

Thus, we only have to deal with the third case (case = 3). The construction in this case

is an adaptation of the procedure of Solan and Vohra (2002), which deals with quitting

games (stationary stopping games where the payo� is the same at all stages). Changes

with respect to the original procedure are needed to guarantee constant-expectation and

sequentiality (which are not satis�ed in Solan and Vohra, 2002).

For each player i ∈ I, let ṽi be a node in the tree Tσ1,σ2

(
Hσ1(ω) (ω)

)
that gives player

i his maximal reward when stopping alone - gi. The de�nition of D (H) (the set of payo�

matrices that repeats in�nitely often in H) and αi (H) (the maximal single-stopper payo�

in D (H) - see Subsection 4.1), implies that gi = αi (H), and that Rṽi ∈ D (H) (the

payo� matrix of each node ṽi repeats in�nitely often in the non-periodic in�nite stopping

game, assuming that ω ∈ E). Let ζ be the distribution over the players that satis�es

(Proposition 14): 3-a)
∑
i∈I ζ (i) ·Rj

{i},ṽi ≥ gj , and 3-b) for each stopping player i there is

a punisher - a stopping player ji such that gi ≥ Ri
{ji},ṽji .

Let (τ ik)i∈I, n≥1 be an increasing sequence of stopping times de�ned by induction: τ i1 is

the �rst stage m in which payo� matrix Rṽi is reached - Rm (ω) = Rṽi ; and τ
i
n+1 is the

�rst stage m > max
j∈I

(τ jn) such that Rm (ω) = Rṽi . Observe that in E each τ in is bounded

(because all the payo� matrices (Rṽi)i∈I repeat in�nitely often). Let τn = max
i∈I

(τ in). Intu-

itively, the stopping times (τn)n≥1 divide the in�nite (non-periodic) stopping game into

rounds. In each such round (assuming ω ∈ E), the game passes at least once through each
of the payo� matrices (d (i))i∈I that maximize the reward of a single stopper.

We now describe an auxiliary correlation device DD(H). The device chooses a player to

stop (the stopper) according to the distribution ζ. Let T ∈ N be chosen su�ciently large,

and let T̂ ∈ N be chosen to be much greater than T . The alphabet of the correlation

device includes T̂ + T + 1 integers: ∀i ∈ I, M i
D(H) = {1, ..., T̂ + T + 1}.

The signal sent to each player i is interpreted as the round in which that player should

stop with probability 1−ε when reaching payo� matrix Rṽi for the �rst time in that round.
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The stopper receives a signal l̂ from the uniform distribution on the integers between 1

and T̂ . The punisher receives signal l from the uniform distribution on the integers from

l̂ + 1 to l̂ + T . Finally, all other player receive the signal l + 1. If the game has passed

through T̂ + T + 1 rounds, then the game returns to round 1. Formally, each player i

with signal mi ∈ {1, ..., T̂ + T + 1} stops with probability 1-ε at the �rst time that payo�

matrix d (i) is reached at each round n that satis�es n = (mi) mod
(
T̂ + T + 1

)
.

This mechanism ensures that upon receiving the signal, with a large probability any

player's estimate of the probability that he has been chosen as the stopper (the Bayesian

posterior probability) is �virtually unchanged� from the prior probability. Formally, we

require that with probability 1− δ
2|D|

the posterior probabilities of all players are changed

by at most ε. Also, if the stopper deviates, the probability of him correctly predicting

the moment of punishment is very small. Hence, given the others follow their signals, the

stopper has no incentive to deviate. If the game is not stopped by the stopper, then at

the time at which the punisher is supposed to stop, he believes with high probability that

he is the stopper and so should stop according to the argument above.

Remark 18 In our construction players are asked to stop with probability 1 − ε. This

implies that no history is ever o� the equilibrium path, and thus every equilibrium is

sequential. It is possible to construct a similar equilibrium in which players are asked to

stop with probability 1, by carefully de�ning players' beliefs o� the equilibrium path.

