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Abstract

An approach to incorporate spatial dependence into Stochastic Frontier

analysis is developed and applied to a sample of 215 dairy farms in England

and Wales. A number of alternative speci�cations for the spatial weight

matrix are used to analyse the e�ect of these on the estimation of spatial

dependence. Estimation is conducted using a Bayesian approach and
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results indicate that spatial dependence is present when explaining

technical ine�ciency.

Key words: Spatial dependence, technical e�ciency, Bayesian, spatial

weight matrix
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1 Introduction

Despite many economic phenomena being driven by spatial processes,

spatial relationships have rarely been exploited in economic literature

before the late 1990s' (Bockstael 1996; Anselin 2001). Disregarding spatial

aspects of the data may produce ine�cient or biased estimates and

consequently, misleading inference (Anselin 2001). However, interest

increased recently, it was in the 1990s when there were the �rst calls for the

introduction of spatial econometrics in agricultural economics (Bockstael

1996; Weiss 1996). Weiss (1996) stresses, as does Bockstael (1996), that an

economic process such as agricultural production is a spatial phenomenon

and factors such as yield, soil characteristics, landscape con�gurations and

pest populations show spatial variability. Weiss (1996) calls for the use of

spatial information in agricultural economics, and points out that the

results obtained from spatial analysis applied to agricultural economics will
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have implications for farm management and for agricultural and

environmental policy. For instance, spatial information can reveal where

fertiliser can be pro�table and where counterproductive (Weiss 1996), or

where to put in place policies aiming to increase e�ciency.

Spatial econometrics models have their roots in regional science which,

through theoretical formulations on human spatial behaviour, attempts to

solve issues faced by cities and regions (Anselin 1988). According to

Anselin (1988) the term spatial econometrics was coined in the 1970s by

Jean Paelinck, but the lineage of spatial econometrics can be traced further

back to the 19th century economist Johann Heinrich von Thünen who

explained the e�ect of transport costs on production location through his

rings model (von Thünen 1826). Von Thünen's model shows that

production is distributed into di�erent areas (i.e. concentric rings), the

most pro�table production being the closest to the city (i.e. the market).

Other relevant authors were Christaller (1966) and Lösch (1954) who

studied the spatial organisation of markets and market centres.

Farrell (1957) showed early concerns about how spatial aspects may be

correlated with e�ciency. He applied his method of measuring e�ciency to

agricultural production in the United States and stated �. . .the apparent

di�erences in e�ciency. . .re�ect factors like climate, location and fertility

that have not been included in the analysis, as well as genuine di�erences in

e�ciency� (Farrell 1957, p. 270). Then Farrell investigated the correlation
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between e�ciencies and variables representing location, temperature and

rainfall �nding little correlation (Farrell 1957). Despite these early concerns

spatial dependence has not yet been incorporated into the Stochastic

Frontier analysis. E�ciency literature usually considers spatial

heterogeneity, which refers to the fact that e�ciency levels may di�er

depending on the location, whereas spatial dependence refers to the

correlation between the e�ciency level at the farm and the e�ciency levels

of the �neighbouring farms�. Spatial heterogeneity in technical e�ciency

literature is controlled (if controlled at all) by introducing dummy variables

for political divisions of the land such as regions, counties and provinces.

For example, Hadley (2006) introduced dummy variables to account for

regional heterogeneity. The introduction of dummy variables is also used to

account for spatial heterogeneity in certain areas of interest such as less

favoured areas (Hadley 2006; Iraizoz et al. 2005). Contrary to what may be

expected spatial heterogeneity and spatial dependence do not necessarily go

together. This may happen when spatial dependency occurs at a di�erent

spatial level than the one studied, which is usually a political division. For

instance, it may be the case that no spatial heterogeneity is found (i.e. no

di�erences in e�ciency levels between regions, counties) but there is spatial

dependence within the region or across regions (i.e. the e�ciency levels of a

farm are correlated to the e�ciency levels of the farms around). Since

spatial dependency leads to heterogeneity at the same spatial level, the

study of spatial dependency or heterogeneity should not be restricted to
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political divisions of the land.

As for agricultural production, there are a number of potential sources of

spatial dependence in e�ciency including soil quality, climatic conditions,

socio-economic aspects and other location-speci�c attributes. For instance,

spatial dependence in technical e�ciency can be found because farmers in

an area may emulate each other; it may be due to the level of infrastructure

in the area; it may be because of the climatic and topographic conditions of

the area where the farm is located. All these are unobservable latent

variables that may be spatially correlated.

In recent years spatial econometric models have been developed and used in

a wide number of areas of research including economics, sociology,

geography, biology, meteorology and political science. In agricultural

economics and environmental and resource economics a number of

publications have reviewed and applied either spatial econometric

techniques or geographic information system (GIS) techniques. Many of the

applications using spatial econometric techniques are used in the context of

hedonic price functions or production functions.

Bokstael (1996) used an hedonic model for residential transactions in which

spatial characteristics were included. The results were used to predict land

use conversion. Anselin (2002) discusses a number of issues related to the

implementation of spatial models covering di�erent model and weight

matrix speci�cations.
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Two special issues have been devoted to the subject of spatial econometrics

in agricultural economics journals in recent years. Firstly the special issue

of Agricultural Economics (2002) and secondly the special issue of the

Journal of Agricultural Economics (2007).

Holloway et al. (2007) provide an excellent review of recent literature in

which spatial econometrics techniques have been used. The authors focused

their review of the spatial econometrics literature on those papers dealing

with spatial bio-economic modelling and land use modelling and categorise

articles according to the two criteria above: those that explicitly use spatial

econometric methods and those that use geographic information systems

(GIS) techniques.

