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Abstract

Previous studies on the measurement of learning-by-doing emphasize the importance of ac-
counting for multi-vintage effects having an impact on firms’ production costs through economies
of scope. This study shows that accounting for cannibalization effects on the demand side is
equally important for the adequate measurement of learning. Since multi-vintage firms anticipate
the demand-side cannibalization effects in their production optimization, a previously omitted in-
centive to decrease production is captured having an impact on the measurement of learning by
doing. We derive an empirical model from a dynamic oligopoly game of learning-by-doing and
allow cannibalization effects to enter from the demand side. Using quarterly firm-level data for
the dynamic random access memory semiconductor industry, we find support for cannibalization
effects entering firms’ pricing relations resulting in higher estimated learning effects.
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1 Introduction

An important aspect to consider in designing subsidy programs and promoting en-

try and industry growth is learning-by-doing .1 Learning-by-doing may have crucial

consequences on market structure and is important for firms to consider when de-

termining their optimal production rates. It improves operations either through

reduced time, lower labor costs, or reduced material waste (see e.g., Dick, 1991;

Fudenberg and Tirole, 1983; Lieberman, 1982 and 1984; Majd and Pindyck, 1989;

Spence, 1981; and Wright, 1936).

This study stresses the importance of controling for cannibalization effects on

the demand side when estimating learning-by-doing effects. We are not aware of

any empirical study that focuses on the relationship between learning-by-doing and

cannibalization. With respect to learning-by-doing and cannibalization, output de-

cisions by multi-vintage firms are characterized by the following two opposing effects:

(i) raising a vintage’s output achieves higher cost reductions in the future through

learning, which induces firms to increase their output, and (ii) raising a vintage’s

output further cannibalizes the demand of other vintages (in case they are imperfect

substitutes).2 Hence, firms anticipate the cannibalization effects in their production

optimization. The inclusion of the second effect (ii) attributes a higher production

rate to the achievement of future cost reductions through learning which results in

higher estimated learning-by-doing effects.

Workers and managers learn from their past experiences and improve their op-

erations such that firms become more efficient. Firms account for the fact that

drastically expanding output at the early stage of the life cycle has the advantage

1Miravete (2003) investigates whether a government is able to protect a domestic monopoly

against foreign competition which faces learning-by-doing effects. Export subsidies provided to the

Japanese steel industry in the 1950’s and 1960’s, caused remarkable growth in production (more

than 400% from 1953 to 1964, and exports increased by 20% per year), raising Japan to the largest

steel exporter.
2Cannibalization effects on the demand also enter firms’ production plans as firms’ contem-

poraneous output decision of one vintage determines future prices and demand of other vintages

through substitution effects.
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of moving down the cost curve quickly. The effect of moving down the learning

curve quickly becomes even more important when production is interpreted as a

commitment device. A firm can exploit an advantage in greater production speed

or in a headstart of introducing a new vintage by moving down the learning curve

quickly and achieving a Stackelberg leader position instead of Nash, see Fudenberg

and Tirole (1986 and 1991). The leader tries to enforce its Stackelberg outcome by

accumulating enough production before the follower reaches its reaction curve.

Stokey (1988) stresses that learning-by-doing also contributes to growth if ex-

perience of one vintage reduces costs for consecutive vintages. Recent empirical

studies account for learning across vintages or dynamic economies of scope, see e.g.,

Cohen and Levinthal (1989 and 1990), Irwin and Klenow (1994), Benkard (2000)

and Thornton and Thompson (2001). Gruber (1992) considers learning effects in

a sequence of product innovations. He shows that learning effects may result in a

persistence of leadership with firms having stable market shares over a sequence of

different vintages. For further information about how learning within and across

vintages affect market structure and performance, see also Ghemawat (1985) and

Ghemawat and Spence (1985).

Similar to the relationships between vintages on the supply side through learning,

vintages might also be related on the demand side through substitution effects. If

products or vintages are (imperfect) substitutes, an increase in quantity of one vin-

tage will cannibalize the demand for other vintages. Hence, cannibalization occurs

when interrelations exist between vintages on the demand side, caused by substitu-

tion effects (see also Anderson, de Palma, and Thisse, 1992).3 Cannibalization has

frequently been investigated in the literature. Prominent contributions are Moor-

thy and Png (1992), Mussa and Rosen (1978), Norton and Bass (1987) and Urban,

Johnson and Hauser (1984). Firms producing multiple vintages make their output

decisions at a centralized level such that they control for substitution and cannibal-

ization effects within their own product line (see e.g., Berry, 1994; Berry, Levinsohn

3Product cannibalization has been defined as “the process by which a new product gains a

portion of its sales by diverting them from an existing product,” see Heskett (1976).
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and Pakes, 1995; Bresnahan, 1987; Goldberg, 1995; and Verboven, 1996). Aizcorbe

and Kortum (2005) and Song (2007) investigate the relationship between the intro-

duction of new vintages, cannibalization effects and drastically declining prices in

the microprocessor market.

The difficulty in measuring learning effects is that cost data are often not avail-

able. Most studies, therefore, attribute firms’ production incentives to the measure-

ment of learning effects. For an adequate measurement of learning it is required

to encompass firms’ production incentives. Production incentives might be influ-

enced by interlinkages between products on the supply side (e.g., learning across

vintages), or by interlinkages between products on the demand side (e.g., cannibal-

ization caused by substitution effects).

We specify a dynamic oligopolistic state-space game and estimate a dynamic

model consisting of demand and pricing equations. Using quarterly firm-level data

for the dynamic random access memory semiconductor industry, we find strong

support that cannibalization on the demand side has an impact on the measurement

of learning-by-doing rates. We provide evidence that accounting for a multi-vintage

firm specification results in learning-by-doing estimates of around 20%, which are

around 10% higher than in our benchmark case, which builds on a single-vintage

firm specification.

The remainder of this study is organized as follows. Section 2 discusses the

characteristics of the semiconductor industry and introduces the data. In Section

3, we present the theoretical model of learning-by-doing with multi-vintage firms.

Section 4 describes the empirical model. We present the results in Section 5 and

conclude in Section 6.

