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Besicovitch, Sraffa, and the existence of  
the Standard commodity 

by 

Neri Salvadori 

 

 
1. Introduction.  

 

The proof of the existence of the Standard commodity contained in Sraffa's book (section 37) has 

been debated recently. Lippi (2008) has argued that the algorithm in section 37 of Sraffa’s book is 

not precisely stated and does not need to converge to the desired eigenvalue and eigenvector. The 

first part of the proposition has been known since the proof-reading stage of Sraffa’s book when it 

was sustained by Alister Watson (cf. Kurz and Salvadori, 2001, p. 272-3). But the second part 

escaped the attention of all commentators before Lippi. Indeed, examples can be found in which an 

algorithm corresponding to the description provided by Sraffa converges to a vector which is not an 

eigenvector and it is certainly to Lippi’s credit that he uncovered the problem. In Appendix A I 

report the example provided in a paper in which I investigated the properties that an algorithm 

needs to have in order to converge to the desired eigenvalue and eigenvector (cf. Salvadori, 2008). 

In an appendix to his paper Lippi (2008) provided a complete proof of the existence of the Standard 

commodity by using a very special algorithm from among all the algorithms corresponding to the 

description of section 37 and another special algorithm was provided, without proof, by Kurz and 

Salvadori (2001, p. 284). The fact that Sraffa did not choose a particular algorithm may suggest that 

he was convinced that any algorithm would do the job. This is wrong but, as I proved elsewhere 

(Salvadori, 2008), the job can actually be done by any algorithm based on a continuous function, 

which can start from any feasible point.  

 

In this paper I want to shed some more light on the issue from an historical perspective. Sraffa was 

provided a proof of the existence of the Standard commodity by Besicovitch on 21 September 1944. 

This proof has not yet been discussed in the literature. In Appendix B there is a transcription of the 

file D3/12/39: 42 that includes it. In this paper I will show that also the proof by Besicovitch is 

incomplete, but it can easily be completed. Once complete, this proof concerns a family of 

algorithms as well, but all the algorithms in question converge to the desired eigenvalue and 

eigenvector. Why did Sraffa not use this proof in his book? Section 5 tries to provide an answer. 
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2. Sraffa's Section 37  

Sraffa starts section 37 of his book with the following two paragraphs. 

That any actual economic system of the type we have been considering can always 

be transformed into a Standard system may be shown by an imaginary experiment. 

(The experiment involves two types of alternating steps. One type consists in 

changing the proportions of the industries; the other in reducing in the same ratio the 

quantities produced by all industries, while leaving unchanged the quantities used as 

means of production.) 

What Sraffa calls an "imaginary experiment" is clearly what mathematicians call an algorithm: 

given an initial state, a definite list of well-defined instructions is given to proceed through a well-

defined sequence of successive states, eventually terminating in an end-state. In order to formally 

reconstruct Sraffa's argument, let us introduce the square nonnegative matrix A = a
ij

!" #$  and the  

positive vector l = l
1
,l
2
,...,l

n[ ]
T  as the material input matrix and the labor input vector, on the 

assumption that the output matrix is the identity matrix I. Matrix A is assumed to be also 

indecomposable, that is, all non-basic commodities are explicitly not considered. Let us continue 

our reading of section 37. 

We start by adjusting the proportions of the industries of the system in such a way 

that of each basic commodity a larger quantity is produced than is strictly necessary 

for replacement. 

Let us next imagine gradually to reduce by means of successive small proportionate 

cuts the product of all the industries, without interfering with the quantities of labour 

and means of production that they employ. 

As soon as the cuts reduce the production of any one commodity to the minimum 

level required for replacement, we readjust the proportions of the industries so that 

there should again be a surplus of each product (while keeping constant the quantity 

of labour employed in the aggregate).  

The initial state of the algorithm is the "actual economic system". This is able to produce a surplus, 

but does not need to produce a surplus consisting of all (basic) commodities, so the first step 

consists in determining x
0
! x > 0 x

T
l = ",xT

I #A[ ] > 0
T{ }  and then building up two sequences: 

x
t{ }  and !

t{ } , where  

 !
t
= ! x

t"1( ) =
j

max

x
t"1

T
Ae

j

x
t"1

T
e

j
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so that x
t!1

T
"

t
I ! A[ ] # 0

T  and x
t!1

T
"

t
I ! A[ ] /> 0

T , and x
t
 (t > 0)  is a vector such that  x

t
> 0 , 

x
t

T
l = !  and x

t

T
!

t
I " A[ ] > 0

T . Sraffa comments "This is always feasible so long as there is a 

surplus of some commodities and a deficit of none." However he does not provide a proof of this 

sentence. As we will see, this proof is an immediate consequence of the first three Theorems 

provided by Besicovitch. Then Sraffa proceeds to the end-state of the algorithm. 