Let the canonical correlation device D = (M,µ), which only depends on |I| and ε, be the
Cartesian multiplication of the correlation devices DD(H) for each possible set of in�nitely-

repeated payo� matrices: D =
∏
D(H)⊆DDD(H). LetM

′ ⊆M be the set of signals such that

for every player the posterior probability of being chosen as the stopper by the devices(
DD(H)

)
D(H)⊆D

are changed by at most ε. Observe, that the above arguments imply that

µ (M ′) > 1 − δ, and that the obedient strategy is a sequential ε-constant-expectation

ε-equilibrium in the game G(H,D,m) conditioned on E and M ′.

We conclude by demonstrating the use of our procedure in a simple example.

Example 19 Consider the following periodic stopping game with 3 players. At stages

3k + 1 (resp., 3k + 2, 3k + 3) If player 1 (resp., player 2, player 3) stops alone the

payo� vector is (1, 0, 5) (resp., (5, 1, 0), (0, 5, 1)). If players 1 and 2 (resp., players 2 and

3, players 3 and 1) stop together, the payo� is (0, 2, 0) (resp., (0, 0, 2), (2, 0, 0)). If any

other non-empty set of players stop, the payo� vector is (0, 0, 0). That is, at each stage

3k + i player i gets 1 if he stops alone, and this yields 0 for player (i+ 1) mod 3 and 5

for player (i+ 2) mod 3. If Player (i+ 1) mod 3 stops as well, he gets 2, while the other

players get 0. Observe, that each player can get a maximal payo� of 1 by stopping alone

(g = (1, 1, 1)), and that each player i has a punisher ji = (i+ 2) mod 3.

In what follows we demonstrate how our procedure induces the payo� (2, 2, 2) =
1
3

(1, 0, 5)+ 1
3

(5, 1, 0)+ 1
3

(0, 5, 1) as an approximate constant-expectation sequential equilib-
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rium. In this example, the sequence of stopping times (τ in) is as follows: τ in = 3·(n− 1)+i.

This sequence divides the game into rounds of length 3: round 1 includes stages 1-3, round

2 includes stages 4-6, etc.

Say, for example, that the device chose player 1 as the stopper. Then player 1 receives

signal m1 = l̂, his punisher, player 3, receives signal m3 = l̂ + l, and player 2 receives

signal m2 = l̂ + l + 1. Assuming that the players follow their signals, player 1 stops with

probability 1−ε when his optimal payo� (as a single stopper) is realized in the m1-th round

(that is, at stage τ 1
m1 = 3 · (m1 − 1) + 1); player 3 (resp., player 2) stops with probability

1− ε when his optimal payo� is realized in round m3-th (resp., round m2-th) round (if the

game has not terminated earlier); player 1 stops with probability 1 − ε when his optimal

payo� is realized in the m1 +
(
T̂ + T + 1

)
-th round, etc.

5 Extensions

Our formal model only dealt with �simple� stopping games, which end as soon as

any player stops. We now discuss how to extend our result to more generalized strategic

interactions, such as the leading example.

A generalized stopping game is played as follows. There is an unknown state variable,

on which players receive symmetric partial information during play. For each player i,

there is a �nite number, Ti, that limits the number of actions he may take during the

game. At each stage, each player i has a �nite set of �stopping� actions Ai. At stage 1 all

the players are active. At every stage n, each active player declares, independently of the

others, whether he takes one of the �stopping� actions in Ai or continues. A player that

has stopped Ti times, becomes passive for the rest of the game and must choose �continue�

in all subsequent stages. The payo� of a player depends on the history of actions and on

the state variable.

A generalized stopping game is di�erent from a �simple� stopping game in three as-

pects: (1) if no player ever stops the payo� is not necessarily zero; (2) each player has

a few di�erent �stopping� actions (|Ai| > 1); (3) each player may act a �nite number of

times (Ti > 1) until he becomes passive, and when he becomes passive, the game continues

with the other players.

Proposition 14 also holds when each player has a �nite number of di�erent �stopping�

actions, and when the payo� if no player ever stops is di�erent from zero. Thus, with

minor adaptations, our proof is extended to cases (1) and (2).