2 The Semiconductor Industry

Several empirical studies focus especially on the innovation and learning aspects in

the semiconductor industry. For example, Hatch and Mowery (1998) examine the

relationship between process innovation and learning-by-doing. Hall and Ziedonis

3
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(2001) emphasize that the semiconductor industry is characterized by rapid techno-

logical change and cumulative innovation.4 Gruber (1992) also notes that learning

enters the manufacturing process through the fine-tuning of production processes.

For related work in this industry, see also Aizcorbe and Kortum (2005), Irwin and

Klenow (1994), Flamm (1993a and 1996), Gruber (1998), and Nye (1996), Song

(2007) and Zulehner (2003).

In capital-intensive industries, such as the semiconductor industry, learning mostly

occurs through improving manufacturing technologies and reducing material waste.5

The reduction of the required amount of silicon increases the yield rate which re-

duces firms’ costs.6 When firms engage in learning-by-doing their unit cost decline

over time, for production experience is accumulated through past output. Figure 1

illustrates that learning also brings an intertemporal dimension to a firm’s output

strategy, as current output yields cost savings in the future. Firms’ optimal strategy

is to further increase production, in order to invest in future cost reductions. Hence,

they set their output according to their dynamic marginal costs (MCD) which lie

below their static marginal costs (MCs).7 Firms may even obtain negative mark-ups

by pricing according to their dynamic marginal costs. The enormous decline of dif-

ferent vintage prices (see Figure 2) is often explained as a consequence of quantities

being set according to shadow marginal costs.

Another aspect of learning-by-doing is the “organizational forgetting” hypothe-

sis. There is a large body of literature focusing on organizational forgetting, the fact

4Jorgenson (2001) points out that the semiconductor market is an important industry, as the

enormous price decline has been transmitted to product prices that rely heavily on the semicon-

ductor market, i.e., the aircraft, automobiles, and scientific instruments industries. Jorgenson and

Vu (2005) emphasize the impact of investment in information technology on the world economic

growth.
5In contrast, for labor-intensive industries, such as the aircraft and shipbuilding industries,

learning is rather characterized by improving workers’ and managers’ operations, see e.g., Benkard

(2000), and Thornton and Thompson (2001).
6The yield rate measures the ratio of chips that pass the quality test, divided by the total

number of chips.

7Figure 1 is taken from Dick (1991).
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that experience may depreciate over time. Heiman, McWilliams, Shen, and Zilber-

man (2001), and Argote, Beckman, and Epple (1990) show that not accounting for

forgetting may overstate the persistence of learning-by-doing. Benkard (2000) shows

that in the aircraft industry, firms’ production experience depreciates heavily over

time. We do not explicitly account for organizational forgetting in our model, as

we are interested in highlighting the mismeasurement of learning due to neglecting

demand-side cannibalization effects. Moreover, organizational forgetting is a crucial

aspect in labor-intensive industries, but not as important in capital-intensive indus-

tries, like the semiconductor industry. Note that the learning rate in our analysis

represents a net learning rate, gross learning less forgetting.

In the following, we introduce the Dynamic Random Access Memory (DRAM)

industry and highlight the extent to which this industry is characterized by multi-

vintage firms: DRAM vintages or chips are one type of semiconductor and is mainly

used for the storage of information in binary form and deployed as inputs for the com-

puter industry, consumer electronics, and communications equipment. The DRAM

market is characterized by firms from the United States, Japan, Korea and Eu-

rope, with a 18.1%, 48.5%, 2.1%, and 31.3% market share, respectively, in 1996

(Dataquest). DRAM chips differ in their capacity to store binary information units.

For example, the 4K DRAM chip is capable of storing 4K binary information units.

The memory capacity of successive vintages typically increases by a factor of four.

DRAM vintages represent homogenous goods in themselves, but represent (verti-

cally) differentiated goods across vintages (see Flamm, 1996; Gruber, 1996; and

Irwin and Klenow, 1994).8

The sales of chips are very much characterized by a product life cycle: once a vin-

tage is launched, shipments increase enormously and begin to fall when a successive

vintage is introduced. The life cycles last for about five years and look very similar

to each other. At the industry level, the life cycles of different vintages overlap each

other (see Figure 3). Figures 4a-c provide evidence that the same pattern also holds

at the firm level. They illustrate the evolution of shipments of different vintages over

8For detailed information regarding the production process of DRAMs, see also Flamm (1996).
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time for the 3 top-selling firms in the 64K vintage: NEC, Texas Instruments and

Hitachi, respectively. The figures clearly illustrate that firms simultaneously pro-

duce adjacent vintages. Hence, the figures support the notion that cannibalization

effects might have an impact on the prices of adjacent vintages through substitution

effects. Table 1 shows that the number of firms for different vintages varies from 12

to 23 firms and illustrates that the DRAM industry is characterized by an oligopolis-

tic market structure. The table also shows that multiple consecutive vintages are

offered by most of the firms in the DRAM industry. For instance, the 256K DRAM

chip is sold by 23 firms, of which 16 firms produce both adjacent vintages, the 64K

as well as the 1MB DRAM chip. It is interesting to note that all 256K DRAM

producers offer at least one further adjacent chip. Hence, the table confirms the fact

that the DRAM industry is characterized by multi-vintage firms.

Our database consists of two parts. The first part, provided by Dataquest, de-

scribes quarterly firm-level shipments and average industry prices for different vin-

tages beginning in 1974 for the 4K vintage and ending in 1996 for the 1MB vintage.

The second part consists of the GDP in electronics and electronic products and

factor prices, i.e., wages, material and energy costs. The worldwide GDP (GDP ) is

supposed to capture the overall activity in electronics (see Flamm, 1996) and con-

trols for the downstream demand of electronics. The variable is constructed using

the accumulated production of the five leading countries selling electronic products:

USA, Japan, Germany, France, and the UK.9 The price of material (mat) is deter-

mined by the world market price of silicon and taken from the ‘Metal Bulletin.’ The

remaining two firm-level factor prices, labor (lab) and energy (e), vary considerably

from country to country, and the variation in factor prices needs to be captured.

