
MPRA
Munich Personal RePEc Archive

The U.S. Excess Money Growth and
Inflation Relation in the Long-Run: A
Nonlinear Analysis

Tamer Kulaksizoglu and Sebnem Kulaksizoglu

27. April 2009

Online at https://mpra.ub.uni-muenchen.de/23780/
MPRA Paper No. 23780, posted 10. July 2010 20:44 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213919049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/23780/


The U.S. Excess Money Growth and Inflation 
Relation in the Long-Run: A Nonlinear Analysis 

 
 
 
 
 
 
 

Tamer Kulaksizoglu 
 

Sebnem Kulaksizoglu 
Turkish Competition Authority 

 
 
 
 

April 27, 2009 
 
 
 
 
 
 
 

Abstract 
This paper specifies, estimates, and evaluates the relation between inflation rate and 

excess money growth, defined as the difference between money supply growth and real 
GDP growth, using a smooth transition regression model and U.S. data. The results 

indicate that the relation is a nonlinear one as supported by the linearity tests. Although 
deterministic extrapolation exercises indicate that both the linear and nonlinear models 

are stable, the nonlinear model is favored by several misspecification tests. Deterministic 
extrapolation exercises also indicate that an increase in excess money supply has positive 
effect on the long-run inflation rate but the effect is not one-to-one even in high-inflation 

regime. 
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1. Introduction 
 
The debate whether money growth and inflation rate are related seems to be an 
interesting one. There are many studies in the literature concerning the relation. While 
some find that the relation is significant, others claim that it is not. 
 
Let’s first look at some of the studies that find no or little evidence regarding the relation. 
Bachmeier, Leelahanon, & Li (2007) reject a linear forecasting model for inflation based 
on several specification tests. Using a fully nonparametric model and a threshold 
regression model, they evaluate out-of-sample inflation forecasts. Their main results are 
that nonlinear models are more successful at forecasting inflation than linear models and 
that including money growth in the model does not yield significant improvements. They 
conclude that money growth is not a good inflation indicator as long as linear models are 
concerned. However, money growth is a better forecaster for inflation in nonlinear 
models. De Gregorio (2004), analyzing several low inflation countries with very rapid 
growth of money, finds that money growth does not necessarily cause inflation. Milas 
(2007), using a Markov switching regression model and UK data, finds that the relation is 
not stable over time and that inflationary pressures created by money growth depends on 
the condition that money growth exceeds 10% threshold level. Even in that case, Milas 
finds that the inflationary effects are negligible. Nikolic (2000) claims that the effect of 
changes in money growth on inflation is much weaker as the Russian economy is more 
stabilized. Roffia and Zaghini (2007), studying the short-run impact of strong monetary 
growth on inflation for 15 industrialized economies, report mixed results. In 
approximately half of the cases they investigate, they find a positive relation between 
inflation and money growth. 
 
On the other hand, there are several studies finding a relation between money growth and 
inflation. Assenmacher-Wesche, Gerlach, & Sekine (2007), using a band spectrum 
regression, find that inflation is correlated with money growth and that money growth 
unidirectionally Granger-causes to inflation. Christensen (2001) provides empirical 
evidence that money growth and inflation are related one-to-one in the long-run for the 
US. The paper attributes the short-run deviations from this relation to global real supply 
shocks. Crowder (1998), using a co-integration analysis, claims that the relation between 
money growth and inflation is statistically significant in the long-run. In an interesting 
study, De Grauwe and Polan (2005) find that the long-run relation between money 
growth and inflation is strong and positive for high-inflation economies whereas it is 
weak for low-inflation economies. Dwyer, Jr. (2001), using US data, finds that money 
growth is better in forecasting inflation than any other variables besides past inflation. 
Dwyer, Jr. and Hafer (1999), without employing an econometric model, also find a 
significant relation for many countries over long and short periods. Hossain (2005), using 
annual data for the period 1954-2002, finds that a short-run bi-directional causality 
between money supply growth and inflation for Indonesia. Kaufmann (2007) employs a 
vector error correction model and quarterly data for the period 1980-2006 for the Euro 
area and finds that monetary growth and inflation are nonstationary but co-integrated. 
Kugler and Kaufmann (2005) also find a robust co-integration between money growth 
and inflation for the Euro area and conclude that deviations of the real money growth 
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from its long-run average are a good indicator for inflation. Neumann and Greiber 
(2004), analyzing data from the Euro area, “attributes an impact on inflation not to actual 
money growth but to its core component”, which is “defined as the long-lasting, low-
frequency component of nominal money growth in excess of real money demand”. As a 
result, they conclude that money growth and inflation have a clear and stable relation. 
Shelley & Wallace (2005), using band-pass filter, find a strong, positive correlation 
between money growth and inflation for the US. Siklos (1991) analyzes the Hungarian 
hyperinflation and finds that money growth and inflation contain a common trend. 
 