The third case, where each player may act a �nite number of times, is handled by

using backward induction. The details are standard, and we only sketch here the main

idea. Let m =
∑
i Ti be the total number of times the players are allowed to stop. Assume
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by induction on m, that any generalized stopping game where players can stop at most n

times, admits an equilibrium of our type (sequential normal-form correlated approximate

equilibrium with a canonical correlation device). Given a generalized stopping game G′

with m �stops�, we construct an auxiliary stopping game G with the following payo�

process: Ri
S,n is equal to the payo� of player i in an equilibrium of our type of induced

generalized stopping game with total number of stops n− |S| that begins at stage n+ 1,

where the Ti of each player i in S is reduced by one. Such an equilibrium exists due to

the induction hypothesis. By Theorem 10, the auxiliary game G admits an equilibrium of

our type x. x induces an equilibrium of our type x′ in the original game G′ in a natural

way: players follow x as long as all the players continue; as soon as some of the players

stop, the remaining active players play the equilibrium of the induced stopping game with

fewer �stops�.

Our result can also be extended to stopping games with voting procedures (see, e.g.,

Kurano, Yasuda and Nakagami, 1980, Yasuda, Nakagami and Kurano, 1982, and Sza-

jowski and Yasuda, 1997). In such games, each player votes at each stage whether or not

he wishes to stop the game, and there is some monotonic rule (for example, a majority

rule) that determines whether the game stops or continues. Observe that unlike the above

existing literature, we allow the payo� process to depend on the identity of the stopping

players. The adaptation of our proof to this more general setup involves a single (non-

minor) change: the absorbing game that is equivalent to a stopping game on a �nite tree

(Subsection 4.3) does no longer have a unique non-absorbing action pro�le. Nevertheless,

Proposition 4.10 of Solan and Vohra (2002) can still be used (but in a more generalized

way than Proposition 14, which assumes a unique non-absorbing pro�le), and an adapta-

tion of the public signaling methods of Solan and Vohra allows to extend our result, and

prove the existence of a correlated equilibrium of our type.

6 Distribution and Constant-Expectation Correlated Equilibrium

Sorin (1998) presented the notion of distribution equilibrium for �nite normal-form

games as a correlated equilibrium in which the expected payo� of each agent is inde-

pendent of his signal. In Section 2 we generalized this notion for dynamic games with

normal-form correlation, and called it constant-expectation correlated equilibrium. In this

section we present basic properties of these notions, and discuss their rationales. The �rst

two subsections are mostly based on Sorin (1998), and are given for completeness (Sorin

(1998) is an unpublished manuscript, which is not readily available).

21



6.1 Properties and Examples

We brie�y discuss some of the properties of distribution equilibrium in normal-form

games. First, every Nash equilibrium is a distribution equilibrium. Second, unlike the set

of correlated equilibria, the set of distribution equilibria is not convex, as demonstrated

in the �battle of the sexes� game illustrated in Table 1: both (T,R) and (B,L) are distri-

bution equilibria, but [0.5 (T,R) , 0.5 (B,L)] is not (the payo� of a player is either 1 or 2,

depending on his signal).

Table 1
�Battle of the Sexes� - a Normal-Form Two-Player Game

L R

T (0, 0) (2, 1)

B (1, 2) (0, 0)

The next example (Table 2, adapted from Moulin and Vial, 1978) demonstrates that

distribution equilibrium can induce payo�s that dominate the payo�s of Nash equilib-

ria. The left table describes the payo� matrix. In this example, there is a unique Nash

equilibrium in which each player plays (1/3, 1/3, 1/3) with payo� 4/3. The symmetric

distribution equilibrium, which is described in the right table, induces payo� 2, and it

dominates the Nash equilibrium payo�.

Finally, Table 3 (left table) presents a variant of the �Chicken� game (see, Aumann,

1974). There are three pure equilibria, (D,P), (P,D) and (P,P) with payo�s (0,3), (3,0)

and (0,0), respectively. In every distribution equilibrium, the payo� to both players is at

most 42
3
. Indeed, if, e.g., the row player does not play C, then at least one of the players

must play P with probability 1 (otherwise the column player would deviate and play P

with probability 1) and the payo� to both players is at most 3. If the row player plays C

with positive probability, then the probability of playing (C,D) must be at least half the

probability of playing (C,C) (otherwise the row player would deviate and play D instead

of C ), and the payo� to the row player is at most 42
3
.