A number of models have been developed to account for spatial dependence

such as the spatial autoregression model (SAR) (Anselin 1988), the spatial

error model (SEM) and its variant the higher order contiguity model or

spatial Durbin model which allows for explanatory variables from

neighbouring observations (LeSage 1999; Bell and Bockstael 2000). None of

these models cover or discuss the incorporation of technical e�ciency.

Despite these advances in the econometric application of spatial analysis

(Anselin 1988; LeSage 1999) very little research can be found in the

literature on how to incorporate spatial dependence into technical e�ciency

analysis (Druska and Torrace, 2004; Schmidt et al. (2009).

We incorporate spatial dependence into technical e�ciency analysis by
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using an autoregressive speci�cation in the ine�ciency term of a compound

error term of the stochastic e�ciency analysis di�ering from Druska and

Torrace (2004) work, which based on a standard �xed e�ects model used an

autoregressive speci�cation in the error term to estimate the spatial depen-

dence. We also di�er from previous work done by Schmidt et al. (2009) that

make farm ine�ciency depend on a parameter that captures the unobserved

spatial characteristics and assigning prior distributions to it. Our work dif-

fers in both the speci�cation of the model used and the scope of the analysis.

We directly integrate the unobserved spatial characteristics in the stochastic

frontier model by specifying the ine�ciency to be spatially autoregressive and

including a parameter that measures the level spatial dependence. Schmidt

et al. (2009) examined the unobserved local characteristics in each municipal-

ity by incorporating them to the analysis assuming that a) either they follow

a CAR distribution (i.e. they incorporate the assumption that neighbour

municipalities hava a similar level of unobserved local characteristics) or b)

a Normal distribution (i.e. unobserved local characteristics are independent

of the neighbours). On the other hand, our work analysed the presence of

spatial dependency at varous area sizes by estimating the relevance of spatial

location of the farm in farm ine�ciency levels.

Regarding the scope of the analysis Schmidt et al. (2009) examine unob-

served spatial e�ects at relatively small levels (i.e. municipalities), whereas

we take di�erent speci�cations, some not restricted by political boundaries.

By examining di�erent spatial structures we are able to discern how spatial
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dependence varies with di�erent characterisations of neighbourhood, which

is an aspect the Scmidt et al. (2009) conclude as worth to be investigated.

Our approach enable us to obtain both the degree and signi�cance of spatial

dependence in the whole area studied for di�erent characterisations of neigh-

bour farms, whereas Schmidt et al. (2009) provide information only on the

signi�cance of spatial dependence at municipality level.

The following sections are dedicated to the description of the data used,

and the methodology and empirical approaches for integrating spatial

dependence into Stochastic Frontier analysis are presented. The empirical

section includes a description of the data used and the results obtained.

The article ends with a section devoted to conclusions.

2 Data

The analysis uses balanced panel data from the Farm Business Survey

(FBS) for the years 2000-2005. A total of 215 dairy farms in England and

Wales are included in the dataset. The FBS data include a large amount of

information related to the farm enterprise. We classify farm output data

into: i) milk and other dairy products, ii) leasing out quota, and iii) other

products. Laspeyres and Paasche quantity indices were calculated in order

to calculate a Fisher quantity index which aggregated the output in milk

and other milk output into one variable and other products also into one

variable. The base for price and output indices was calculated as the
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average of prices and outputs. With regard to inputs included, these are

the utilised agricultural area (UAA) in ha; herd size (number of cows);

labour (¿); machinery and general farming costs (¿), which includes

contract work, machinery rental, machinery and equipment valuation1,

machinery and equipment repairs, vehicle fuel and oil, electricity, heating

fuel for all purposes, water for all purposes, insurance excluding labour and

farm buildings, bank charges professional fees, vehicle tax and other general

farming costs; livestock costs (concentrate feedstu�, coarse fodder,

veterinary services and medicines).

Spatial information on the farms was provided by the Department for

Environment Food and Rural A�airs (Defra) as part of the Farm Business

Survey. The FBS includes a grid reference which provides information on

the location of the farm at a 10 km grid square level. This information was

used to build a number of connectivity (or spatial weight) matrices W

which gather the relative spatial information of the farms.

3 Methods

Spatial dependence refers to how much the level of technical ine�ciency for

a farm i depends on the level of the technical ine�ciency set by other farms

j = 1, . . . , n. Spatial dependence implies that the ine�ciency (z) of farms at

1Note that machinery (a �ow) is not added to valuation (a stock) since equipment
valuation is depreciated in the FBS. For instance, cars valuation accounts for 17% depre-
ciation.
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location i depend on how ine�cient farms are at locations j 6= i. The joint

density is not the product of the marginals for zi and zj at locations j 6= i.

3.1 The spatial weight matrix

Although the use of political divisions of the land in e�ciency analysis may

capture some e�ects associated with policies at regional, county or

provincial levels there may be factors such as climatic and topographic

conditions which di�er within those political divisions. In order to account

for those factors that may be present on a smaller or larger scale, a

quanti�cation of the structure of spatial dependence between farms for the

e�ciency term in the stochastic multi-output production function is

introduced.