We continue with such an alternation of proportionate cuts with the re-establishment 

of a surplus for each product until we reach the point where the products have been 

reduced to such an extent that all-round replacement is just possible without leaving 

anything as surplus product. 

The "imaginary experiment" concludes, in Sraffa's opinion, when x
!

> 0 , x!

T
l = "  and 

x
!

T
"
!
I #A[ ] = 0

T . Sraffa never states that the algorithm may need an infinite number of steps, but 

we know indeed that this is so. Finally, we have the last paragraph of section 37. 

Since to reach this position the products of all the industries have been cut in the 

same proportion we are now able to restore the original conditions of production by 

increasing the quantity produced in each industry by a uniform rate; we do not, on 

the other hand, disturb the proportions to which the industries have been brought. 

The uniform rate which restores the original conditions of production is R and the 

proportions attained by the industries are the proportions of the Standard system. 

Hence we arrive at the equation 

x!
T

I " 1+ R( )A#$ %&= 0
T  

where, obviously, 1+ R =1 !
"

. As Alister Watson, Kurz and Salvadori (2001) and Lippi (2008), 

among others, have remarked, the algorithm is not well defined since there are infinitely many ways 

to define x
t
. Completing the definition of the algorithm means defining a function ! q( )  such that 

x
t
= ! x

t"1( ) , at each t. To be more precise, we introduce the sets 

 
 
R = q !"n

 q # 0,  qT l = $,  qT I % A[ ]  # 0T{ }  

 
 
R* = q !"n

 #$ % 0 :  q % 0,  qT l = &,  qT $I ' A[ ] = 0T{ }  

  S = R !R*  
and the set of functions 

 
 
Z S

0( ) = !  :  S
0
"R  #q $ S

0
 :  ! q( ) $ S

0
%R*,& q( )! q( ) 'AT! q( ) > 0{ } , 
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where 
 
S

0
 is any subset of  S . Each function of the set 

  
Z S

0( )
S
0
!S

!  defines a different algorithm 

which corresponds to Sraffa’s description. 

If function ! q( )  has a fixed point in  S , then sequence x
t{ }  may converge on the fixed point of 

function ! q( ) . As a consequence, sequence !
t{ }  may converge to a number which does not even 

need to be close to the eigenvalue of matrix A. This cannot hold if function ! q( )  has the mentioned 

inequality properties in the whole  S , and therefore the set of functions to be considered must be 

 
 
Z = Z S( ) = !  :  S "R  #q $ S :  ! q( ) % 0,  & q( )! q( ) 'AT! q( ) > 0,  lT! q( ) = ({ }  

and not 
  

Z S
0( )

S
0
!S

! . This is the extra assumption found by Salvadori (2008). The interpretation is 

close at hand: the function ! q( )  is such that ! q( ) " 0,  # q( )! q( ) $AT! q( ) > 0,  lT! q( ) = % , 

whatever is point 
 
q ! R  and not just in the support of sequence x

t{ } , as Sraffa's description may 

be interpreted. In the following two sections I will show that Besicovitch proposed a better defined 

algorithm and proved that the algorithm converges to the desired solution (apart from a small point 

to be completed). 

 

3. Towards Besicovitch's proof  

Besicovitch's proof is divided into four "Theorems". Only the last is the required proof. The first 

three prepare the field. In this section we discuss the first three theorems. Besicovitch does not 

follow the matricial notation we used above to achieve a more compact presentation.  

The first Theorem of file D3/12/39: 42 reads in plain English: With positive prices any distribution 

of the net outputs can be attained. This Theorem starts from the assumption that there is a system 

with no profits and positive prices and a positive wage rate. The aim is to prove that industries can 

be operated in such a way that any proportion in which the surplus is distributed among industries is 

feasible. The no profit assumption is not necessary, but probably follows the exercise that Sraffa is 

performing. Obviously the rate of profit must be lower than the maximum one since the wage rate 

must be positive and this is really what is needed. In modern notation the first Theorem states: 

   !p > 0,w > 0 : Ap + wl = p "!x # 0 : x
T

= x
T
A + y

T
 $y # 0 . 

Obviously the semipositive vector 
 y

 is the vector of what Besicovitch calls "the Surplus outputs" 

(net outputs in the above). In order to obtain this result it is enough to prove that matrix  I ! A  is 

invertible and its inverse is positive, and we know that this is the case when matrix A is 

indecomposable and there is a positive vector 
 p

 such that 
 

I ! A"# $%p & 0 , because of the Perron-
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Frobenius Theorem. However, Besicovitch makes no reference to the latter Theorem and indeed the 

proof of the existence of the Standard commodity can be interpreted as a proof of the Perron-

Frobenius Theorem (see Kurz and Salvadori, 1993). 