The middle table presents the best distribution equilibrium in this game - a symmetric

Table 2
Two-player Game with a Nash-Dominating Distribution Equilibrium

2-Player Game

A B C

A (0, 0) (1, 3) (3, 1)

B (3, 1) (0, 0) (1, 3)

C (1, 3) (3, 1) (0, 0)

Distribution Equilibrium

A B C

A 0 1/6 1/6

B 1/6 0 1/6

C 1/6 1/6 0
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Table 3
Variant of �Chicken� Game: Best Distribution and Correlated Equilibria

�Chicken� Game

C D P

C (6, 6) (2, 7) (0, 0)

D (7, 2) (0, 0) (0, 3)

P (0, 0) (3, 0) (0, 0)

Best Distribution Eq.

C D P

C 4/9 2/9 0

D 2/9 1/9 0

P 0 0 0

Correlated Eq.

C D P

C 1/2 1/4 0

D 1/4 0 0

P 0 0 0

Nash equilibrium that induces payo� 42
3
to both players; each player plays C with proba-

bility 2
3
and D with probability 1

3
. The right table presents a symmetric non-distribution

correlated equilibrium that induces payo� 51
4
to both players, which strictly dominates

all distribution equilibria. Because this latter correlated equilibrium is preferred by both

players over all distribution equilibria, one may wonder what is the advantage of a distri-

bution equilibrium in this example. We answer this question in the following two sections.

6.2 Population Games

A common interpretation of Nash equilibrium is a description of equilibrium behavior

of populations of agents who are randomly matched to play that game (see, e.g., Aumann,

1997). If each agent faces the same pattern of matching opponents, then an equilibrium in

which each agent chooses a best reply corresponds to a Nash equilibrium of the underlying

game. Maliath, Samuelson and Shaked (1997) relax the assumption of uniform matching

pattern. They allow di�erent types in the population to be matched to di�erent opponents.

In such a setup, an equilibrium in which each agent chooses a best reply (given his type's

pattern of matching opponents) is a correlated equilibrium of the underlying game.

Sorin (1998) changes the framework of Maliath, Samuelson and Shaked by allowing

a deviating agent to �imitate� the matching pattern of another type: agent of type i is

allowed to join the sub-population of type j and to follow their matching behavior. In such

a setup, an equilibrium in which each agent chooses a best pattern among the existing

matching patterns, and a best reply given this pattern, is a distribution equilibrium.

Non-distribution correlated equilibria are not stable in Sorin's setup. Consider, for

example, the best symmetric correlated equilibrium in the �Chicken� game (Table 3). The

population includes two types: a �d � type (1
4
of the population) who is matched only to

�c� opponents and always plays D, and a �c� type (3
4
of the population) who is matched

to �c� opponents with probability 2
3
and is matched to �d � opponents with probability 1

3
,

and always plays C. If agents of one type are allowed to imitate the matching behavior

of another type, then agents of type �c� (with payo� 42
3
) would deviate and �imitate� the

matching and playing behavior of type �d �, which has payo� 7.

23



In addition, non-distribution correlated equilibria are not stable in an evolutionary

setup in which the type is determined at birth, and the payo� describes the �tness of each

type. In such a setup, a type that has higher expected payo� will have higher number

of o�spring, and therefore his share of the population will increase. For example, in the

�Chicken� game, the population's share of type �d � would become larger than 1
4
in the

following generations.

6.3 Weak Mediators

One of the interpretations of a correlation device is a mediator. A mediator is a trusted

third party that chooses an action pro�le according to a known (correlated) probability

distribution, and privately informs each player of his part of the pro�le (a recommended

action). The probability distribution is a correlated equilibrium if it is best-reply for

each player to follow his recommended action, given that all other players follow their

recommended actions.

In some situations, mediators are weak in the sense that a player who receives a �bad�

recommended action (which induces a low expected payo�) has the ability to restart the

mediation process. Some examples for such situations are:

• A married couple (say, Alice and Bob) goes to a marriage counselor. If Alice is dis-

content from the recommendations the counselor gave her, she may ask Bob to go to

another counselor. It is plausible that Bob would agree to this request, which restarts

the mediation process.