The spatial information of the farms can be introduced into a connectivity

matrix or spatial weight matrix. A connectivity matrix can be de�ned in

di�erent ways depending on the researcher's views about what constitutes a

neighbourhood, which will depend on previous information on the

particular issue studied, or due to the type of spatial data that the

researcher has (i.e. scale). The way in which the spatial weight matrix is

speci�ed is relevant. Two questions usually arise when analysing technical

e�ciency; how spatial dependence is speci�ed and what size is considered

adequate to specify which farms are close. This is especially problematic in

micro data environments where observations are scattered throughout a
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landscape (Holloway and Lapar 2007; Bell and Dalton 2007). There are two

main ways in which W can be de�ned:

a) A common speci�cation for quantifying the structure of spatial

dependence used in literature relies on a n× n spatial weight matrix W

with elements Wij ≥ 0 (after being row standardised such as the row

elements add up to one, as it facilitates the interpretation of model

coe�cients) for observations j = 1, . . . , N su�ciently close to observation i

and Wij = 0 otherwise (LeSage, 1999). Let's consider 4 farms where farm 1

is close enough to farm 2; farm 2 is close to farms 1, 2 and 3; farm 3 is close

to farms 2 and 4; while farm 4 is close to farms 2 and 3. The spatial weight

matrix based on this spatial example takes the form

W =



0 1 0 0

1 0 1 1

0 1 0 1

0 1 1 0


(1)

The diagonal elements Wii are set to 0 in order to preclude an observation

of the e�ciency zi from directly predicting itself. The spatial weight matrix

is row standardised so each element in the standardised matrix W S,

wij = wij∑
j
wij

, is between 0 and 1 as shown below
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W S =



0 1 0 0

0.33 0 0.33 0.33

0 0.5 0 0.5

0 0.5 0.5 0


(2)

Close proximity can have di�erent interpretations. Thus, it can mean

adjacent neighbours or neighbours within a given distance. For the latter

the elements of the W matrix are given by: wij = 1 if 0 < distance between

i, j ≤ h (h is the distance beyond which no dependence is assumed);

otherwise wij = 0 before being row standardised.

E�ectively when we estimate a model such as z = ρWz + ε the parameter ρ

measures the correlation between z and the weighted average of z. Under

this approach all neighbours have the same weight in the average. If z

referred to farm e�ciency then ρ would represent the correlation between

individual farm e�ciency and the mean e�ciency of the neighbouring farms.

b) An alternative approach to the one shown above is the use of weight

matrix based on distance (Anselin 2002). In this case neighbours have

di�erent weights in the average, those with higher weights being the closest

in distance. Therefore ρ would be the correlation between farm e�ciency

and adjusted by distance mean e�ciency of neighbouring farms. This

approach is also arbitrary in the sense that the cuto� distance is arbitrarily

selected. The distance weight speci�cation used here is one of a power form
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wij = exp
(
−d2

ij/h
2
)

(3)

where dij is the distance between a farm in location i and a farm in location

j; h is the distance around a given observation over which other

observations are likely to be dependent.

The cuto� distance chosen to determine the distance beyond which spatial

e�ects are not relevant is a key issue. Bell and Bockstael (2000) found that

their results were more sensitive to the speci�cation of the spatial weight

matrix (i.e. choice of the cuto� distance) than to the estimation technique

used. They found that the spatial dependence estimate changed with the

distance associated to the cuto� distance, increasing �rst at a small cuto�

distance and falling afterwards as the cuto� distance was increased. They

applied a higher order contiguity model and showed how spatial

dependence diminishes with distance.

Roe et al. (2002) highlight that the appropriate cuto� distance is an

empirical issue. They estimated their models using di�erent cuto�

distances. Kim et al. (2003) used SAR and SEM hedonic price models to

measure the bene�ts of air quality improvement. The spatial weight matrix

was speci�ed based on distances between district centroids with a cuto�

distance of 4 km chosen after experimenting with a series of di�erent cuto�

distances. These articles show that a cuto� distance exists where spatial

dependence reaches a maximum.
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3.2 Scope

Milk producer farm e�ciencies in England and Wales are studied in this

paper. Milk producers have an annual milk quota that partially binds

production since producers can lease in and/or lease out milk during the

production year. Therefore we include in the analysis the fact that

production is partially constrained by the annual quota Q which includes

the initial quota ± quota bought/sold, leasing in quota qui and leasing out

quota quo. Not accounting for such constraints may lead to wrongly

attributing the e�ects of such constraints to the farmer being unsuccessful

in optimising production (Färe et al. 1994).

Assuming that producers optimise their production by not wasting

resources leads them to operate near their production possibilities set.

However there may be an array of motives for why not all producers are

successful in optimising production. In this article we focus on developing a

way to explain technical ine�ciency through spatial dependency. The

departure point of any technical e�ciency analysis is the de�nition of the

production technology of a �rm. This can be characterised in terms of a

technology set, the output set of production technology, and the production

frontier.
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3.3 Output distance function

We use a distance function approach since it describes technology in a way

that allows e�ciency to be measured for multi-input and multi-output

enterprises (Coelli et al. 2005). An output distance function describes the

degree to which a �rm can expand its output given its input vector. We

start from a producible output set, which is the set of all outputs that can

be feasibly produced using the set of all inputs. The output set for

production technology is de�ned as

P (x,Q) =
{
y ∈ RM

+ : x can produce y given y = Q+ qui− quo
}

=

= {y : (x, y) ∈ T} (4)

where y refers to all M outputs of the farm including milk, the leasing out

of quota (quo) and other outputs, which take only positive real numbers

RM
+ , and x refers to all K inputs used in the farm, which take only positive

real numbers RK
+ , including the leasing in quota (qui) and the annual

allocation of quota Q which includes ± amount of quota bought/sold in the

current year. The output set is included within the technological set T .

The output distance function is de�ned on the output set P (x,Q) as
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DO (x, y,Q) = min
{
θ :
(
y

θ

)
∈ P (x,Q)

}
for all x ∈ RK

+ (5)

which means that the inital allocation of quota Q, the leasing in qui and

leasing out quota quo are treated in the same way as conventional inputs

(x) and outputs (y).