 

The proof provided by Besicovitch is very ingenious, but may need some explanation. Like the 

Gauss-Jordan elimination way to solve a linear system of equations it is based on consecutive 

applications of two elementary steps: (i) multiplication of an equation by a non-zero scalar, and (ii) 

addition to an equation of non-zero scalar multiples of other equations. Besicovitch proves that 

since prices are positive the non-zero scalar multiplications involved in both steps are indeed 

positive scalar multiplications. Let us follow step by step this recursive proof. In the first step only 

the last industry, n, is considered. Since 

an1p1 + ...+ ann pn + lnw = pn  
and since an1p1 + ...+ ann!1pn!1 + lnw > 0 , then 1! a

nn
> 0 . Hence it is possible to find a positive !

n
 

such that !
n

1" a
nn( )  can take any positive value.  

 

In the second step the last two industries are considered. Taking account of the equations 

an!1,1p1 + ...+ an!1,n!1pn!1 + an!1,n pn + ln!1w = pn!1

an1p1 + ...+ ann!1pn!1 + ann pn + lnw = pn

 

and using the first step, we can multiply the latter by a !n  such that !
n
1" a

nn( ) = a
n"1,n

 so as to 

obtain that the surplus of industry n equals the input of commodity n into industry n !1 : 

an!1,1p1 + ...+ an!1,n!1pn!1 + an!1,n pn + ln!1w = pn!1

an!1,n

1! ann

an1p1 + ...+
an!1,n

1! ann

ann!1pn!1 +
an!1,n

1! ann

ann pn +
an!1,n

1! ann

lnw =
an!1,n

1! ann

pn

 

As a consequence, by summing up the two equations we obtain 

an!1,1 +
an!1,n

1! ann

an1

"
#$

%
&'

p
1
+ ...+ an!1,n!1 +

an!1,n

1! ann

ann!1
"
#$

%
&'

pn!1 + ln!1 +
an!1,n

1! ann

ln

"
#$

%
&'

w = pn!1  

since  

a
n!1,n

+
a

n!1,n

1! a
nn

a
nn

=
a

n!1,n

1! a
nn

. 

Once again, since 

an!1,1
+

an!1,n

1! ann

an1

"
#$

%
&'

p
1
+ ...+ an!1,n!2

+
an!1,n

1! ann

ann!2

"
#$

%
&'

pn!2
+ ln!1

+
an!1,n

1! ann

ln

"
#$

%
&'

w > 0  

then 
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1! a
n!1,n!1 +

a
n!1,n

1! a
nn

a
n,n!1

"

#$
%

&'
=

det
1! a

n!1,n!1 !a
n!1,n

!a
n,n!1 1! a

nn

(

)
*

+

,
-

1! a
nn

> 0  

Hence we can find two positive scalars !
n
 and !

n"1
 such that !

n"1
" !

n
a

n,n"1
" !

n"1
a

n"1,n"1
 can take 

any positive value and !
n
" !

n
a

nn
" !

n"1
a

n"1,n
= 0 , that is, we can proportion the two equations in 

such a way that the output of commodity n equals the sum of the inputs of commodity n in the last 

two industries and the output of commodity n !1  is any desired positive number. In a similar way 

we can proportion the two equations in such a way that the output of commodity n !1  equals the 

sum of the inputs of commodity n !1  in the last two industries and the output of commodity n is 

any desired positive number. Thus the two equations can be so proportioned that there is the desired 

surplus of the last two commodities. 

 

The third step analyzes the last three industries. By using the second step we can proportion the last 

two equations in such a way that the outputs of the last two commodities equal the sum of their 

inputs in the last three industries.  

an!2,1p1 + ...+ an!2,n!1pn!1 + an!2,n pn + ln!2w = pn!2

"
1

"
an!1,1p1 + ...+

"
1

"
an!1,n!1pn!1 +

"
1

"
an!1,n pn +

"
1

"
ln!1w =

"
1

"
pn!1

"
2

"
an1p1 + ...+

"
2

"
ann!1pn!1 +

"
2

"
ann pn +

"
2

"
lnw =

"
2

"
pn

 

where  

! = det
1" a

n"1,n"1 "a
n"1,n

"a
n,n"1 1" a

nn

#

$
%

&

'
(,!1 = det

a
n"2,n"1 "a

n"1,n

a
n"2,n 1" a

nn

#

$
%

&

'
(,!2

= det
1" a

n"1,n"1 a
n"2,n"1

"a
n,n"1 a

n"2,n

#

$
%

&

'
( . 