The standard quantity theory of money postulates that the following equation1 holds for 
each specific period of time 
 
MV PQ=  
 
where M  is the money supply, V  is the velocity or the number of times each money unit 
is spent, P  is the price level, and Q  is the quantity of goods and services sold. The 
equation can be written in percentages as follows 
 
% % % %P M Q V= − +  
 
where %P  is inflation, %M  is money growth, %Q  is output growth, and %V  is 
percentage change in velocity. This equation is called “basic inflation identity”. At this 
point, we make a big assumption and state that %V  has zero or negligible effect on 
inflation. Then we obtain the following approximate equation 
 
% % %P M Q≅ −  
 
This equation is the main motivation of the paper and one of the points of departure of 
the paper from the literature. In other words, we use excess money growth defined as 
money supply growth minus real output growth2, % %M Q− , rather than simply money 
growth, %M , in explaining the inflation in addition to its own past values. The idea is 
that the portion of money supply growth exceeding real GDP growth and past values of 
inflation are the main determinants of inflation. 
 
Another point of departure of the paper from the literature is that the approximate relation 
between excess money growth and inflation in the equation above can be investigated 
using a nonlinear time series model, namely, the smooth transition regression  (STR) 
model instead of a linear one. While the relation has been subjected to mostly linear 
models, to our best knowledge, it has never been analyzed using the STR model. One 
advantage of the STR model is that one can identify high- and low-inflation regimes in 
the economy and investigate long-run inflation under each regime. 
 

                                                 
1 The equation is called “monetary exchange equation”. 
2 This is also known as “unproductive debt expansion”. See http://en.wikipedia.org/wiki/Money_supply. 



 3

The organization of the paper is as follows. Section 2 describes the econometric model, 
namely, the smooth transition regression (STR) model. Section 3 combines the economic 
problem and the econometric model. Section 4 discusses the data. Section 5 evaluates the 
results. Section 6 concludes. 
 

2. Smooth Transition Regression (STR) Models3 
 

2.1. The General Model 
 
Smooth transition regression models are parametric nonlinear time series regression 
models. The general formulation of the models is as follows: 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( )1 1 1 11 1 1 11 1 1 1 1 1
' 't t t t t tm mm mm m m

y G u G u
× + + ×× + + ×+ × + × + ×

′⎛ ⎞
= + • + = + • +⎜ ⎟

⎝ ⎠
φ z θ z φ θ z  

where 
( ) ( )1 1 1 1

' t
m m× + + ×
φ z  is the linear part, 

( ) ( )
( )

1 1 1 1
' tm m

G
× + + ×

•θ z  the nonlinear part, ( )20,tu iid σ∼  a 

sequence of independent, identically distributed random errors, and 1, ,t T= … . The 
model variables tz  may include lags of the endogenous variable, lags of exogenous 
variables, and deterministic variables. The model parameters are φ , which is the 
parameter vector of the linear part, and θ , which is the parameter vector of the nonlinear 

part. The equation 
( ) ( )

( )
( )1 11 1 1 1

t t tmm m
y G u

+ ×+ × + ×

′⎛ ⎞
= + • +⎜ ⎟
⎝ ⎠

φ θ z  indicates that the models can be 

interpreted as linear models with stochastic time-varying coefficients ( )G+ •φ θ  since 

( )G •  depends on time. 
 
The most important feature of the STR models is that they allow regime switches. This is 
achieved through the transition function ( )G • . There are basically two types of transition 
functions in the literature: logistic transition function (LTF) and exponential transition 
function (ETF). The specific form of the logistic transition function depends on the 
number of regimes it allows for, which is usually 2 or 3 in practice. In this paper, we 
focus only on the logistic transition function that allows two regimes. 
 