Assuming a translog functional form for the parametric distance function

with M outputs and K inputs o�ers several attractive properties including

�exibility, as well as making it easy to derive and permit the imposition of

homogeneity, which makes it the preferred form in the literature (Coelli and

Perelman 1999; Lovell et al. 1994; Brümmer et al. 2002; Brümmer et al.

2006).

lnDOi = α0 +
M∑
m=1

αm ln ymi +
1

2

M∑
m=1

M∑
n=1

αmn ln ymi ln yni +
K∑
k=1

βk lnxki +

+
1

2

K∑
k=1

K∑
l=1

βkl lnxki lnxli +
K∑
k=1

M∑
m=1

δkm lnxki ln ymi

i = 1, ..., N (6)

where i denotes the ith farm in the sample; qui and Q are included in x as

inputs; and quo are part of y as an output. By using linear homogeneity of
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the output distance function in outputs, equation (3) can be transformed

into an estimable regression model by normalising the function by one of

the outputs (Brümmer et al. 2006; Brümmer et al. 2002; Coelli and

Perelman 1999; Coelli and Perelman 2000; Lovell et al. 1994; Orea 2002;

O'Donnell and Coelli 2005). From Euler's theorem, homogeneity of degree

one in output implies:

M∑
m=1

αm +
M∑
m=1

M∑
n=1

αmn ln yni +
M∑
m=1

K∑
k=1

δkm lnxki = 1 (7)

which will be satis�ed if
∑M
m=1 αm = 1,

∑M
m=1 αmn = 0 for all n, and∑M

m=1 δkm = 0 for all k. Substituting these constraints is equivalent to

normalising by one of the outputs, which leads to the following expressions:

lnDO

(
yi
y2i

, x

)
= lnDo

1

y2i

(yi, x) (8)

and

− ln y2 = α0 +
M∑
m=1

α1 ln
ymi
y2i

+
1

2

M∑
m=1

M∑
n=1

αmn ln
ymi
y2i

ln
yni
y2i

+
K∑
k=1

βk lnxki +
K∑
k=1

K∑
l=1

βkl lnxkl lnxli

+
K∑
k=1

M∑
m=1

δkm lnxki ln
ymi
y2i

+ εi − zi (9)
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where εi is a symmetric random error term that accounts for statistical

noise and zi is a non-negative random variable associated with technical

ine�ciency.

Monotonicity constraints involve constraints on functions of the partial

derivatives of the distance function. As pointed out by O'Donnell and

Coelli (2005) the elasticities of distance with respect to inputs and outputs

are important derivatives.

∂ lnDo

∂ lnxk
= βk +

K∑
k=1

βkl lnxli +
M∑
m=1

δkm ln
ymi
y2i

(10)

∂ lnDo

∂ ln ym
= αm +

M∑
m=1

αmn ln
yni
y2i

+
K∑
k=1

δkm lnxki (11)

For Do to be non-increasing in x,
∂ lnDo

∂ lnxk
≤ 0 while for Do to be

non-decreasing in y ∂ lnDo

∂ ln ym
≥ 0. The data were normalised so that each

variable had a sample mean of one. This means that the monotonicity

conditions can be expressed as αm ≥ 0 and βk ≤ 0. It is worth noting that

coe�cient results have been changed the sign and therefore the expected

coe�cients should be αm ≤ 0 and βk ≥ 0.

We used the spatial information contained in the dataset to create a

number of speci�cations of the W matrix and investigate the e�ect of these

on the results. One involves the introduction of a spatial connectivity

matrix whose common speci�cation is n× n matrix W with elements
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Wij = 1 for farms j = 1, . . . , n within 10 square km grid to farm i and

Wij = 0 for those farms that are not close. Once W is row standardised this

e�ectively accounts for the average e�ciency of the farms surrounding the

farm within the 10 Km square grid. Another alternative speci�es that the

spatial connectivity matrix W has elements Wij = 1 for farms j = 1, . . . , n

within the GOR of farm i and Wij = 0 for those farms that are in the same

GOR. Finally, four more alternatives were used by specifying a spatial

distance matrix W with elements Wi,j = di,j where dij is the Euclidean

distance. The weight speci�cation used was the power form (equation 11)

and four cuto� distances were used (h =20 Km; h =100 km; h =180 km

and h =240 km). As pointed out above, the selection of which de�nition of

close proximity to use is arbitrary as is the size of the spatial e�ect (i.e.

cuto� distance). The distance between farms is calculated using the

Euclidean distance

d1,2 =
√

(x1 − x2)
2 + (y1 − y2)

2 (12)

where xi, yi are the coordinates of the points.

3.4 Estimation

A Bayesian procedure involving the use of a Gibbs sampler and two

Metropolis-Hastings steps is used to estimate the spatial dependence of

farm e�ciency. We start with the standard stochastic output distance
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function model which is speci�ed as

yit = xitβ + εit − zi (13)

where yit is a vector of the logarithm of milk and other milk products for

each farm i in year t; xit is a matrix of the logarithm of other outputs and

inputs of the farm i in year t; β is a vector of parameters associated with

the outputs and inputs of the farm to be estimated; εit is the random error

and zi represents the ine�ciency of the farm. Note that e�ciency here is

understood to be the maximum output each farm can obtain with the given

inputs. Stacking all the variables into matrices we obtain

yi = xiβ + εi − zi1T (14)

where yi, xi and εi denote vectors of T observations. Or in matrix form

y = xβ + ε− (z ⊗ 1T ) (15)

This standard model can be transformed to account for spatial dependence

in the ine�ciency term. The spatially dependent ine�ciency term is

z = ρWz + z̃ (16)
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z̃ = (I − ρW ) z (17)

z = (I − ρW )−1 z̃ (18)

where W is a connectivity matrix that includes the relative spatial

information of the farms and ρ is the spatial coe�cient and z and z̃ are

latent variables whose distributional form is unknown. By plugging (18)

into (15) we obtain the following expression

y = xβ + ε−
(
(I − ρW )−1 z̃

)
⊗ 1T (19)

The parameter ρ is assumed to be between 0 and 1, although we will break

this assumption in order to evaluate the robustness of our results.