• Two countries in dispute ask a powerful third country to suggest an outline for a peace

conference. Such an outline may include con�dential parts, such as a monetary aid

given to one side for his agreement to participate in the conference. The third country

con�dentially informs each disputing country on its part of the outline. Each disputing

country can refuse the suggested outline. In that case, the outline is canceled and the

disputing countries go back to the starting position, and they may restart the peace

initiative with a new mediator.

In such situations, distribution equilibria have an important advantage: they can be im-

plemented by weak mediators without having any player wishing to restart the mediation

process. On the other hand, the implementation of non-distribution correlated equilibrium

is limited by players' ability to restart the mediation. The concept of weak mediators, and

its relation with pre-play communication, is more thoroughly discussed in Heller (2010b).
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6.4 Dynamic Games with Normal-Form Correlation

The above rationales, presented for distribution equilibria in normal-form games, are

also appropriate to our notion of constant-expectation correlated equilibria in dynamic

games with normal-form correlation. In the spirit of these rationales, our de�nition requires

that the payo� of each player is independent of the signal before the game starts, when it

is still possible to restart the pre-play process that induces the correlated pro�le. Observe,

that we allow that later in the game, after some signals are received (e.g., the realization

of the payo� matrices in a stopping games), a player may �nd out that his expected

continuation payo� has changed, and is di�erent than his original expected payo�.

Appendix

In Section 4 we presented a simpli�ed version of the coloring scheme that is used in

the construction of the concatenated equilibrium. In this appendix we present the exact

coloring scheme, and show how to adapt Solan and Shmaya (2004)'s methods to give

appropriate lower bounds for the termination probabilities in case (1) of Proposition 14.

A.1 Limits on Per-Round Probability of Termination

In this subsection we bound the probability of termination in a single round of a game

on a tree when an absorbing stationary equilibrium x exists (case (1) of Prop. 14), by

adapting the methods presented in Shmaya and Solan (2004, Section 5) for two players.

A stationary strategy of player i in a game on a tree T is a function xi : V0 → [0, 1]

(recall that V0 = V \Vleaf is the set of nodes that are not leaves; xi(v) is the probability that

player 1 stops at v. Let ci be the strategy of player i that never stops, and let c = (ci)i∈I .

Given a stationary strategy pro�le x = (xi)i∈I , let γ
i(x) = γiT (x) be the expected payo�

under x, and let π(x) = πT (x) be the probability that the game is stopped at the �rst

round (before returning to the root). Assuming no player ever stops, the collection (pv)v∈V0

of probability distributions at the nodes induces a probability distribution over the set of

leaves or, equivalently, over the set of paths that connect the root to the leaves. For each

set V̂ ⊆ V0, we denote by pV̂ the probability that the path reached passes through V̂ . For

each v ∈ V , we denote by Fv the event that the path reached passes through v.

The following lemma bounds the probability of termination in a single round when the

ε-equilibrium payo� is low for at least one player. The lemma is an adaptation of Lemma

5.3 in Shmaya and Solan (2004), and the proof is omitted as the changes are minor.

Lemma 20 Let G be a stopping game, n > 0, σ > n a bounded stopping time, H ∈ Hn
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a history, and x an absorbing stationary ε
2
-equilibrium in Tn,σ(Hn) such that there exists

a player i with a low payo�: γi(x) ≤ αiH − ε. Then π(ci, x−i) ≥ ε
6
· qi, where qi = qiT =

p
(⋃

v∈Vstop

{
Fv|Ri

{i},v = αiH
})

is the probability that if no player ever stop, the game visits

a node v ∈ V0 with R
i
{i},v = αiH in the �rst round.