By adding up, we obtain 

an!2,1 +
"
1

"
an!1,1 +

"
2

"
an1

#
$%

&
'( p

1
+ ...+ an!2,n!2 +

"
1

"
an!1,n!2 +

"
2

"
an,n!2

#
$%

&
'( pn!2 + ln!2w = pn!2  

since 

a
n!2,n!1

+
"

1

"
a

n!1,n!1
+
"

2

"
a

n,n!1
=
"

1

"
,   a

n!2,n
+
"

1

"
a

n!1,n
+
"

2

"
a

n,n
=
"

2

"
 

 

Once again, since prices are positive, we obtain that there is a surplus of commodity n ! 2 , that is, 

1! a
n!2,n!2 +

"
1

"
a

n!1,n!2 +
"
2

"
a

n,n!2
#
$%

&
'(

=

det

1! a
n!2,n!2 !a

n!2,n!1 !a
n!2,n

!a
n!1,n!2 1! a

n!1,n!1 !a
n!1,n

!a
n,n!2 !a

n,n!1 1! a
nn

)

*

+
+
+

,

-

.

.

.

"
> 0  
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and that multipliers can be found such that the surplus of commodity n ! 2  can take any positive 

value, whereas the outputs of the last two commodities equal the sum of their inputs in the last three 

industries. This is enough to find multipliers such that there is the desired surplus of commodity 

n ! 2 , the desired surplus of commodity n !1 , and the desired surplus of commodity n . And so 

on. 

 

The second Theorem reads in plain English: If the wage is positive and prices are positive, then net 

outputs cannot be all nought and, therefore, there is a surplus of at least one commodity. In modern 

notation the second Theorem states: 

   !p > 0,w > 0 : Ap + wl = p " x
T
# x

T
A $x % 0  

If not, we obtain 
  x

T
Ap + wx

T
l = x

T
p = x

T
Ap , and therefore    wx

T
l = 0 , which is not possible. The 

proof by Besicovitch does not need a reductio ad absurdum. If 
  
x

T
Ae

i
= x

T
e

i
 each  i ! j , where 

  
e

i
 

is the i-th unit vector, then  

  
x

T
Ap + wx

T
l = x

T
Ae

j
e

j

T
p( ) + wx

T
l + M = e

j

T
p + M  

where 
  
M = x

T
Ae

i
e

i

T
p( )

i! j" = e
i

T
p

i! j"  and since    wx
T
l > 0,  we have 

   
x

T
Ae

j
< 1  as required. 

 

The third Theorem reads in plain English: If the surplus of a commodity is positive and that of the 

others is nought then the prices are positive. Note that it is always implicit that the wage rate is 

positive. The aim is to prove that if there is a positive surplus of at least one commodity (and a 

negative surplus of none), then the wage is positive and prices are positive. Also in this case it is 

enough to prove that matrix  I ! A  is invertible and its inverse is positive. In modern notation the 

third Theorem states: 

   !x " 0 : x
T
" x

T
A #!p > 0 : Ap + wl = p  

However, in the document D3/12/39: 42 of 21 September 1944 this Theorem is not proven. What is 

proven is that if there is a surplus in one commodity and no surplus in all the others, then the 

equations can be proportioned in such a way that a surplus is obtained in every commodity (even 

this proof is incomplete: if the input matrix were decomposable, the statement would be false; the 

proof does not show why the statement holds when the input matrix is indecomposable). However, 

in the document D3/12/39: 42 there is a note by Sraffa saying: "Refer to blue page 1". The reference 

is no doubt to D3/12/39: 7, which is written on a blue piece of paper and contains a proof by 
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Besicovitch of the fact that if there is a surplus in every commodity, then prices are positive.1 The 

transcription of this document is reported below in Appendix C. 

Before arguing the proof of the third theorem I will discuss the proof in D3/12/39: 7. The statement 

in modern notation is: 

   
e

T
> 1+ r( )e

T
A,  1+ r( )Ap + wl = p,  w > 0 ! p > 0  

where  e  is the sum vector of the appropriate size, that is a vector of 1's. Note that the above 

equation always admits a solution since it is homogeneous in 
   
p,  w( ) . However, we are assuming 

here something more, i.e., that a solution with a positive w exists. We will deal with this problem 

soon. Suppose that in this solution some price (at least one) is negative or nought, and all the others 

(possibly none) are positive. With no loss of generality assume that the prices of the first h 

commodities are negative or nought,   1! h ! n , and the last  n ! h  are positive. Then, with obvious 

meanings of symbols, 

   
1+ r( )A

12
p

2
+ wl

1
= I ! 1+ r( )A

11
"
#

$
%p

1
 

which is impossible since 
   
e

T
I ! 1+ r( )A

11
"
#

$
%p

1
& 0  whereas 

   
1+ r( )e

T
A

12
p

2
+ we

T
l
1

> 0 . Note that 

this proof holds even if matrix A is decomposable, and therefore some commodities are non-basic, 

provided that labor enters directly into the production of all commodities and, therefore, 
  
l
1

> 0  (it 

still holds if labor enters directly or indirectly into the production of all commodities, but I will not 

deal with this issue here). But what happens if all solutions to the system 
   
1+ r( )Ap + wl = p  have a 

zero w? Indeed the same proof can be slightly modified to prove that in this case  p = 0  and 

therefore the unique solution would be the trivial one. This being impossible, there are solutions 