3.4.1 The conditional likelihood function

The distributional assumptions determine the form of the likelihood

function. Here, it is assumed that the prior distributions for the latent

errors are normal and gamma distributed (Koop 2003; Koop et al. 1995).

In this case normality is assumed. Note that we have i = 1, . . . , N farms

observed during T years (t = 1, . . . , T ). Here p() refers to the density and

p(|) is the conditional density.
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p
(
y|β, h, ρ, µ−1

z , z̃
)

=
N∏
i=1

h
T
2

(2π)
T
2

exp

(
−hε

′
iεi
2

)
(20)

p
(
y|β, h, ρ, µ−1

z , z̃
)
∝ h

TN
2

N∏
i=1

exp

(
−hε

′
iεi
2

)
(21)

noting that p (y|β, h, ρ, µ−1
z , z̃) = p (y|β, h, ρ, µ−1

z , z) = p (y|β, h, µ−1
z , z̃).

De�ning ỹi =
[
yi + (I − ρW )−1 z̃iιT

]
the following expression is obtained

p
(
y|β, h, µ−1

z , z̃
)
∝ h

TN
2 exp

[
−h

2
(ỹi − xiβ)

′
(ỹi − xiβ)

]
(22)

The expression above is of a standard form used for e�ciency analysis

(Koop 2003; Koop et al. 1995) with the spatial element being the extension

of the model.

3.4.2 The priors

The likelihood function must be complemented with a prior distribution on

the parameters (β, h, µ−1
z , ρ) and the latent variable z in order to conduct

Bayesian inference. The matrix W is prede�ned rather than estimated. An

independent Normal-Gamma prior is used for the coe�cients in the

production frontier and the error precision. The priors for β and h are

β ∼ N (0, V0) (23)
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p (h) = h
v0−2

2 exp

(
−hs2

0

2
v0

)
(24)

where V0, s
2
0 and v0 are hyper parameters set prior to estimation.

The distribution of the ine�ciency term is determined by the distribution of

z, which is a latent variable. We de�ne p (z̃|µ−1
z ) instead of p (z|µ−1

z ), which

is de�ned given ρ, W and p (z̃|µ−1
z ). The prior for the latent variable z̃ is

p
(
z̃i|µ−1

z

)
= fG

(
z̃i|α, µ−1

z

)
=

zα−1
i

µjΓ (α)
exp

(
−µ−1

z z̃i
)

(25)

where Γ (.) is the gamma function; and fG (z̃i|α, µ−1
z ) indicates the Gamma

density with parameters α and µ−1
z . This prior is commonly used in

literature (Fernández et al. 2000; Koop et al. 1995; van Den Broeck et al.

1994). Assuming α = 1, the ine�ciency distribution is exponential and the

ine�ciency prior becomes

p
(
z̃i|µ−1

z

)
∝ exp

(
−µ−1

z z̃i
)

(26)

The prior for µ−1
z is assumed to be gamma with parameters 2 and − ln (r∗)

p
(
µ−1
z

)
∝ fG

(
µ−1|2,− ln (r∗)

)
(27)

p
(
µ−1
z

)
∝ µ−1

z exp
(
µ−1
z ln (r∗)

)
(28)
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where r∗ is the median of the prior distribution.

Finally, the prior for ρ is assumed to be an indicator function.

f (ρ) = I (ρ ∈ [0, 1]) (29)

The expression above is a uniform distribution and its applicability depends

on the appropriate construction of the weight matrix. The indicator

function I (·) = 1 if ρ ∈ [0, 1] or otherwise I (·) = 0. This means that the

parameter ρ that accounts for spatial dependence is expected to have a

positive impact on the e�ciency scores.

3.4.3 The joint posterior

The joint posterior distribution can be broken down into as the

multiplication of the conditional likelihood function and the priors. The

joint posterior in terms of z is

p
(
β, h, µ−1

z , z, ρ|y
)

= p
(
y|β, h, µ−1

z , z
)
× p (β)× p (h)× p

(
z|µ−1

z

)
× p

(
µ−1
z

)
× I (ρ ∈ [0, 1]) (30)

3.4.4 The conditional posteriors

The Gibbs sampler is based on conditional distributions which describe the

probabilities of a combination of values for parameters of interest which are
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conditional on the observables. The use of conditional distributions

facilitates obtaining posterior distributions of the parameters of interest. In

order to estimate the model it is useful to have the conditional distributions

in order to employ the Gibbs sampling method (Geman and Geman 1984;

Casella and George 1992). The conditional posterior for β is a Normal

distribution after extracting the kernel for β from expression (30). For the

full derivation of the conditional posteriors the reader is referred to the

Appendix.

p
(
β|h, µ−1

z , z̃, ρ, y
)
∼ N

(
b, V̄

)
(31)

As in Koop (2003) the conditional posterior density for h is

p
(
h|β, µ−1

z , z̃, ρ, y
)
∼ G

(
s̄−2, v̄

)
(32)

In order to obtain the conditional posterior for µ−1
z it is more useful to use

z̃ rather than z. The joint conditional posterior density for µ−1
z and z̃ is the

kernel from expression (30) that involves µ−1
z and z̃ (see Appendix for full

derivation).

p
(
z̃, µ−1

z |β, h, y, ρ
)
∝

N∏
i=1

exp

(
−hε

′
iεi
2

)
× p

(
z̃|µ−1

z

)
× p

(
µ−1
z

)
(33)

from which the conditional posterior for µ−1
z is
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p
(
µ−1
z |z̃, β, h, y, ρ

)
∝ p

(
z̃|µ−1

z

)
× p

(
µ−1
z

)
(34)

p
(
µ−1
z |z̃, β, h, y, ρ

)
∼ G (m, η) (35)

which is a Gamma distribution with parameters m = N+1∑N

i=1
z̃i−ln(r∗)

and

η = 2N + 2.