We use the the proportion of plants that each firm operates in every country and

interact those with the corresponding factor prices in these countries, i.e. USA,

Japan, Germany, UK, Korea, and Taiwan. The labor costs for firm i, in period t,

9These five countries account for more than 90% of the worldwide production in electronics

among the OECD countries. Missing data in the time series of other countries prevents us from

including those countries.
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are collected for the semiconductor industry (ISIC 3825) and taken from the STAN

Database, OECD (1998). The energy prices for firm i, in period t, are taken from the

International Energy Agency/OECD (1998). Following Irwin and Klenow (1994) we

also adjusted all factor prices using the producer price index.

Summary statistics and definitions of the variables are shown in Table 2. Focus-

ing on the 256K chip, the average price throughout the life cycle is US-$ 13.82 with

a maximum of US-$ 196.13 and a minimum of US-$ 1.27. A firm sells approximately

2.6 million chips per quarter, achieving a market share of approximately 11%. 14

firms are present, on average, in the market, whereby the maximum number of firms

is 19. These numbers confirm that the industry is characterized by an oligopolistic

market structure.

3 The Model

In the following, we introduce the theoretical model, which represents the basis for

the empirical model specification. We discuss the consequences on the measurement

of learning-by-doing stemming from the inclusion of demand-side cannibalization

effects.

We consider a game which is based on Fudenberg and Tirole (1983) and we follow

the description by Fudenberg and Tirole (1986) and Vives (1999). An oligopolistic

dynamic state-space game is modelled. We consider n multi-vintage firms, indexed

by i = 1...n, offering subsequent vintages k = 1...K, in t = 1...T discrete time

periods. We assume products to be homogenous within a vintage itself, but differ-

entiated across vintages.

Learning-by-doing effects are modelled as arguments, which enter the cost func-

tion. The industry-wide past production vector for vintage k in period t is repre-

sented by Xk,t ≡ (xi,k,t)ni=1, where xi,k,t ≡
t−1P
τ=1

qi,k,τ denotes firm i’s past production

for vintage k, and qi,k,τ represents production of vintage k in period τ . The state for

vintage (k) evolves according to Xk,t = Xk,t−1+Qk,t where Qk,t ≡ (qi,k,t)ni=1 denotes
the industry output vector and Xk,0 = 0 states the initial condition, indicating

7
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that there is no experience at the beginning of the life cycle.10 With state-space

games, past pay-off relevant choices that affect current profits are aggregated into

a state-variable for each firm. Firms follow state-dependent (feedback or Markov)

strategies, and choose actions depending on the state variables. Hence, firms decide

on their future strategies at any point in time conditional on their past.

We account for learning from own past experience and other firms’ past experi-

ence originating from vintage (k) as well as the preceding vintage (k−1). Moreover,
firm i’s costs are dependent on the contemporaneous firm-level output of vintage

(k) and the firm-level factor prices Wt
11

Ci (qi,k,t,Wt;xi,k,t,X−i,k,t;xi,k−1,t,X−i,k−1,t) .

The industry-wide past production for vintage (k), excluding own past production,

is denoted by X−i,k,t ≡ (xj,k,t)j 6=i. Note that we also introduce firm-specific costs,
indexed by the subscript i, allowing for heterogeneity between firms.

Each firm chooses quantities in order to maximize the discounted sum of profits

over the entire product life cycle while using its state-dependent rules. The as-

sumption that firms set quantities is in line with the previous literature and is also

a reasonable assumption considering that every vintage represents a homogenous

good in itself. Firm i’s objective function is given by

max
{qi,k,t}K

k=1
>0

Πi =
TX
t=1

KX
k=1

δt−1 [P (qk,t; qk−1,t, qk+1,t) qi,k,t

−Ci (qi,k,t,Wt;xi,k,t,X−i,k,t;xi,k−1,t,X−i,k−1,t)] (1)

where δ is the discount rate and P (qk,t; qk−1,t, qk+1,t) is the inverse demand function

for industry-wide demands qν,t ≡
nP

j=1
qj,ν,t for ν = k − 1, k, k + 1. Note that beyond

10Accodingly, the state for vintage (k − 1) evolves according to Xk−1,t = Xk−1,t−1 +Qk−1,t.
11However, as mentioned above, we take into consideration that labor and energy varies between

countries, and therefore between firms.
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vintage k, adjacent vintages (k − 1 and k + 1) enter the inverse demand equation

causing cannibalization effects.12 The fact that the price of vintage k might be

influenced by both adjacent vintages is supported by our data, as shown in Figures

3 and 4.

Next, we illustrate that substitution effects enter the supply side in a multi-

vintage firm specification and may result in different learning estimates compared

to a single-vintage specification. Firm i0s first-order conditions based on equation

(1) with respect to the quantity of vintage k, is given by13

Pk,t +
∂qk,t
∂qi,k,t

h
∂Pk−1,t
∂qk,t

qi,k−1,t +
∂Pk,t
∂qk,t

qi,k,t +
∂Pk+1,t
∂qk,t

qi,k+1,t
i
=

∂Ci,k,t
∂qi,k,t

+
TP

s=t+1
δs−t

n
∂Ci,k,s
∂xi,k,s

∂xi,k,s
∂qi,k,t

+
∂Ci,k,s
∂X−i,k,s

∂X−i,k,s
∂qi,k,t

+
∂Ci,k+1,s
∂xi,k,s

∂xi,k,s
∂qi,k,t

+
∂Ci,k+1,s
∂X−i,k,s

∂X−i,k,s
∂qi,k,t

−
Ã

nP
j 6=i

∂qj,k,s
∂Cj,k,s

∂Cj,k,s
∂xj,k,s

∂xj,k,s
∂qi,k,t

+
nP
j 6=i

∂qj,k+1,s
∂Cj,k+1,s

∂Cj,k+1,s
∂xj,k,s

∂xj,k,s
∂qi,k,t

!