T ′ is a subgame of T if we remove all the descendants (in the strict sense) of several nodes

from the tree
(
V, Vleaf , r, (Cv)v∈V0

)
and keep all other parameters �xed. Observe that this

notion is di�erent from the standard de�nition of a subgame in game theory. Formally:

De�nition 21 Let T =
(
I, V, Vleaf , r, (Cv, pv, Rv)v∈V \Vleaf

)
and let T ′ =(

I , V ′, V ′leaf , r
′, (C ′v, p

′
v, R

′
v)v∈V ′0

)
be two games on trees. We say that T ′ is a subgame of T

if: V ′ ⊆ V , r′ = r, and for every v ∈ V ′0 , C ′v = Cv, p
′
v = pv and R

′
v = Rv.

Let T be a game on a tree. For each subset D ⊆ V0, we denote by TD the subgame of

T generated by trimming T from D downward. Thus, all descendants of nodes in D are

removed. For every subgame T ′ of T and every subgame T ′′ of T ′, let pT ′′,T ′ = pV ′′
leaf

,V ′
leaf

be the probability that the chosen branch in T passes through a leaf of T ′′ strictly before

it passes through a leaf of T ′.

The following de�nition divides the histories Hn into two kinds: simple and com-

plicated. A simple history has at least one of the following properties: (1) Every player

receives a negative payo� whenever he stops alone. (2) There is a distribution over the set

of action pro�les in which a single player stops, such that each player receives payo� αiH
when he stops, and approximately this is also his average payo� when other players stop.

De�nition 22 Let G be a stopping game, ε > 0, N0 ≤ n, and τ > n a bounded stopping

time. The history H ∈ Hn is ε-simple if one of the following holds:

(1) For every i ∈ I: αiH < 0. or

(2) There is a distribution θ ∈ ∆(DH × I) such that for each player i ∈ I:
(a) θ(d, i) > 0⇒ Ri

{i},d = αiH . and

(b) αiH + ε ≥ ∑
j∈I, d∈DH

θ(d, j) ·Ri
{j},d ≥ αiH − ε.

H is simple if it is ε-simple for every ε > 0. H is complicated if it is not simple, i.e.:

∃ε0 > 0 such that H is not ε0-simple. In that case we say that H is complicated w.r.t. ε0.

The next proposition analyzes stationary ε−equilibria that yield high payo�s to all the

players. The proposition is an adaptation of Proposition 5.5 in Shmaya and Solan (2004).

The proof is omitted as the changes are minor.

Proposition 23 Let G be a stopping game, N0 ≤ n a number, σ > n a bounded stopping

time, H ∈ Hn a complicated history w.r.t. ε0, ε <<
ε0
|I|·|D| , and for each i ∈ I let

ai ≥ αiF − ε. Then there exists a set U ⊆ V0 and a pro�le x in T = Tn,σ(F ) such that:
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(1) No subgame of TU has a Nash ε-equilibrium with a corresponding payo� in
∏
i∈I

[ai, ai + ε];

(2) Either: (a) U = ∅ (so that TU = T ); or (b) x is a Nash 9ε-equilibrium in T, and

for every i ∈ I and for every strategy yi: ai − ε ≤ γi(x), γi(x−i, yi) ≤ ai + 8ε, and

π(x) ≥ ε2 · pTU ,T .

A.2 Detailed Description of The Coloring Scheme

In Subsection 4.4 we presented a simpli�ed version of the coloring scheme that is used

in the proof of Proposition 17. In this subsection, we present the details of the exact

coloring scheme, which adapts the coloring scheme for two-player games in Shmaya-Solan

(2004). Speci�cally, we provide an algorithm that attaches a color cn,σ(H) and several

numbers (λj,n,σ(H))j for every σ > n ≥ 0 and H ∈ Hn, such that cn,σ(H) is a C -valued

F-consistent NT -function.

A (hyper)-rectangle ([ai, ai + ε])i∈I is bad if for every i ∈ I, αiH − ε ≤ ai. It is good if

there exists a player i ∈ I such that ai+ε ≤ αiH−ε. Let W be a �nite covering of [−1, 1]|I|

with (not necessarily disjoint) rectangles ([ai, ai + ε])i∈I , all of which are either good or

bad. Let B = {b1, b2, ..., bJ} be the set of J bad rectangles inW and let O = {o1, o2, ..., oK}
the set of good rectangles.