Recalling that z and z̃ are related as in expression (17) the conditional

posterior distribution for z̃i is

p (z̃i|β, h, µz, y, ρ) ∝ exp

−hT
2

[
zi −

(
x
′

iβ − yi +
µ−1
z

Th

)]2

+ (z̃i − zi)µ−1
z


(36)

where X i =
∑T
t=1

xi,t

T
and yi =

∑T
t=1

yi,t

T
.

The previous equation is not of a recognisable form. Therefore a posterior

simulator (i.e a random number generator) needs to be used, such as a

Metropolis-Hastings algorithm (Metropolis 1970; Hastings et al. 1953). We

use a random walk algorithm proposal whereby a new set of z̃i are proposed

using a Metropolis based on the posterior above. Given a new draw of z̃i

then the entire z needs to be updated in each iteration. This is done using

expression (18) above.
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In order to obtain the conditional posterior of ρ the spatial problem can be

represented in matrix form as

y + (z ⊗ 1T ) = Xβ + ε (37)

(
y +

(
(I − ρW )−1 z̃

)
⊗ 1T

)
−Xβ = ε (38)

It follows that the conditional posterior for ρ is

p (ρ|β, h, µz, y, z̃i) ∝ exp

(
−hε

′
ε

2

)
× p (ρ)

= exp

(
−hε

′
ε

2

)
× I (ρ ∈ (0, 1)) (39)

which provides the basis for the use of a second Metropolis-Hastings step.

A random walk Metropolis-Hastings algorithm is used to draw ρ with

probability of acceptance of the proposed ρ∗ being

prob = min

(
1,

p (ρ∗|y, β, h, z)

p (ρold|y, β, h, z)

)
(40)

Recall that expresions (37-39) are for the case that ρ > 0. In the case of

ρ = 0 (i.e. there is no spatial component) note that z = z̃ .
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4 Results

We expect the nature of the connectivity matrix will determine the results

and for this reason we wish to explore alternative speci�cations for the

weight matrix. We would expect ρ to increase with the cuto� distance for

the spatial e�ects up to a distance and then decrease. We would expect the

spatial dependence to be lower for small neighbourhoods since such areas

may not include the whole area which has a spatial incidence on e�ciency.

In addition, we would expect that once we reach a given cuto� distance the

spatial e�ect should decrease indicating that the spatial dependence has a

limit. Two spatial models for ine�ciency were estimated, one where the

weight or connectivity matrix is speci�ed regarding neighbours as farms

within a 10 km square grid (SM1); one where neighbours are those farms in

the same GOR (SM2); and another where the connectivity matrix is

speci�ed as a distance matrix (SM3). The SM3 was estimated using 4

cuto� distances, 20, 100, 180 and 240 km (SM3-20; SM3-100; SM3-180 and

SM3-240).

Results for the parameters associated with inputs and outputs of the

production function are shown in table 1 for models SM1 and SM2; table 2

for models SM3-20 and SM3-100 and table 3 for models SM3-180 and

SM3-240. All signs are as expected with the exception of the coe�cient for

the leasing quota in, which is negative but the 90% coverage posterior

region shows that there is no clear evidence that supports the belief that
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this coe�cient is negative. The number of cows and milk quota allocated at

the beginning of the year are the two most important inputs in terms of

milk production whereas the production of other outputs by the farm

reduces the production of milk, holding everything else constant.

Figures 1 and 2 show the kernel distributions for farm e�ciency for models

SM1, SM2 and SM3. Results suggest that the way in which the

connectivity matrix is de�ned has an impact on the levels of e�ciency. The

e�ciency average is 0.86 when neighbours are considered to be those within

a 10 km grid square and 0.78 when neighbours are considered to be those

farms in the same region. Figure 2 shows smaller di�erences between the

alternatives. The mean e�ciencies are 0.84, 0.81, 0.80 and 0.80 for SM3-20,

SM3-100, SM3-180 and SM3-240 respectively.

Regarding the results for the conditional posterior distribution for the

spatial dependence parameter ρ, these are shown in Figures 3 and 4.

Results for SM1 and SM2 are shown in �gure 3 whereas the four

alternatives of MS2 are shown in Figure 4. Spatial models SM1 and SM2

show similar results for the spatial parameter ρ with averages of 0.13 and

0.18 respectively which suggests that e�ciency is farm determined rather

than spatially determined. The parameter ρ is 59.2% more likely to be

higher using SM2 than SM1 which suggests that the spatial dependence is

larger than just a 10 km square grid.

Models SM3 were run to investigate the e�ect of the cuto� distance chosen
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on the correlation ρ between e�ciency and the adjusted by distance mean

e�ciency. Results show that the spatial dependence parameter ρ increases

with the cuto� distance up to a point between 100 km and 240 km and

then decreases. The probability that ρ using SM3-180 is higher than using

SM3-240 is 53% whereas the probability that ρ using SM3-180 is higher

than SM3-100 is 59%. These results indicate that the spatial parameter ρ

may increase with the cuto� distance but will decrease once the cuto�

reaches a distance between 100 and 240 km. These results are similar to

those obtained by Bell and Bockstael (2000) where the spatial estimate

increases and then falls. A reason for this is that spatial matrix W at small

distances may not contain enough observations that help to obtain a good

estimate of the mean e�ciency in the neighbourhood. The spatial estimate

will start to fall once farms that are not related in terms of e�ciency with

the farm of interest start to be included in the spatial distance weight

matrix W . This will occur at a given distance. With regard to the mean of

ρ this is 0.14, 0.31, 0.35 and 0.34 for the 20, 100 and 180 and 240 km

alternative models respectively.