×
³
∂Pk−1,s
∂qk,s

qi,k−1,s +
∂Pk,s
∂qk,s

qi,k,s +
∂Pk+1,s
∂qk,s

qi,k+1,s
´o

(2)

for t < s. The first line shows firm i’s marginal profits in a static environment

without learning effects. It shows the direct effect of firm i’s output choice on

its contemporaneous profits. The left-hand side of equation (2) represents firm i’s

marginal revenues and the expression
∂qk,t
∂qi,k,t

indicates the conjectural variation term

or the conduct parameter (see also Iwata, 1974; and Bresnahan, 1989). In comparing

this to the standard marginal revenue term when only one vintage is considered in

the market (single-vintage firm specification), beyond the own-price effects (
∂Pk,s
∂qk,s

),

12Note that we tested for robustness and allowed two adjacent vintages to enter the inverse

demand equation, and two preceding vintages to enter firms’ cost functions. Estimation results

show that substitution effects beyond adjacent vintages are not having a significant impact, i.e.,

learning is not significant across two vintages. The estimation results are available from the author

upon request.
13In order to better illustrate the interdependency between demand-side cannibalization across

vintages and the measurement of learning effects, we focus on the firm’s maximization problem for

vintage k.
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further substitution effects
³
∂Pk−1,t
∂qk,t

and
∂Pk+1,t
∂qk,t

´
enter the pricing relation. When

adjacent products are substitutes (complements), the effects are supposed to be

negative (positive). The first line on the right-hand side of equation (2) represents

the common contemporaneous or static marginal costs and indicates how current

output affects current costs through economies of scale.

The following three lines of equation (2) show the dynamic link between firms’

current output decisions and firms’ environment they find themselves in, in the

future, induced by learning. Firms account for intertemporal effects having an

impact on their own and their rivals’ unit costs and on future prices through learning.

Note that we assume competitors in the future respond only to firms’ current output

choices in anticipation of cost advantages from industry-wide learning. Therefore, we

ignore other strategic reasons that do not enter the cost function, such as preemption

or dumping effects.

The first two terms in the second line of equation (2) represent firms’ own learning

and learning from others within a vintage (k). They illustrate how firm i0s current

output of vintage k affects its own future costs for vintage (k). The term
∂Ci,k,s
∂xi,k,s

∂xi,k,s
∂qi,k,t

refers to the own learning effect within vintage (k), indicating that own current

output of vintage k increases own experience and yields own cost savings in the

future. The term is supposed to be negative. The term
∂Ci,k,s
∂X−i,k,s

∂X−i,k,s
∂qi,k,t

represents

learning from other firms within a vintage (k). This expression shows that firm i’s

output decision in period t increases other firms’ experience in the future, having

an impact on its own costs for vintage k in the future. This effect measures by how

much firm i’s costs decline through capturing part of the rivals’ experience.

The next two terms in the second line of equation (2) account for firms’ own

learning and learning from others across vintages. They illustrate how firm i0s

current output of vintage k affects its own future costs for vintage (k + 1). The

specification corresponds to the two previous terms adjusted for cross-vintage effects.

The two terms in the third line of equation (2), in combination with the fourth

line, indicate that firm i is also aware of how its output decision of vintage (k)

affects future output as well as future prices of current and adjacent vintages. For

10
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example, the term
∂qj,k,s
∂Cj,k,s

∂Cj,k,s
∂xj,k,s

∂xj,k,s
∂qi,k,t

represents a strategic intertemporal term, which

indicates how firm i’s output of vintage k impacts the rivals’ future output of vintage

k through learning within a vintage. The next term represents the same strategic

intertemporal effect across vintages. These strategic intertemporal effects reflect the

fact that firms follow no memory closed-loop strategies, i.e., firms condition their

play at time t on the history of the game until that date (see also Basar and Olsder,

1991). This therefore allows firms to adjust their output paths throughout the life

cycle (opposed to precommitment or open-loop strategies). Consequently, the last

two terms in the second line of equation (2) indicate that competitors’ quantity

responses are anticipated in an intertemporal fashion via achieving cost reductions

through learning. The terms highlight the fact that firms follow feedback strategies

in which they consider the strategic effect of their own output on their rivals’ future

output decision.14 Zulehner (2003) shows that the assumption that firms following

no memory closed-loop strategies is appropriate for the semiconductor industry.

The last line of equation (2) shows that future own price effects and substitu-

tion effects enter firm i’s pricing relation through the interaction with the strategic

intertemporal term. Comparing the first-order condition of a multi-vintage specifica-

tion with a single-vintage specification, shows that marginal revenues are determined

by a further component, i.e., the substitution effects. Those are interacted with the

conjectural variation term and the intertemporal strategic terms. Hence, multi-

vintage firms are aware that increasing the production rate of vintage k will have a

current as well as an intertemporal impact on the prices and quantities demanded

for adjacent vintages.

In the presence of learning, the output decisions by multi-vintage firms are char-

acterized by the following trade-off: (i) raising a vintage’s output achieves higher

cost reductions in the future through learning, which induces firms to increase their

output, and (ii) increasing a vintage’s output cannibalizes the demand of other vin-

tages. In a multi-vintage specification, firms anticipate the cannibalization effect in

their production optimization. Hence, in a single-vintage specification, a further in-

14For existence of a Nash equilibrium with feedback strategies, see Basar and Olsder (1991).
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centive to decrease production to avoid cannibalization is ignored. Since cumulated

output is used as a proxy for experience and adopted to measure learning effects,

the inclusion of demand-side cannibalization effects results, ceteris paribus, in higher

learning effects. The omission of the second effect attributes a lower production rate

to the achievement of future cost reductions through learning. Our hypothesis which

will be tested empirically is stated as follows:

A multi-vintage firm specification will result in higher estimated learning

effects than a single-vintage specification, if vintages represent (imper-

fect) substitutes.

In the next section, we test our hypothesis by estimating a dynamic model con-

sisting of demand and pricing relations, based on equation (2).

4 The Empirical Model

In order to test our hypothesis, we are interested in estimating a dynamic model

consisting of demand and pricing equations. Since the number of firms in the indus-

try is close to 20, the curse of dimensionality becomes a problem when solving for

Markov Perfect Equilibria, and computing firms’ value functions.15 Therefore, we

will estimate the effects of interest from firms’ first-order conditions.16 Building on

the theoretical model from which we derived the supply relations for a multi-vintage

firm specification, we specify our empirical model.17 Specifically, our model consists

of three inverse demand functions from which we derive the corresponding own-price

and substitution effects and firms’ pricing relations, which are based on equation

(2).