with   w ! 0  and therefore with   w > 0 .2 

                                                
1  D3/12/39: 8 is also written on a blue piece of paper and contains a proof by Besicovitch, but 

on a different issue. 
2  If   w = 0 , with no loss of generality assume that the prices of the first h commodities are 

positive,   1! h ! n , and the last  n ! h  are either negative or zero. Then, with obvious 

meanings of symbols, 

   
1+ r( )A

12
p

2
+ wl

1
= I ! 1+ r( )A

11
"
#

$
%p

1
 

which is impossible since 
   
e

T
I ! 1+ r( )A

11
"
#

$
%p

1
> 0  whereas 

   
1+ r( )e

T
A

12
p

2
+ we

T
l
1
! 0 . 

Hence no price can be positive. Similarly it is proved that no price can be negative. 
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Now we can discuss the proof of the third theorem in the document D3/12/39: 42. With no loss of 

generality assume that the first h commodities have a positive surplus,   1! h ! n , whereas the last 

 n ! h  have no surplus (and no loss). Therefore 
   
e

T
> e

T
A

11
+ e

T
A

12
 and 

   
e

T
= e

T
A

12
+ e

T
A

22
 (note 

that in these and in the following formulas the vectors  e  involved have different sizes). Therefore, 

Besicovitch maintains, if u is a real number lower than 1, but so close to 1 that 

   
ue

T
> ue

T
A

11
+ e

T
A

12
 still holds, then by necessity 

   
e

T
> ue

T
A

12
+ e

T
A

22
. However, this is not 

necessarily true. Indeed, if matrix A is decomposable and 
  
A

12
= 0 , this is certainly false. It is 

reasonable to suppose that Besicovitch assumed that all commodities are basic and, therefore, 

matrix A is indecomposable. Even in this case, however, the proof is incomplete (
   
e

T
A

12
 is semi-

positive, but does not need to be positive) since we may need to iterate the process to bring home 

the result. In fact, if matrix A is indecomposable, we are sure that 
   
e

T
! ue

T
A

12
+ e

T
A

22
 and 

therefore the number of commodities with a positive surplus is increased and still no commodity 

has a negative surplus. Further, since at any iteration of the process the number of products with a 

positive surplus increases, the number of iterations needed to obtain a surplus in all commodities is 

certainly finite since it is lower than  n ! h . 

 

The first three theorems of file D3/12/39: 42 are intended to support two facts. First, if there is a 

surplus of any type, industries may be proportioned in such a way as to get the surplus anywhere it 

is needed. Second, there is a surplus if, and only if, prices are positive and the wage rate is positive. 

The relationship with section 37 of the book by Sraffa (1960) is obvious. One of the two steps of 

the algorithm introduced there consists exactly in "adjusting the proportions of the industries of the 

system in such a way that of each basic commodity a larger quantity is produced than is strictly 

necessary for replacement". The fourth theorem concerns the existence of the Standard commodity 

and will be analyzed in the next section. 

 

4. Besicovitch's proof  

 

The fourth theorem reads in plain English: If prices are positive, then there exist positive multipliers 

  
q

a
,  ... ,q

k
 such that the net output is proportional to the total of every kind of raw material. The 

proof is similar to that provided by Sraffa, but is more detailed and closer to the description of an 

algorithm. It starts by assuming that there is a surplus with regard to all commodities. If there were 

a surplus only in some industries, then we could find a starting point with a surplus in all industries, 
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x
0
! x > 0 x

T
l = ",xT

I #A[ ] > 0
T{ } , since the assumption of Theorem 1 holds. Then the second 

step used by Sraffa is applied. That is, it is found that 

!
1

= ! x
0( ) =

j
max

x
0

T
Ae

j

x
0

T
e

j

 

so that x
0

T
!
1
I " A[ ] # 0

T  and x
0

T
!
1
I " A[ ] /> 0

T . Then all the equations of commodities for which 

there is a surplus are multiplied by a common scalar lower than 1. Besicovitch thinks this is enough 

to obtain that all commodities are in surplus, but this does not need to be true since input 

coefficients are not all positive. However, since all commodities are assumed to be basic, the input 

matrix A is indecomposable and therefore we can get the desired result by iterating the same 

procedure, as seen above, in the analysis of the third theorem by Besicovitch. Let us consider the 

point in a more formal way. 