5 Conclusions

The work outlined in this article has shown how spatial dependence can be

accounted for within a stochastic frontier model, thus �lling a gap in the

literature. The application of these techniques gives insightful information
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on whether there is spatial dependence in technical e�ciency.

Results for the conditional posterior of the spatial dependence parameter ρ

are sensitive to the speci�cation of the spatial weight matrix. It may not be

only due to whether we use a connectivity matrix or a distance based

spatial matrix but also due to the cuto� size chosen. Thus results from the

connectivity matrix raise the question of how big the size of the spatial

e�ect is. Mean spatial dependence reaches its maximum over a 100 km

distance from the farm. Therefore, an examination of how sensitive results

are to the type of weight put to individual farms as well as to the cuto� size

chosen must be conducted in order to present meaningful results.

Results suggest that there is a spatial dependence aspect in technical

e�ciency in dairy farms in England and Wales, and not accounting for it

may produce biased results for the e�ciency distribution. Farm technical

e�ciency depends to some degree on where the farm is located and

therefore policies aiming to improve e�ciency should take this into account.

When analysing spatial heterogeneity there is not a strong reason to

support this being analysed at the political division level. In fact, usually

heterogeneity occurs due to the geographical and climatic characteristics of

the area, which do not necessarily have to coincide with the political

divisions of the land. Therefore it should not be surprising that

heterogeneity is not found at political division level and it should be

analysed taking this into account. The consequences of studying
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heterogeneity at the wrong spatial level may be important as policy

decisions would be based on misleading information. For example, based on

an analysis whose results show that no heterogeneity is found between a

number of regions the same policy may be applied for these regions.

However, if heterogeneity is in fact present at other smaller or larger spatial

levels a more appropiate policy would be to apply di�erent policies within

those regions or covering various regions. Results shown in this article are

important for policy makers as they highlight that policies devoted to

improving farm performance do not have necessarily to be applied at the

national or regional level. Spatial dependency or heterogeneity may cross

political borders or di�er within the same political region. This represents a

challenge to policy makers on how to implement policies at the �right�

geographical level. Governments would like to see production allocated to

those areas where e�ciency is higher and/or help to increase e�ciency in

those areas where e�ciency can be improved. This article has shown that

farm speci�c ine�ciency associated with spatial dependence can be

identi�ed as well as those farms which may need help in improving their

performance. Most importantly, since farm e�ciency was found to be

spatially dependent this means that there are drivers behind technical

e�ciency that are correlated with where farms are located. Identi�cation of

these drivers can have a major impact on designing policies aiming to

improve farm performance.

Two are the areas on which future research should focus. Firstly, research

32



should focus on developing ways to estimate the distance at which the

dependence parameter reaches its maximum. This would be helpful to

design more accurately the spatial level of policies that aim to improve farm

e�ciency. Secondly, once it has been identi�ed that spatial dependence

exists, research should concentrate on identifying and incorporating into the

analysis potential explanatory factors for such spatial dependence.
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Appendix

The conditional densitites

The derivation of the conditional posterior for β. De�ning

b =
(
V −1

0 +
∑
XiXi

)−1∑
Xi (yi + 1T zi) leads to the following result

p
(
β|h, z, µ−1

z , y
)
∝ exp

−h(β − b)
′ (
V −1

0 +
∑
iXiX

′
i

)
(β − b)

2

 (41)

p
(
β|h, z, µ−1

z , y
)
∼ N

b, h−1

(
V −1

0 +
∑
i

XiX
′

i

)−1
 (42)

The derivation of the conditional posterior for h. The kernel for h from

expression (30) is

p
(
h|z, µ−1

z , y, β
)
∝ h

TN
2

N∏
i=1

exp

(
−hε

′
iεi
2

)
× h

vo−2
2 exp

(
−hs2

0

2
v0

)
(43)

thus
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p
(
h|z, µ−1

z , y, β
)
∝ h

TN
2

+
v0
2
−1

N∏
i=1

exp

−h
ε′iεi +

s20v0
n

2

 (44)

Using

∑N
i=1 ε

′
iεi + s2

0v0

2
=
TN + v0

2s̄−2
(45)

where

s̄−2 =
TN + v0∑N

i=1 ε
′
iεi + s2

0v0

(46)

It follows that the precision h has a posterior gamma distribution using

Koop's notation (Koop, 2003).

p
(
h|z, µ−1

z , y, β
)
∼ G

(
TN + v0∑N

i=1 ε
′
iεi + s2

0v0

, vo + TN

)
(47)

The derivation of the conditional posterior for µ−1
z is as follows. From

expression (34) in the text:

p
(
µ−1
z |β, h, ρ, z̃, y

)
∝

[
N∏
i=1

µ−1
z exp

(
−z̃iµ−1

z

)]
× exp

(
µ−1
z ln (r∗)

)

= µ−Nz exp

(
N∑
i=1

−z̃iµ−1
z + µ−1

z

ln (r∗)

N

)

=
(
µ−1
z

) 2(N+1)
2
−1

exp

(
−µ−1

z

(
N∑
i=1

zi − ln (r∗)

))
(48)
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Using

(
N∑
i=1

z̃i − ln (r∗)