15See also Pakes and McGuire (1994 and 2001) and Ericson and Pakes (1995).
16As the main focus of the paper is to highlight the potential mismeasurement of learning effects

when ignoring demand-side cannibalization effects, the estimation from first-order conditions is an

appropriate method since empirical counterfactuals are not relevant here. Note, that the estimation

from first-order conditions does not require the computation of the firms’ value functions.

17Our model specification is also related to Fudenberg and Tirole (1983) and Jarmin (1994).
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4.1 The Inverse Demand Functions

The inverse demand functions are given by18

Pk−1,t = a0 + a1 ∗ qk−2,t + a2 ∗ qk−1,t + a3 ∗ qk,t (3)

+a4 ∗GDPt + εk−1,t

Pk,t = b0 + b1 ∗ qk−1,t + b2 ∗ qk,t + b3 ∗ qk+1,t (4)

+b4 ∗GDPt + µk,t

Pk+1,t = c0 + c1 ∗ qk,t + c2 ∗ qk+1,t + c3 ∗ qk+2,t (5)

+c4 ∗GDPt + ωk+1,t.

For the sake of convenience, let us consider the inverse demand equation (4) only;

the same rationale applies to equations (3) and (5). As can be seen in equation (4),

the price Pk,t depends on the industry output of the vintage under consideration

(qk,t), as well as the industry output of the adjacent vintages qk−1,t and qk+1,t. The

worldwide GDP in electronics and electronic products (GDPt) is incorporated into

our model as a demand shifter. The coefficient b2 indicates the own-price effect.

The sign is expected to be negative, for a higher output results in lower prices.

The coefficients b1 and b3 refer to the substitution effects and are supposed to be

negative (positive) when adjacent products are substitutes (complements). From

the estimation of the inverse demand equations (3), (4), and (5), we obtain the

corresponding price effects, given by the estimated coefficients ca3, bb2, and bc1, which
are plugged into the pricing relation in the second stage.

4.2 The Pricing Relations

Solving the first-order equation (2) for price as a function of output and dynamic

marginal costs, gives us the following pricing relation, which will be estimated

18The specification of the inverse demand functions is in line with the study by Flamm (1996)

in which adjacent vintages enter the equations.
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Pk,t = α0,i + α1 lnXi,k,t + α2 lnX−i,k,t + α3 lnXi,k−1,t + α4 lnX−i,k−1,t + α5 ln qi,k,t

+α6 lnmatt + α7 ln labi,t + α8 ln ei,t + α9Dyn Effecti,k,t − α10PEi,k,t + νi,k,t.

(6)

As described above, firms’ dynamic marginal costs are composed of the static mar-

ginal costs, represented by the term
∂Ci,k,t
∂qi,k,t

in equation (2), and the dynamic effects

which yield future cost reductions through learning, as shown in the second and the

consecutive lines of equation (2).

Firms’ static marginal costs are empirically specified by accounting for the follow-

ing aspects. We include firm specific effects ᾱ0,i in order to capture any unobserved

heterogeneity in the cost function.19 We account for own learning-by-doing within

a vintage by incorporating the variable Xi,k,t which represents firm i’s experience

in production for vintage k. The variable is constructed by taking the accumulated

past production of firm i until period t − 1. We also account for learning effects
within a vintage that firms gain from their rivals’ experience through spillovers,

measured by the variable X−i,k,t which is constructed by taking the accumulated

past production of vintage k of all firms until period t − 1. The variables Xi,k−1,t

and X−i,k−1,t are supposed to capture learning from own experience and other firms’

experience from vintage k− 1. The construction of those variables follows the same
rationale as for vintage k. The signs of coefficients α1 to α4 are supposed to be

negative if the specific type of learning reduces marginal costs. We also control for

static economies of scale effects measured by qi,k,t, i.e., firm i’s current output of

vintage k in period t. The scale effect is negative, zero, or positive, when increasing,

constant, or decreasing returns are prevalent.20 We also use the following factor

prices: the price of material or silicon (matt), labor (labi,t) and energy (ei,t).

19Note that the coefficient α0,i = ᾱ0,i + bα0,i in equation (6) controls for firm-specific effects,
where ᾱ0,i stems from the static marginal cost function and bα0,i is supposed to capture remaining
unobserved heterogeneities.
20Considering both, learning and economies of scale effects together, is necessary for both to

influence each other. The existence of economies of scale results in a contemporaneous unit cost

decline by increasing output. Ignorance of scale coincides with an inappropriate omission of the

current output variable which impacts the learning effects. The cost reduction effect is exclusively
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As learning also induces a dynamic aspect through which future cost reductions

are achieved we have to account for the fact that firms may price below their static

marginal costs in order to gain cost savings in the future. The problem is that

the dynamic part of the mark-up is complicated, and computing the value function

is difficult due to the large number of firms. Alternatively, we could estimate the

dynamic effect. The problem, however, is that the model would not be identified

if all terms that measure the dynamic effects are estimated, as they vary over all 3

subindexes i, k, and t. Consequently, the dynamic effects cannot be identified sep-

arately from the static mark-up. However, we must control for firms’ stages within

the life cycle, in order to account for the fact that firms optimize their intertemporal

production plans. We enable the estimation procedure and identify the dynamic

effects by making a functional form assumption. We capture the firm-specific dy-

namic effects by introducing a firm-specific time trend (Dyn Effecti,k,t). This trend

controls for number of remaining periods in the life cycle of vintage k. It captures

future potential cost savings at the firm-level depending on the period within the

life cycle.

Finally, the PE variable represents
h
∂Pk−1,t
∂qk,t

qi,k−1,t +
∂Pk,t
∂qk,t

qi,k,t +
∂Pk+1,t
∂qk,t

qi,k+1,t
i
from

the first line of equation (2), where the own-price effect
∂Pk,t
∂qk,t

as well as the substi-

tution effects
∂Pk−1,t
∂qk,t

and
∂Pk+1,t
∂qk,t

will be replaced with the estimated coefficients bb2,
ca3, and bc1, respectively, from the inverse demand equation. We assume that firms

behave like Cournot players and set the conduct parameter equal to one. The esti-

mation procedure will be explained in Section 5.