2.2. Logistic Transition Function (LTF) 
 
The general logistic transition function takes the following form: 

                                                 
3 This section is based on Terasvirta (1997), Terasvirta (2004), and Kratzig (2005). 
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( ) ( )
1

1 1

; , 1 exp
K

t t kK k

G s s cγ γ
−

×
=

⎧ ⎫⎧ ⎫
= + − −⎨ ⎨ ⎬⎬

⎩ ⎭⎩ ⎭
∏c . ts  is the continuous transition variable which 

can be part of tz  or any other variable, e.g. time trend ts t= . γ  is the slope parameter 

(slope of the transition function) where 0γ > . [ ]1 21 KK
c c c

×

′=c  is a vector of K  

location parameters (location of the transition function) where 1 Kc c≤ ≤ . ts  and c  

together determine the regimes. The general logistic transition function ( )1; ,t K
G s γ

×
c  is a 

bounded function, ( )10 ; , 1t K
G s γ

×
≤ ≤c , and is continuous everywhere in the parameter 

space for any value of ts . The slope parameter γ  indicates how rapid the transition from 
zero to unity is as a function of ts . When 0γ = , the transition function becomes 

( ) ( )
1

1 1

1; , 1 exp
2

K

t t kK k

G s s cγ γ
−

×
=

⎧ ⎫⎧ ⎫
= + − − ≡⎨ ⎨ ⎬⎬

⎩ ⎭⎩ ⎭
∏c . In that case, there is virtually no 

difference between the linear and the nonlinear models and thus the STR model nests the 

linear model. The model coefficients become 1
2

+φ θ , which is basically a linear model. 

In other words, the smaller γ  is, the less influential the nonlinear part is4. 
 
The location parameters determine where the transition occurs. Together with the general 
logistic transition function, 

( ) ( ) ( ) ( )
( )1 1 11 1 1 1 1 1

' ' ; ,t t t t tm Km m m
y G s uγ

× + ×× + + × + ×
= + +φ z θ z c  defines the 

general logistic STR (LSTRK) model. The most common choices for K are K = 1 
(LSTR1) and K = 2 (LSTR2). As stated above, we focus on LSTR1 in this paper. 
 

2.3. Logistic Transition Function with 1 Location Parameter (LTF1) 
 
The logistic transition function with 1 location parameter takes the following form: 

( ) ( ){ }{ } 1

1 1; , 1 expt tG s c s cγ γ
−

= + − −  where 0γ > . The function is a monotonically 

increasing function of ts . 
 
The LTF1 has the following properties: 

• ( ) ( ){ }10 0
1

1 1lim , , lim
21 expt

t

G c s
s cγ γ

γ
γ→ →

= =
+ − −

 and thus the LSTR1 model nests the 

linear model in that case. 

• ( ) ( ){ }1 1
1

1 1, ,    if   
21 expt t

t

G c s s c
s c

γ
γ

= = =
+ − −

. 

                                                 
4 As we will see later, the linearity test is basically a test for 0γ = . 
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Figure 1: Shapes of the LTF1 for Different Values of γ  When 1 0c =  
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• ( ) ( ){ }1 1
1

1lim , , lim 0   if   0
1 expt t

t

G c s s c
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= = − <
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• ( ) ( ){ }1 1
1

1lim , , lim 1   if   0
1 expt t

t

G c s s c
s cγ γ

γ
γ→∞ →∞

= = − >
+ − −

 

 
Figure 1 shows the LTF1 for various γ  values. In each subfigure, 1 0c =  and 

20 20ts− ≤ ≤ . The values of γ  are 0.1γ = , 1γ = , 5γ = , 25γ = . As can be seen from 
the figure, for very small values of γ , the logistic transition function is very smooth. As 
the value of γ  increases, the transition function becomes a less smooth curve for the 
given interval. 
 

2.4. Logistic Smooth Transition Regression with 1 Location Parameter (LSTR1) 
Model 

 
The LSTR1 model is jointly defined by the following equations: 

( ) ( ) ( ) ( )
( )

( ) ( )
( )

( )1 1 1 11 1 1 11 1 1 1 1 1
' 't t t t t tm mm mm m m

y G u G u
× + + ×× + + ×+ × + × + ×

′⎛ ⎞
= + • + = + • +⎜ ⎟

⎝ ⎠
φ z θ z φ θ z  and 
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( ) ( ){ }{ } 1

1 1; , 1 expt tG s c s cγ γ
−

= + − − . The model parameters, ( )1; ,tG s cγ+φ θ , change 

monotonically as a function of ts  from φ  ( ( ) 0G • = ) to +φ θ  ( ( ) 1G • = ). In other 

words, the parameters are bounded between φ  and +φ θ . As the value of ( )G •  changes 
from zero to one, the values of the parameters/coefficients change from φ  to +φ θ . 
 