)
=

2N + 2

2m
(49)

m =
N + 1(∑N

i=1 z̃i − ln (r∗)
) (50)

we obtain

p
(
µ−1
z |β, h, ρ, z̃, y

)
∼ G

(
N + 1∑N

i=1 z̃i − ln (r∗)
, 2N + 2

)
(51)

The derivation of the conditional posterior for z̃ is as follows. From

expression (34) in the text:

p
(
z̃, |µ−1

z y, β, ρ, h
)
∝
[
N∏
i=1

exp

(
−hε

′
iεi
2

)]
× p

(
z̃|µ−1

z

)
(52)

The ith ine�ciency has the posterior

p
(
z̃i, |µ−1

z y, β, ρ, h
)
∝ exp

(
−hε

′
iεi
2
− z̃iµ−1

z

)
× I (z̃i > 0) (53)

Using:

(
ei,t +

µ−1
z

Th

)2

= e2i,t +
µ−2
z

T 2h2
+ 2ei,t

µ−1
z

Th
(54)
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and

ε
′

iεi =
T∑
t=1

e2i,t =
T∑
t=1

(
ei,t +

µ−1
z

Th

)2

− µ−2
z

Th2
− 2ēi

µ−1
z

h
(55)

where ēi =
∑T
t=1

ei,t

T
.

It follows that

p
(
z̃i, |µ−1

z y, β, ρ, h
)
∝ exp

−h
∑T
t=1

(
ei,t + µ−1

z

Th

)2

2
+ ēiµ

−1
z − z̃iµ−1

z


×I (z̃i > 0) (56)

Assuming ρ 6= 0 and recalling that z̃ = (I − ρW ) z

ēiµ
−1
z − z̃iµ−1

z = ēiµ
−1
z − ziµ−1

z + (z̃i − zi)µ−1
z

= ȳi − x̄iβ + (z̃i − zi)µ−1
z (57)

p
(
z̃i, |µ−1

z y, β, ρ, h
)
∝ exp

−Th
(
zi −

(
x
′
iβ − ȳi + µ−1

z

Th

))
2

+ (z̃i − zi)µ−1
z


×I (z̃i > 0) (58)
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Table 1 Slope parameters for models SM1 and SM2
SM1 SM2

Coe�. 90% posterior Coe�. 90% posterior

α0 -0.03 (−0.10, 0.04) 0.04 (−0.06, 0.18)
Leasing quota out -0.12 (−0.18,−0.05) -0.11 (−0.18,−0.05)
Other output -0.28 (−0.33,−0.24) -0.29 (−0.34,−0.25)

Utilised Agricultural Area 0.05 (0.00, 0.10) 0.05 (0.00, 0.12)
Milk Quota 0.39 (0.28, 0.50) 0.35 (0.24, 0.46)

Number of cows 0.42 (0.31, 0.54) 0.46 (0.34, 0.58)
Leasing quota in -0.02 (−0.06, 0.02) -0.02 (−0.06, 0.02)

Machinery&General costs 0.10 (0.03, 0.18) 0.10 (0.02, 0.17)
Labour costs 0.03 (−0.03, 0.09) 0.036 (−0.03, 0.10)

Livestock costs (per cow) 0.16 (0.10, 0.22) 0.181 (0.12, 0.25)
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Table 2 Slope parameters for models SM3-20 and SM3-100
SM3-20 SM3-100

Coe�. 90% posterior Coe�. 90% posterior

α0 0.02 (−0.06, 0.11) 0.17 (−0.03, 0.51)
Leasing quota out -0.11 (−0.18,−0.05) -0.11 (−0.17,−0.05)
Other output -0.29 (−0.34,−0.24) -0.29 (−0.34,−0.25)

Utilised Agricultural Area 0.06 (0.00, 0.12) 0.06 (0.00, 0.12)
Milk Quota 0.35 (0.24, 0.46) 0.31 (0.17, 0.43)

Number of cows 0.45 (0.34, 0.57) 0.50 (0.36, 0.65)
Leasing quota in -0.02 (−0.05, 0.02) -0.01 (−0.05, 0.02)

Machinery&General costs 0.10 (0.02, 0.18) 0.09 (0.00, 0.16)
Labour costs 0.03 (−0.04, 0.10) 0.04 (−0.03, 0.12)

Livestock costs (per cow) 0.18 (0.12, 0.25) 0.20 (0.13, 0.29)
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Table 3 Slope parameters for models SM3-180 and SM3-240
SM3-180 SM3-240

Coe�. 90% posterior Coe�. 90% posterior

α0 0.21 (−0.02, 0.57) 0.19 (−0.02, 0.52)
Leasing quota out -0.11 (−0.17,−0.04) -0.11 (−0.17,−0.04)
Other output -0.29 (−0.34,−0.25) -0.29 (−0.34,−0.25)

Utilised Agricultural Area 0.06 (0.00, 0.13) 0.06 (0.00, 0.12)
Milk Quota 0.29 (0.15, 0.42) 0.30 (0.16, 0.43)

Number of cows 0.51 (0.37, 0.66) 0.51 (0.37, 0.66)
Leasing quota in -0.01 (−0.05, 0.03) -0.01 (−0.05, 0.02)

Machinery&General costs 0.09 (0.00, 0.17) 0.08 (0.00, 0.16)
Labour costs 0.04 (−0.03, 0.12) 0.05 (−0.03, 0.12)

Livestock costs (per cow) 0.21 (0.13, 0.29) 0.20 (0.13, 0.28)
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Fig. 1 E�ciency distributions for SM1 vs SM2 models
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Fig. 2 E�ciency distributions for SM3 models
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Fig. 3 Kernel distribution for ρ: 10 km grid square vs. GOR
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Fig. 4 Kernel distribution for ρ for h = 20 km; h = 100 km; h = 180 km;
h = 240 km

48