5 Results

As the pricing relations will be estimated for the 256K DRAM vintage (k), we need to

estimate the inverse demand equations for the 256K DRAM vintage (k), as well as for

the 64K DRAM and 1MB DRAM vintages (k−1 and k+1, respectively). We assume
attributed to the learning curve, though part of it is in fact due to the presence of economies of

scale: an omitted variable bias will occur (see Berndt, 1991).
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additive econometric disturbances which have a mean of zero and a covariance matrix

Φ. Since aggregate firms’ (or industry) outputs for the vintage under consideration

might be correlated with the error term, we need to use instruments in order to

identify the demand elasticity. We use factor prices as instruments, i.e., material

(silicon), wages and energy, that capture the shifts of marginal costs on the supply

side. Moreover, we capture changes in the degree of competitiveness in the product

market by accounting for summary statistics from the supply side, such as the

number of firms present in the market. We also use a time trend indicating the

length of time a vintage has been in the market.21 The inverse demand functions

(3), (4), and (5) are estimated using 2 stage least squares using the Newey and West

(1987) heteroskedasticity and autocorrelation consistent covariance matrix.

The estimation results for the inverse demand equations (3), (4), and (5) are

presented in Table 3. In the estimation procedures 68, 57, and 46 observations

have been used for vintages k − 1, k, and k + 1, respectively. All three estimations

have a remarkably good fit. The adjusted R-squares are 0.72 and higher, and all

own-price effects are significant at the 1% level. The own-price effects carry the

expected negative sign, indicating that a higher industry output decreases prices.

Calculating the corresponding own-price elasticities by using the estimated price

effects evaluated at the sample means of prices and quantities, results in elasticities

of around -1, which is close to what previous studies found, see e.g., Flamm (1993b),

Irwin and Klenow (1994) and the literature cited therein, and Zulehner (2003).

The substitution effects are significant at least at the 10% level, with c3 being

the only exception. The negative estimates show that adjacent vintages represent

substitutable products and indicate that cannibalization effects are prevalent on the

demand side.

Turning to the multi-vintage firm pricing relation, we instrument for firms’ con-

temporaneously chosen outputs, as well as own learning and learning from other

firms within vintages. As instruments, we use the GDP as a demand shifter and

21The time trend could also be interpreted as a proxy for intertemporal price discrimination

among consumers.
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lagged endogenous variables as well as summary statistics that reflect the competi-

tiveness in the market, such as the number of firms and average market shares.22 We

impose the same restrictions on econometric disturbance terms as above and use the

same two-stage least squares procedure as for the inverse demand equations. The

estimates of the multi-vintage firm pricing relation are shown in Table 4, columns

2 and 3. We use 611 observations in our estimations, which have a very good fit.

The adjusted R-square is 0.58. Most of the parameter estimates are significant at

the 1% level. The coefficient α1 measures the effect of own learning within a vintage

(Xi,k,t) on marginal costs. As the results show, the estimate is highly significant

and negative. Evaluating the learning elasticity at the respective sample mean and

correcting for the semilog specification, amounts to a learning elasticity of −0.341,
which corresponds to a 20.9% learning rate. The learning rate is calculated by using

the formula 1− 2α, where α represents the learning elasticity. Hence, a doubling in
a firm’s accumulated output of vintage k (at the sample mean) reduces marginal

costs of the corresponding vintage by 20.9%. This estimate is similar to what the

engineering literature claims.

We also estimate a single-vintage specification as a benchmark case, which fol-

lows the same specification as the multi-vintage firm specification with the exception

that substitution effects are set equal to zero, such that no cannibalization effects

enter the pricing relation. The results are shown in Table 4, columns 4 and 5. The

adjusted R-square is 0.56. The single-vintage specification returns a learning rate

of 11.7%. This finding confirms our hypothesis that a multi-vintage firm specifica-

tion returns a higher learning-by-doing estimate than a single-vintage specification.

To summarize, a multi-vintage firm specification captures the trade-off between in-

creasing output in order to gain cost savings due to learning, and reducing output

in order to diminish cannibalization effects on adjacent vintages. The latter effect

is ignored by econometricians, resulting in too low of a production incentive that is

referred to learning-by-doing.

22For a more detailed discussion on regaining consistency when accumulated output is correlated

with the error term, see e.g., Olley and Pakes (1996).

17
18

Submission to The B.E. Journal of Economic Analysis & Policy

http://www.bepress.com/bejeap



In order to test if the learning estimates between the single- and multi-vintage

specification are statistically different from each other, it is useful to generate the

complete distribution of the estimators. In order to test for significance between the

learning estimates we use bootstrap methods. The advantage with bootstrapping is

that we do not need to know the type of distribution from which a sample has been

taken. We use a non-parametric bootstrap method (with replacement) as suggested

by Efron (1982) and generate 1,000 bootstrap samples of the same size as the original

dataset, which makes up to 611,000 observations in total and estimate the learning

estimates for each bootstrap sample.23 The bootstrap samples are used in order to

test whether the learning estimates are statistically different from each other. Using

a test of H0 : bam4 = bas4 against Ha : bam4 6= bas4 and applying the percentile interval
method, we compare the estimated learning rates with the percentile value in the

sampled dataset.24 Our test statistic shows that we can reject H0 approximately at

the 10%.level.

Our results also confirm significant own learning effects across vintages (Xi,k−1,t).

This finding indicates that a higher degree of past experience for vintage k−1 reduces
marginal costs for vintage k. Our estimation of the multi-vintage specification,

returns a learning rate of 12.7%. The single-vintage specification returns a very

similar learning rate of 12.2%. Interestingly, the learning effects across vintages

are only about half as large as the learning effects within vintages. The finding of

learning across vintages (or intergenerational spillovers) also supports the results by

Irwin and Klenow (1994). As mentioned above, we performed robustness checks with

regard to learning across vintages. Hence, we estimated specifications in which two

preceding vintages enter the cost function and (accordingly) two adjacent vintages

enter the inverse demand equation. The estimation results confirm that knowledge

fully depreciates after one generation. For example, the experience of producing the

64K chip contributes to the knowledge of producing the 256K chip, but it does not

23For tests at a 0.05 significance level , Efron (1993) and Davidson and MacKinnon (2000)

recommend 200 and 399 samples, respectively.
24Note that bam4 and bas4 represent the own-learning estimates within vintages for the multi- and

the single-vintage specification, respectively.
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benefit the production process of any successive vintage.