When γ →∞ , the LSTR1 model approaches the threshold regression model with two 
regimes that have equal variances5. In this special case, ts c=  is the switch-point 

between the regimes 't t ty u= +φ z  and ( )t t ty u′= + +φ θ z . If 11t t t py y− −
′⎡ ⎤= ⎣ ⎦z  

and t t ds y −= , the limiting model is a two-regime self-exciting threshold autoregressive 
(SETAR) model. 
 
The usefulness of the LSTR1 model comes from its capability of characterizing 
asymmetric behavior. For instance, if ts  measures the phase of the business cycle, then 
the LSTR1 model can describe dynamic processes which exhibit different behaviors 
under recession and expansion and the transition from one extreme to the other is less or 
more smooth. One can use the LSTR1 model if the economy behaves differently in 
expansion from how it does in contraction. 
 
An important special case is ts t= . Then the model becomes 

( )( ); ,t t ty G t c uγ ′= + +φ θ z . This can be interpreted as a linear model whose parameters 
change over time as a function of time. If we also let γ →∞ , the model contains as a 
special case the presence of a single structural break. 
 
When the model is purely autoregressive and t t ds y −=  or t t ds y −= Δ , 0d > , STR model 
becomes STAR (smooth transition autoregressive) model. The literature is full of studies 
employing these models. Among others, STAR models have been applied by Arango & 
Gonzalez (1998) to analyze Columbian inflation, Bardsen, Hurn, & McHugh (2004) to 
examine the Australian unemployment rate, Baum, Barkoulas, & Caglayan (1999) to 
analyze international long-run purchasing power parity, Bruinshoofd & Candelon (2004) 
to study monetary policy in Europe, Gregoriou & Kontonikas (2005) to analyze inflation 
deviations from the target for several OECD countries, Guerra (2001) to analyze several 
European exchange rates, Michael, Nobay, & Peel (1997) to examine the relation 
between transaction costs and real exchange rates, Persson & Terasvirta (2003) to 
examine the net barter terms of trade for several industrial countries, Terasvirta (1995) to 
model US GNP, and Terasvirta & Anderson (1992) to characterize business cycles in 
several countries. 
 
A somewhat more complicated and less employed STR model is the smooth transition 
autoregressive distributed lag (STARDL) model in which lags of the endogenous variable 

                                                 
5 See Hansen (1996), Hansen (1997), and Hansen (1999) 
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and current value and lags of an exogenous variable appear as regressors and the 
transition variable is a lag of the endogenous or exogenous variable or is another variable. 
STARDL models have been applied by Aslanidis, Osborn, & Sensier (2002) to analyze 
UK stock returns, Reyes, Osborn, & Sensier (2002) to study real exchange rate and 
business cycles in Latin America, and Sensier, and Osborn, & Ocal (2002) to model UK 
interest rates. This paper also uses the STARDL model. 
 

2.5. The Modeling Cycle 
 
The modeling cycle of a smooth transition regression model consists of the following 
three stages: 
 
1. Specification: Specification includes setting up a linear model that forms a starting 

point for the analysis, testing for linearity, choosing a transition variable, and 
deciding whether logistic (LSTR) or exponential (ESTR) smooth transition regression 
should be used.  In case of LSTR, it is also determined whether K = 1 (LSTR1) or K 
= 2 (LSTR2). 

2. Estimation: Estimation includes finding appropriate starting values and estimating 
the model parameters. 

3. Evaluation: Evaluation includes checking the model graphically and testing for 
misspecification, e.g. error autocorrelation, parameter non-constancy, remaining 
nonlinearity, ARCH, and non-normality. Non-normality also checks for outliers in the 
model. 

 
We will cover these steps in detail in the next three subsections. 
 

2.6. Model Specification 
 
Model specification is a two-phase process: 1) setting up a linear model and 2) testing for 
linearity. 
 

2.6.1. Selecting a Linear Model 
 
In the first phase of the model specification, the researcher sets up a linear model, e.g. 
autoregressive (AR) model or autoregressive distributed lag (ARDL) model that forms a 
starting point for the analysis. The linear model may contain lagged endogenous, current 
and lagged exogenous and deterministic variables, e.g. constant term, seasonal dummies, 
and other dummies. The lags can be determined with Akaike information criterion (AIC), 
Bayesian information criterion (BIC), or sequential tests. Whole lags or partial lags may 
be obtained. The linear model is subjected to various specification tests: residual 
autocorrelation, test for ARCH effects in the residuals, structural break in the model 
parameters, heteroskedasticity tests, stability tests, and normality tests. 
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2.6.2. Testing for Linearity 
 
Once an appropriate linear model is obtained, the second phase is to test for STR type 
nonlinearity. The test also helps to determine the transition variable and whether LSTR1 
or LSTR2 (or ESTR) should be used. 
 