 

Let µ ! "  and  x ! S  be such that µx
T
! x

T
A  and let us define the set of indices 

 

Iµx
= i ! 1,  2,  ... ,  n{ }  µx

i
> x

j
a

ji

j=1

n

"
#
$
%

&%

'
(
%

)%

Îµx
= i ! 1,  2,  ... ,  n{ }  µx

i
= x

j
a

ji

j=1

n

"
#
$
%

&%

'
(
%

)%

 

The aim of this step consists in finding an intensity vector ! x( )  such that 
 
I
µ! x( )

= 1,  2,  ... ,  n{ }  and, 

as a consequence, 
 
Î
µ! x( )

= " . Besicovitch considers that this can be obtained if ! x( )  is the function 

g µ,x( ) , where 

 

g
i

µ,x( ) =
x

i
if i ! Îµx

"x
i

if i ! Iµx

#
$
%

&%
 

where !  is a scalar lower than 1, but so close to 1 that 

 
 

µ !x
i( ) > x

j
a

jij"Îµx

# +! x
j
a

jij"Iµx

#  each 
 
i ! Iµx

 

That is, 

 

max
i!Iµx

 

x
j
a
ji

j! Îµx

"
µx

i
# x

j
a
ji

j!Iµx

"
<$ < 1 . 

As mentioned above, this is not enough to obtain that 
 
I
µg µ ,x( )

= 1,  2,  ... ,  n{ }  because some a
ji  may 

be nought. However, by construction, 
 
i ! Iµx

 implies that 
 
i ! I

µg µ ,x( )
 and therefore 

 
I
µg µ ,x( )

! Iµx
. On 
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the other hand, 
 
I
µg µ ,x( )

= Iµx
 if, and only if, a

ji
= 0 , each 

 
i ! Iµx

 and each 
 
j ! Îµx

. But then matrix A 

would be decomposable. This being impossible, we obtain that 
 
I
µg µ ,x( )

! Iµx
. This is enough to say 

that the procedure can be iterated for a number of times lower than the (finite) number of 

commodities (also because if  
 
Iµx

= 1,  2,  ... ,  n{ } , then g µ,x( )  is proportional to x). Hence we can 

define: 

h
1

x( ) = g ! x( ),x( )  

h j x( ) = g ! x( ),h j"1 x( )( )         j = 2,  ... ,n !1  

! x( ) = h
n"1 x( )  

There is one further aspect considered by Besicovitch. In a remark he argued that ‘we may keep one 

of our industries intact’ in order to avoid all multipliers becoming zero. With no loss of generality, 

assume that the industry in question is industry 1. Therefore function g µ,x( )  must be redefined as 

 

g
i

µ,x( ) =

x
i

if i ! Îµx
 and 1! Îµx

"x
i

if i ! Iµx
 and 1! Îµx

1

"
x

i
if i ! Îµx

 and 1# Îµx

x
i

if i ! Iµx
 and 1# Îµx

$

%

&
&
&

'

&
&
&

 

Further, this function has the property that if  
 
Iµx

= 1,  2,  ... ,  n{ } , then g µ,x( ) = x . As seen in 

section 2, Sraffa followed a different, but equivalent, strategy to avoid all multipliers becoming 

zero. He kept the amount of labor fixed. If we follow this strategy, then function g µ,x( )  must be 

redefined as 

 

g
i

µ,x( ) =
!x

i
if i " Îµx

!#x
i

if i " Iµx

$
%
&

'&
 

where 

 

! =
"

x jl j
j# Îµx

$ +% x jl j
j#Iµx

$
 

Also this function has the property that if  
 
Iµx

= 1,  2,  ... ,  n{ } , then g µ,x( ) = x . 

 

Also in Besicovitch's proof there is a family of potential algorithms involved. In order to have a 

proper algorithm we must have a way to define how !  is chosen. For example, if we chose !  in the 

middle of the range in which it can vary, we would have 
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! =
1

2
+

1

2
max
i"Iµx

 

x
j
a

ji
j" Îµx

#
µx

i
$ x

j
a

ji
j"Iµx

#
 

and in general any possible choice could be defined as a choice of 0 <! < 1  in the expression 

 

! = " + (1#" )max
i$Iµx

 

x
j
a

jij$Îµx

%
µx

i
# x

j
a

jij$Iµx

%
 

For each sequence !
i{ } , 0 <!

i
< 1 , we have a different algorithm; but whatever sequence !

i{ }  is 

chosen, it is easily proved that the conditions stated by Salvadori (2008) hold and therefore all the 

potential algorithms considered by Besicovitch converge to the desired result. In fact, for any given 

sequence !
i{ }  function ! x( )  is continuous and can start from any point in  S . 

 

5. Sraffa and Besicovitch 

 

Sraffa did not use the function ! x( )  used by Besicovitch. He recognized that what is important is 

"adjusting the proportions of the industries of the system in such a way that of each basic 

commodity a larger quantity is produced than is strictly necessary for replacement" and that at each 

step the desired result is closer, but he did not consider the fact that the "imaginary experiment" 

may work through an infinite number of steps without approaching the Standard commodity.  

 

Why did Sraffa not use the proof available to him and provided by Besicovitch in September 1944? 