Learning from others is significant across vintages and amounts to 12.2%. The

learning rate from own experience is similar in magnitude to the learning rate from

other firms’ experience. We do not find significant learning effects from others within

vintages. This result supports the fact that knowledge from competitors takes time

to be absorbed and to be implemented into current production processes. We also

applied different robustness checks and get similar results.

The estimate for the economies of scale effects (qi,k,t) is significant and positive,

indicating that decreasing static returns to scale are evident. The significant esti-

mate of the coefficient α9, indicates that firms further increase quantities in order

to benefit from future cost reductions. The coefficients for the factor prices (except

energy) are positive, which is meaningful since higher factor prices are supposed to

raise firms’ marginal costs.

6 Conclusion

This study demonstrates the importance of accounting for demand-side cannibal-

ization effects and illustrates its impact on the measurement of learning-by-doing.

Once demand-side cannibalization effects are accounted for, firms face a trade-off in

determining the optimal production rate. On the one hand an increase in production

will gain future cost savings through learning-by-doing. On the other hand, firms

anticipate a disincentive to increase production, as cannibalization effects reduce

the demand for the other vintages. Accounting for demand-side cannibalization ef-

fects attributes a higher production incentive to the measurement of learning effects,

resulting in higher estimated learning effects.

Our results show that adjacent DRAM vintages represent (imperfect) substitutes.

We can confirm that learning-by-doing effects are estimated higher in a multi-vintage

specification. The learning rates within vintages are estimated to be 20.9% opposed

to a learning rate of 11.7% in a single-vintage firm specification.

The adequate measurement of learning-by-doing effects is relevant for evaluating
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industrial policies as well as understanding the evolution of market structure and

industry growth. Higher estimated learning effects within vintages may have crucial

implications on firms’ optimal production plans. For example, being aware of a

higher learning effect provides larger incentives to further increase contemporaneous

output in order to benefit from future cost reductions. Moreover, higher learning

effects provide additional incentives for firms to introduce new products early in

order to gain a headstart in moving down the learning curve, and to gain cost

advantages to their competitors.25

The finding is also important from a policy’s point of view. Accounting for

cannibalization effects on the demand side might be relevant for the decision whether

to provide subsidies to single- or multi-vintage firms. For example, if adjacent

vintages are close substitutes, we may expect the promotion of single-vintage firms

to be beneficial, as those do not face a disincentive to increase production in order

to avoid cannibalization effects. On the other hand, promoting multi-vintage firms

might be beneficial if learning effects across vintages are sufficiently high such that

the benefits gained from learning across vintages compensates the negative effects

arising from the disincentive to increase production in order to avoid cannibalization

effects. It is worth mentioning that the adoption of new vintages in combination

with persistence of consumption might result in a similar price pattern as shown in

Figure 2. For future research it might be worth it to examine to what extent the

rapid price declines are due to the fact that firms drastically reduce prices in order

to make new products more attractive to consumers.

Our learning estimates across vintages are 12.7%. It is interesting to note that

the learning rate across vintages is only about half the size of the learning rates

within vintages. Moreover, the learning estimates from own experience are not

different from the learning rates across firms. The finding of learning-by-doing across

vintages may provide incentives to continue keeping previous vintages in the market

in order to capture further learning effects across vintages.

25Those aspects are beyond the scope of the paper and need to be elaborated in more detail in

future research.
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Appendix: Figures and Tables

Figure 1: Price setting with respect to shadow marginal costs. Source: Dick (1991).

Figure 2: Price decline per generation over time. Source: Dataquest (1996).

26
27

Siebert: Learning By Doing

Published by The Berkeley Electronic Press, 2010



Figure 3: Units of shipments (millions) per generation. Source: Dataquest (1996).

Figure 4a: NEC’s shipments (in millions). Source: Dataquest (1996).
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Figure 4b: Texas Instruments’s shipments. Source: Dataquest (1996).

Figure 4c: Hitachi’s shipments (in millions). Source: Dataquest (1996).
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Table 1: Production of generations in the DRAM industry, 1974-1996

Firms Gener. 4K 16K 64K 256K 1Mb 4Mb 16Mb 64Mb

Adv. Micro Dev. 3 x x x . . . . .

Alliance 1 . . . . . x . .

Am. Microsyst. 1 x . . . . . . .

AT&T 2 . . . x x . . .

Eurotechnique 1 . x . . . . . .

Fairchild 3 x x x . . . . .

Fujitsu 8 x x x x x x x x

G-Link 2 . . . . x x . .

Hitachi 8 x x x x x x x x

Hyundai 6 . . x x x x x x

IBM 4 . . . . x x x x

Inmos 2 . . x x . . . .

Intel 5 x x x x x . . .

Intersil 2 x x . . . . . .

LG Semicon 5 . . . x x x x x

Matsushita 6 . x x x x x x .

Micron 5 . . x x x x x .

Mitsubishi 7 . x x x x x x x

Mosel Vitelic 5 . . x x x x x .

Mostek 4 x x x x . . . .

Motorola 8 x x x x x x x x

Nan Ya Techn. 1 . . . . . . x .

Ntl. Semic. 4 x x x x . . . .

NEC 8 x x x x x x x x

Nippon 4 . . . x x x x .

OKI 5 . . x x x x x .

Ramtron Int. 1 . . . . . x . .

Samsung 6 . . x x x x x x

Sanyo 3 . . . x x x . .

SGS-Ates 2 x x . . . . . .

Sharp 4 . . x x x x . .

Siemens 7 . x x x x x x x

Signetics 2 x x . . . . . .

STC-ITT 3 x x x . . . . .