Set C = (simple
⋃
allbad

⋃ {1×O}⋃ {2}⋃ {3×W ×W}). LetG be a stopping game,

n ≥ 0, σ > n a bounded stopping time, and H ∈ Hn. If H is simple we let cn,σ(H) =

simple. Otherwise, H is complicated w.r.t. to some ε0(H). In that case we assume w.l.o.g.

that ε << ε0(H)
|I|·|D| . The color cn,σ(H) is determined by the following procedure:

• Set T (0) = Tn,σ(H).

• For 1 ≤ j ≤ J apply Proposition 14 to T (j−1) and the bad rectangle hj =
∏
i∈I

[
aij, a

i
j + ε

]
to obtain a subgame T (j) of T (j−1) and strategy pro�le xj in T

(j) such that:

(1) No subgame of T (j) has a stationary ε-equilibrium with a corresponding payo� in hj.

(2) Either T (j) = T (j−1) or the following three conditions hold:

(a) For every i ∈ I, aij − ε ≤ γi(xj).

(b) For every i ∈ I and every strategy yi: γi(x−ij , y
i) ≤ aij + 8ε.

(c) π (xj) ≥ ε2 × pT (j),T (j−1) .

• If T (J) is trivial (the only node is the root), set cn,σ(H) = allbad; otherwise due to

Proposition 14 and our procedure one of the following holds:

(1) T (J) has a sequential stationary absorbing ε-equilibrium x, with a payo� γ(x) in one

of the good hyper-rectangles. Let cn,σ(H) = (1, ol), where ol is the good rectangle

that includes γx .

(2) T (J) has a sequential stationary non-absorbing equilibrium c, with a payo� 0. Let

cn,σ(H) = (2).

(3) There is a correlated strategy pro�le η ∈ ∆(A) in T (J) that satis�es 3(a)+3(b)+3(c)
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in Proposition 14. Let cn,σ(H) = (3, w1, w2) where w1 is the hyper-rectangle that

includes γT (J)(η), and w2 is the hyper-rectangle that includes g(T (J)).

Each strategy pro�le xj, as given by Proposition 14, is a pro�le in T (j−1). We consider it

as a pro�le in T by letting it continue from the leaves of T (j−1) downward. We de�ne, for

every j ∈ J , λj,n,σ(F ) = pT (j),T (j−1) . By Proposition 16 there exists an increasing sequence

of bounded stopping times 0 < σ1 < σ2 < σ3 < ... such that p (cσ1,σ2 = cσ2,σ3 = ...) > 1− δ
3
.

For every ω ∈ Ω and H = H (ω) ∈ Hσ1(ω), let cH = cσ1,σ2(H).

Let (Aε,j, A∞,j)j∈J ∈
∨

n=1..∞
Fn be de�ned as follows:A∞,j =

{
w ∈ Ω| ∑

k=1..∞
λj,σk,σk+1

(
Hσk(ω) (ω)

)
=∞

}
is the event where the sum of the λ-s is in�nite, andAε,j =

{
w ∈ Ω| ∑

k=1..∞
λj,σk,σk+1

(
Fσk(ω)

)
≤ ε
|J |

}
is the event where the sum is very small. As (Aε,j, A∞,j)j∈J ∈

∨
n=1..∞

Fn, there is large

enough N1 ≥ N0 and sets
(
Āε,j, Ā∞,j

)
j∈J
∈ FN1 that approximate A∞,j and Aε,j: (1)

For each j ∈ J , Āε,j
⋂
Ā∞,j = ∅ and

(
Āε,j

⋃
Ā∞,j

)
= Ω. (2) p

(
Aε,j|Āε,j

)
≥ 1 − δ

6·|J | . (3)

p
(
A∞,j|Ā∞,j

)
≥ 1 − δ

6·|J | . From now on, we assume w.l.o.g. that σ1 ≥ N1. Let E
′ be

de�ned as follows (Observe that p(E ′) ≥ 1− δ):

E ′=E\

⋃
j∈J

{
ω ∈ Āε,j|

∑
k=1..∞

λj,σk,σk+1

(
Hσk(ω) (ω)

)
>

ε

|J |

}

⋃
j∈J

{
ω ∈ Ā∞,j|

∑
k=1..∞

λj,σk,σk+1

(
Hσk(ω) (ω)

)
<∞

} .
That is, E ′ is equal to E (de�ned in Subsection 4.4), except that we subtract the errors

in the approximations of (Aε,j, A∞,j)j∈J by
(
Āε,j

⋃
Ā∞,j

)
j∈J

.