If ts  is an element of tz  where 
1

1t t
m×

′⎡ ⎤′= ⎢ ⎥⎣ ⎦
z z , the auxiliary regression for the test6 is 

( ) ( )

3

0
1 1 1 1 11 1

j
t t j t t t

m m mj m

y s u
× + + × ×= ×

′ ′= + +∑β z β z  

The null hypothesis of linearity is 
0 1 2 3 11 1 1

:
mm m m

H
×× × ×

= = =β β β 0 , 

that is, the model is linear. If ts  is not an element of tz , then the auxiliary regression is 

( ) ( ) ( ) ( )

3

0
1 1 1 1 1 11 1 1

j
t t j t t t

m m mj m

y s u
× + + × + ×= × +

′ ′= + +∑β z β z  

In that case, the null hypothesis of linearity is 

( ) ( ) ( ) ( )0 1 2 3 1 11 1 1 1 1 1
:

mm m m
H

+ ×+ × + × + ×
= = =β β β 0  

 
This is the usual F test. The F-statistic has an approximate F distribution with 3m  and 

4 1T m− −  degrees of freedom under the null hypothesis. If we reject the null hypothesis, 
we can conclude that the model is nonlinear. The test results can also help choose the 
transition variable if it is not dictated by economic theory. One can select all potential 
transition variables and run the test for each one of them7. The variable with the strongest 
test rejection (the smallest p-value) is selected as the transition variable. 
 
If linearity is rejected, one has to choose between LSTR1, LSTR2, and ESTR. The 
following test sequence is employed for this task 
 

1. 04 3:H =β 0    (F4) 
2. 03 2 3: |H = =β 0 β 0   (F3) 
3. 02 1 2 3: |H = = =β 0 β β 0  (F2) 

 
If test 2 gives the lowest p-value, then we choose LSTR2 or ESTR. Otherwise, we choose 
LSTR1. If the test does not provide a clear-cut choice, it is reasonable to fit both LSTR1 
and LSTR2 (or ESTR) and decide a model on the evaluation stage by looking at the 
information criteria or the RSS or forecasting performance. 
 

                                                 
6 The first part in the auxiliary regression after the equality sign (and before the plus sign) corresponds to 
the linear part of the STR equation. The second part corresponds to the nonlinear part. 
7 This is what we do in the section Results. 
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2.7. Model Estimation 
 
The model is estimated by the method of nonlinear least squares. Estimation involves 
finding appropriate starting values for the optimization algorithm and estimating the 
model. 
 
It is important to find good starting values before estimating the model. The unknown 
parameters are c , γ , φ , and θ . Notice that the model becomes linear in the parameters 
when c  and γ  in the transition function are fixed. Thus a search grid over c  and γ  can 
be constructed to find the appropriate starting values for φ  and θ . The linear estimation 
of the remaining parameters is done conditionally on ( )1,cγ  for LSTR1 and ( )1 2, ,c cγ  for 
LSTR2 and the sum of squared residuals (RSS) are stored for every combination of 
( ),γc . The values of ( ),γc  that gives the minimum RSS are the starting values8. For 
LSTR2, a further restriction is 1 2c c≤ . 
 
Note that γ  is not a scale-free parameter. This is important when constructing the grid. In 
order to make γ  scale-free, the exponent of the transition function is divided by ˆ K

sσ , the 
Kth power of the sample standard deviation of the transition variable ts  

( )
( )

1

1

1; ,
1 exp

ˆ

t KK

t kK
ks

G s
s c

γ
γ
σ

×

=

=
⎧ ⎫⎛ ⎞⎪ ⎪+ − −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∏
c   0γ >  

This makes the slope parameter scale-free, which facilitates the construction of an 
effective grid. 
 

2.8. Model Evaluation 
 
Just as in the linear model, evaluation of the nonlinear model includes graphical checks 
as well as various tests for misspecification, such as error autocorrelation, ARCH, 
parameter non-constancy, remaining nonlinearity, and non-normality. These tests, except 
for the test for remaining nonlinearity, are generalizations of those for the linear models. 
 