Texas Instr. 8 x x x x x x x x

Toshiba 7 . x x x x x x x

Vanguard 2 . . . . . x x .

Zilog 1 . x . . . . . .

Table 1 presents firms being active in markets for specific DRAM generations. The data are taken

from Dataquest and encompass the period 1974 to 1996.
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Table 2: Variable definitions and summary statistics

Variable Description Mean Min. Max.

P64K,t Average selling price of one chip 20.866 0.890 241.240

of generation 64K in period t.
P256K,t Average selling price of one chip 13.828 1.265 196.130

of generation 256K in period t.
P1Mb,t Average selling price of one chip 16.077 2.607 130.669

of generation 1Mb in period t.
q64K,t Total number of chips of the 64K 28.617 0 264.395

generation being sold in period t.
q256K,t Total number of chips of the 256K 50.925 0 242.412

generation being sold in period t.
q1Mb,t Total number of chips of the 1Mb 51.648 0 215.633

generation being sold in period t.
Xi,64K,t Past accumulated output for firm i offering 64.115 0 2,632.794

generation 64K in period t.
Xi,256K,t Past accumulated output for firm i offering 82.648 0 4,681.152

generation 256K in period t.
Xi,1Mb,t Past accumulated output for firm i offering 47.662 0 4,694.359

generation 256K in period t.
qi,64K,t Firm i’s number of chips from the 1.383 0 264.395

64K generation being sold in period t.
qi,256K,t Firm i’s number of chips of the 2.612 0 242.412

256K generation being sold in period t.
qi,1Mb,t Firm i’s number of chips of the 1Mb 2.649 0 215.633

generation being sold in period t.
NOF64K,t Number of firms competing in the 10.191 0 20

market of generation 64K at period t.
NOF256K,t Number of firms competing in the 14.333 0 19

market of generation 256K at period t.
NOF1Mb,t Number of firms competing in the 15.435 0 19

market of generation 1Mb at period t.
AMS64K,t Average market share of firms in 0.165 0 1

generation 64K at period t.
AMS256K,t Average market share of firms in 0.111 0 1

generation 256K at period t.
AMS1Mb,t Average market share of firms in 0.099 0 1

generation 1Mb at period t.

Table 2 presents summary statistics using quarterly data from 1974 until 1996 provided by

Dataquest. All quantities are multiplied by 10−6 and prices are deflated using the consumer price
index.
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Table 3: Inverse demand equations

64K generation 256K generation 1Mb generation

Variable Estimate Std. err. Estimate Std. err. Estimate Std. err.

Constant 638.729** 43.6654 488.089** 40.747 314.070** 74.414

q16K -2.016** 0.219

q64K -0.521** 0.064 -0.543** 0.066

q256K -0.342** 0.049 -0.302** 0.032 -0.270** 0.054

q1Mb -0.079* 0.046 -0.152** 0.060

q4Mb -0.071 0.053

GDP -38.601** 2.802 -28.379** 2.617 -16.116** 5.653

Obs.=68, adj. R2=0.752 Obs.=57, adj. R2=0.745 Obs.=46, adj. R2=0.721

Table 3 presents two-stage least squares estimation results for the inverse demand equations

(3), (4), and (5). The dependent variable is industry price (deflated by the consumer price

index) for the vintage under consideration. Explanatory variables are the total industry output for

the corresponding vintage, industry output for the adjacent vintages and the GDP in electronics

(deflated by the consumer price index). All industry quantities and GDP are multiplied by

10−6. We instrument industry output of generation k using supply shifters, i.e., material, labor
and energy prices (factor prices are adjusted using the producer price index), number of firms in

the market and a time trend. Heteroscedasticity- and autocorrelation-robust standard errors are

shown in the column to right to the parameter estimates, and ∗∗ ( ∗) denotes a 99% ( 90%) level

of confidence. The first stage results are available from the author upon request.
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Table 4: Estimation results for the pricing relations

Estimates of multi-vintage Estimates of single-vintage

firm pricing relation firm pricing relation

Variable Estimate Std. err. Estimate Std. err.

lnXi,256K -0.341** 0.123 -0.184** 0.078

lnX−i,256K 0.047** 0.009 0.045** 0.008

lnXi,64K -0.196* 0.116 -0.189** 0.077

lnX−i,64K -0.187** 0.011 -0.131** 0.008

ln qi,256K 1.364** 0.316 1.708** 0.359

lnmat 0.101** 0.025 0.113** 0.027

ln lab 0.045** 0.027 0.453** 0.028

ln e -0.144** 0.040 -0.142** 0.040

Dyn Effect 0.089* 0.056 0.129** 0.051

Firm Dummies YES** YES**

Obs.=611, adj. R2=0.575 Obs.=611, adj. R2=0.561

Table 4 presents the estimation results for the pricing equation (6). Columns (2) and (3)

represent the estimation results for the multi-vintage firm specification and columns (4) and (5)

represent the single-vintage firm specification. The table shows the estimation results for the 256K

vintage, which is our benchmark case. The dependent variable is industry price (deflated by the

consumer price index). Explanatory variables are the firm-specific past cumulated output for the

64K and 256K generation, cumulated past output of all other firms for the 64K and 256K genera-

tion, firm-specific contemporaneous output for the 256K generation, prices of material, wage and

energy (factor prices are adjusted using the producer price index), the mark-up, and firm-specific

periods left, and firm-specific dummy variables. We use panel data techniques and instrument con-

temporaneous firm-specific output for the 256K generation, firm-specific past cumulated output for

the 256K generation and cumulated past output of all other firms for the 256K generation using

its lagged values. We also use market structure characteristics, such as the number of firms and

the average market shares for the 256K generation and GDP as a demand shifter. The pricing re-

lations are estimated using two stage least squares. Heteroscedasticity- and autocorrelation-robust

standard errors are shown in the column on the right to the parameter estimates. ∗∗ (∗) denotes a
99% (90%) level of confidence. The first stage results are available from the author upon request.

The estimates for learning from others are adjusted by the average number of firms in the market,

as we assume that the progrsss of a technology occurs at the industry- or inter-firm level. All

learning effects are represented as learning elasticities.
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