A.3 Detailed Proof of Cases 1 and 2 of Proposition 17

In Subsection 4.5 we gave the details of the proof of Proposition 17 only when case = 3.

In this subsection we give the details of the proof for the other cases, which are adaptations

of the proof for the two-player case in Shmaya and Solan (2004). The proof is divided to

5 exhaustive cases according to the color of cH and whether H ∩ Ā∞,j 6= ∅.

A.3.1 There exists j ∈ J and F ∈ H such that F ⊆ Ā∞,j

Let 1 ≤ j ≤ J be the smallest index such that F ⊆ Ā∞,j. Let xj,σk,σk+1
be the jth

pro�le in the procedure described earlier, when applied to Tσk,σk+1
(H). Let xH be the

following strategy pro�le in G (H,D,m): between σk and σk+1 play according to xj,σk,σk+1
.

The procedure of the previous subsection implies the following:
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• Conditioned on that the game was absorbed between σk and σk+1 the pro�le xj,σk,σk+1

gives each player a payo�: aij − ε ≤ γiσk,σk+1
(xj) ≤ aij + 8ε.

• For each player i ∈ I and for each strategy yi in Tσk,σk+1
: (1) γiσk,σk+1

(x−ij , y
i) ≤ aij + 8ε.

(2) πσk,σk+1
(xj) ≥ ε2 × λj(Tσk,σk+1

)

These facts imply that the game is absorbed with probability 1 in E ′, and that xF is a

11ε-equilibrium conditioned on E ′ . Observe that cH = allbed implies that there exists

j ∈ J and F ∈ H such that F ∈ Ā∞,j.

A.3.2 There exists F ∈ H such that F ⊆
(
∩
j∈J
Āε,j

)
and cH = 2

Let xH be the pro�le in which everyone continues. It is implied that no player can

pro�t more than ε by deviating at any stage, conditioned on E ′.

A.3.3 There exists F ∈ H such that F ⊆
(
∩
j∈J
Āε,j

)
and cH = (1, ok) ∈ (1×O)

Let xσk,σk+1
be a stationary absorbing equilibrium in T (J) with a payo� γσk,σk+1

in the

good hyper-rectangle ow:
∏
i∈I [aiw, a

i
w + ε]. As ow is good, there is a player i ∈ I such

that: aiw ≤ αiH − 2ε. Let xH be the following strategy pro�le in GH : between σk and

σk+1 play according to xσk,σk+1
. Lemma 20 implies that π(ci, x−iσk,σk+1

) ≥ ε
6
· qiσk,σk+1

, where

qiσk,σk+1
= p(∃σk ≤ n < σk+1, R

i
i,n = αiF , R

i
i,n ∈ DF ). In E ′, Ri

i,n = αiF in�nitely often and∑
j=1..J

∑
k=1..∞

λj,σk,σk+1
< ε. This implies that under xH the game is absorbed with probability

1, and that xH is a 4ε-equilibrium in G, conditioned on E ′.

A.3.4 There exists F ∈ H such that F ⊆
(
∩
j∈J
Āε,j

)
and cH = (3, w1, w2) ∈ (1×W ×W )

This case was thoroughly presented in Subsection 4.5.

A.3.5. cH = simple

If for every i ∈ I: αiH ≤ 0, then the pro�le in which all the players always continue

is an equilibrium in E ′. Otherwise, the fact that cH = simple implies that there is a

distribution θ ∈ ∆(DH × I) such that for each i ∈ I: (1) θ(d, i) > 0 ⇒ Ri
{i},d = αiH . (2)

αiH + ε ≥ ∑
j∈I, d∈DF

θ(d, j) ·Ri
{j},d ≥ αiH − ε. In this case, one can use a procedure similar to

the one described in Subsection 4.5, to construct a sequential ε-equilibrium in G(H,D,m)

conditioned on E ′ and M ′.
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