A simple answer could be that Sraffa thought that the exposition of the proof could be simplified 

and that he failed to carry out the simplification required. This is a possible interpretation. However, 

there are other cases in which Sraffa made no use of an available proof by Besicovitch. For instance 

when in the 1950s Sraffa was faced with the need to define basics and non-basics in joint 

production, he conceived a definition in terms of a tax on the production of single commodities (a 

tithe). A tax on the production of a basic commodity affects all prices and the wage rate (for a given 

rate of profit), whereas a tax on the production of a non-basic commodity affects only prices of 

some non-basic commodities (if the numeraire is fixed only in terms of basic commodities). He was 

convinced to use the linear dependence definition we find in the book (§ 58) by Besicovitch (the 

whole story is told by Kurz and Salvadori, 2004). The tax argument appears in the book (§ 65), but 

it is a consequence, not the definition. Nevertheless, Besicovitch proved three months after Sraffa 

had accepted the definition in terms of linear dependence that Sraffa's original opinion was correct 

and that actually the definition could be given in terms of the tax. However, the proof is extremely 
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demanding in terms of mathematical calculations (see Kurz and Salvadori, 2004). Sraffa made no 

mention of this proof by Besicovitch in his book. 

 

Both the proof of the existence of the Standard commodity and the distinction between basic and 

non-basic commodities recall the concluding remarks of the Preface: 

 It will be only too obvious that I have not always followed the expert advice that 

was given to me – particularly with regard to the notation adopted, which I have 

insisted on retaining (although admittedly open to objection in some respects) as 

being easy to follow for the non-mathematical reader. 

Despite his interest in the existence of a proof, Sraffa was keen to provide one only if it was "easy 

to follow for the non-mathematical reader". He thought that the non-mathematical reader would 

understand his argument in section 37. If the mathematical reader were to find it incomplete, then 

such a reader would also be able to find a complete proof, which Sraffa knew existed. 

 

6. Conclusion 

In this paper I explored the relationship between the proof of the existence of the Standard 

commodity contained in section 37 of Sraffa’s (1960) book and the proof supplied to Sraffa by 

Besicovitch on 21 September 1944, and investigated the completeness and consistency of such a 

proof. I also postulated some reasons which led Sraffa to omit this proof in his book in favor of an 

incomplete argument. 

 

 

Appendix A. An example 

 

Let 

 A =
0 h

k 0

!

"
#

$

%
&      l =

1

2

1

2

!

"
#
$

%
&      ! =1  0 < h < k <1  

It is easily calculated that the eigenvalue of maximum modulus of matrix 

 

A  is hk  and that the 

left eigenvector associated with this eigenvalue normalized by the condition 
  
x

T
l = !  is 

 
2 k ! hk( )

k ! h

2 hk ! h( )
k ! h

"

#

$
$

%

&

'
'
 

It is easily recognised that 
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R = q ! "2
 

2k

1+ k
# q

1
#

2

1+ h
,  q

2
= 2 $ q

1

%
&
'

(
)
*

. 

Finally, let us consider the function 

 ! q( ) =
1

1" 2#

$

%
&

'

(
)+#q  (6) 

with 

 0 < ! <
1

2
"

1

2

h

k
 (7) 

From inequalities (7) we obtain the inequality 

 1

1! "
<
2 k ! hk( )

k ! h
 

from which we obtain3 that ! q( )" q( ) #AT" q( ) > 0  for each
 
q ! S

1
, whereas this property does not 

hold for
 
q ! S

2
, where 

 
 

S
1

= q ! S  q
1

<
1

1"#

$
%
&

'
(
)

 

 

 

S
2

= q ! S  
1

1"#
$ q

1
<

2 k " hk( )
k " h

%

&
'

('

)

*
'

+'
 

Further, it is easily verified that 
 
q ! S

1
"# q( ) ! S

1
. Therefore each element of any sequence 

defined by the conditions 

 
 
q
0
! S

1
,             q

t +1
=

q
t

if ! q
t( )qt

" AT q
t
= 0

# q
t( ) if ! q

t( )qt
" AT q

t
$ 0

%
&
'

('  

satisfies the conditions stated by Sraffa, but 
 

lim
i!"

# q
i( ) = 1$ 2%( )k > hk  

lim
i!"

q
i
=

1

1#$
1# 2$

1#$

%

&

'
'
'
'

(

)

*
*
*
*

+

2 k # hk( )
k # h

2 hk # h( )
k # h

%

&

'
'
'
'
'

(

)

*
*
*
*
*  

                                                
3  If q

1
! 2 k " hk( ) k " h( )

"1 , then ! q( ) = k 2 " q
1( )q1

"1 . Further ! q( )e
1

T" q( ) # e
1

T AT" q( ) > 0  

if and only if q
1

< 1! "( )
!1  whereas ! q( )e

2

T" q( ) # e
2

T AT" q( ) > 0  for 

q
1
! 2 k " hk( ) k " h( )

"1 , provided that inequalities (7) hold. 
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The last limit is the unique fixed point of function (6).  

 

Appendix B. D3/12/39: 42 

 

Besic.: – 21.9.44: (42) 1-4: 

 

'Th 1 If prices are +ve, any distribution of the Surplus outputs can be attained'  

 

Proof  

(i) Ak pa + ...+ Kk pk + lkw = Kpk  

obviously any desirable surplus of K can be produced since K > K
k
 ( ! of +ve prices). 

(ii) 
Aj pa + ...+ J j pj + K j pk + l jw = Jpj

Ak pa + .             .            .        = Kpk

!
"
#

 

Let the surplus of the K-industry be K
j . Then J industry produces some Surplus. Multiply{in}g 

both =ions {equations} by the Same factor the J surplus may take any assigned value. S{imilar}ly  

we can make J not to have any Surplus & K to have any assigned surplus. Then add{in}g the two 

firs{t} =ions {equations} & the two second ones we get an assigned Surplus of J & f{o}r K , a. s.o., 

q.e.d. 

 

'Th 2 If the prices are +ve {positive} and the surplus of B, ..., K is 0 then the surplus of A is +ive 

{positive}. 

 

Proof For take the surplus of B, ..., K (wrt {with respect to} B ... K) to be B
a
, ... , K

a
. Then the 

surplus f{o}r B, ... K wrt {with respect to} A, ... , K is 0. Write 

Aa pa + ...+ law = Apa

______

Ak pa + ...+ lkw = Kpk

 

& add them & drop B, ... , K terms from both sides as they are = {equal}. The result is 

Aa + ...+ Ak( ) pa + la + ...+ lk( )w = Apa . 

i.e. A
a
+ ...+ A

k
< A , q.e.d. 

 

'Th 3 If the Surplus of A is +ve {positive} & of B, ..., K is 0 then the prices are +ve {positive}. 
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For multiplying A=ion {equation A} by u (< 1) sufficiently near 1 we shall still have the surplus of 

A +ve {positive} & we shall make surplus of B, ... , K +ve {positive}. 

 

{Addition by Sraffa on bottom of page: (Refer to blue page 1)} 

 

'Th 4 If prices are +ve {positive} there exist +ve {positive} multipliers 

 

qa, ...,qk  such that the 

Surplus output is proportional to the total of every kind of raw materials. 

 

Proof. 

 (1)           

 

Aa pa + ...+ law = Apa

............

Ak pa + ............= Kpk

 

assuming the surplus for each to be +ve {positive}, i.e. 

 (2)           

 

A
a

+ ...+ A
k

< A

............

K
a

+ ...+ K
k

< K

 

Consider 

 (3)           

 

A
a

+ ...+ A
k

< Au

............

K
a

+ ...+ K
k

< Ku

 

The ≠ties {inequalities} remain true as u decreases from 1 until it reaches a certain value 

 

u
0

> 0  for 

which some of the ≠ties {inequalities} become =ties {equalities}, f.i {for instance} the first two. 

Then we multiply the C, ... , K =ions {equations} by 

 

k <1 but near 1, so that the surplus of C, ... , K 

still remain positive. This will release a surplus of A & B. Then (3) will be true wrt {with respect 

to} the reformed system for 

 

u = u
0
. Now we decrease u beyond 

 

u
0
 a.s.o. In this way we shall reach 

as System 

 

qa Ak pa + ............( ) = qa Apa

..............

qk ........................( ) = qkKpk

 

for which 

qaAa + ... qkAk < qaAu 

............... 

qaKa + ........... < qkKu 

for 

 

u
1

< u !1, & when 

 

u = u
1
 all the ≠ies {inequalities} become =ies {equalities}. 
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Remark. All 

 

qa, ...,qk  cannot become 0 since in all our adjustments we may keep one of our 

industries intact, f. i A, & from this it follows that u1 ≥  Aa/A (

 

! 1st =ion {first equation} of (3)) 

 

Appendix C. D3/12/39: 7 

 

 

 

Aa pa + ...+ Ka pk( ) 1+ r( ) + Law = Apa

...........

Ak pa + ...+ Kk pk( ) 1+ r( ) + Lkw = Apk

 

If r is such that 

A
a
+ ...+ A

k( ) 1+ r( ) < A

K
a
+ ...+ K

k( ) 1+ r( ) < K
 

then all prices are positive, assuming w > 0 

Proof. Suppose not. Let 

 

pa < 0 , 

 

pb < 0 , the rest > 0. Then adding the first two equations and taking 

to the right A and B terms we shall have 

 

Ca + Cb( )pc + ...+ Ka + Kb( )pk{ } 1+ r( ) + La + Lb( )w

= A! Aa + Ab( ) 1+ r( ){ } pa + B! Ba + Bb( ) 1+ r( ){ } pb

 

which is impossible, since the expression on the left hand side is > 0, and on r. h. side < 0. 

  ASB 
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