2.8.1. Graphical Analysis 
 
A visual evaluation of the model can be performed by checking various plots drawn 
against time. Graphical analysis can also help detect problems in the residuals and 
illustrate the estimation results. Among the plots that can be helpful are estimated 
residuals ( ); ,t t t t tu y G s γ′ ′= − −φ z θ z c , estimated transition function ( ); ,tG s γ c , fitted 

series (linear t′φ z  and nonlinear ( ); ,t tG s γ′θ z c  parts), original series, and transition 

                                                 
8 If the starting values are in the boundaries of the parameter values, this may mean a problem. 
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variable. The estimated transition function ( ); ,tG s γ c  can also be plotted against the 
transition variable ts . 
 

2.8.2. Test for Serial Correlation in the Residuals 
 
The test is implemented by regressing the estimated residuals tu  from the STR model on 
the lagged residuals 1, ,t t qu u− −…  and the partial derivatives of the log-likelihood function 
with respect to the parameters of the model evaluated at the maximizing values. The null 
hypothesis is that there is no autocorrelation in the residuals. 

The test statistic is 
( )

( )
( )

0 1
.

1
,

appr

LM

SSR SSR
qF F q T n qSSR

T n q

−

= − −

− −

∼  where 0SSR  is the sum of 

squared residuals of the STR model, 1SSR  the sum of squared residuals from the auxiliary 
regression, and n  is the number of parameters in the model. 
 

2.8.3. Test for ARCH Effects in the Residuals 
 
This is a Lagrange Multiplier (LM) test for neglected conditional heteroskedasticity or, 
briefly, for ARCH in the residuals. Hence it is a diagnostic test. The test is based on 
fitting an ARCH(q) model to the estimation residuals 2 2 2

0 1 1ˆ ˆ ˆt t q t q tu u uβ β β ε− −= + + + +  
where ˆtu  is the residuals of the model. The null hypothesis is 0 1: 0qH β β= = =  (no 
conditional heteroskedasticity). The alternative hypothesis is 1 1: 0 or  or 0qH β β≠ ≠ . 

The LM test statistic is ( ) 2
LMARCH q TR=  where 2R  is the coefficient of determination 

and T  is the number of observations. The test statistic has an asymptotic ( )2 qχ  
distribution under the null hypothesis. Large values of the test statistic, and hence small 
p-values9, indicate that the null hypothesis is false and there may be ARCH in the 
residuals. There is also an F-version of the test. 

2.8.4. Test for No Additive (Remaining) Nonlinearity 
 
This is a test for remaining nonlinearity after the STR model is fitted. The assumption is 
that the type of the remaining nonlinearity is again of the STR type. The alternative 
model is 

1 1 1 2 2 2
1 1

; , ; ,t t t t t t t
K K

y G s H s uγ γ
× ×

⎛ ⎞ ⎛ ⎞′ ′ ′= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

φ z θ z c ψ z c  

                                                 
9 A p-value represents the probability of getting a test value greater than the observed one if the null 
hypothesis is true. 



 11

where ( )H •  is another transition function and ( )20,tu iid σ∼ . The auxiliary model used 
to test this alternative is 

( ) ( ) ( ) ( )
( )

3
*

0 1 1 1 21 11 1 1 1 1 1 11 1

; , j
t t t t j t t tmm m m mj m

y G s s uγ
× +× + + × + × ×= ×

′ ′ ′= + + +∑β z θ z c β z  

The test is carried out by regressing tu  on ( )2 3
2 2 2, ,t t t t t ts s s ′′ ′ ′z z z  and the partial derivatives of 

the log-likelihood function with respect to the parameters of the model. The null 
hypothesis of no remaining nonlinearity is 1 2 3= = =β β β 0 . 2ts  can be 1ts  or any variable 
in tz . The test is a typical F-test. 
 

2.8.5. Test for Parameter Constancy 
 
The null hypothesis for the parameter constancy test is that the parameters are constant 
over time. The alternative hypothesis is that the parameters change smoothly and 
continuously. The auxiliary regression for the test is 

( )
3 3

*
0 3

1 1

; ,j j
t t j t j t t t

j j

y G s uτ τ γ+
= =

′ ′ ′= + + +∑ ∑β z β z β z c  

where t
T

τ = . The test is an F-test for j =β 0  for 1, ,6j = … . Note that the parameters γ  

and c  are assumed to be constant. 
 

2.8.6. Test for Normality 
 
The Jarque-Bera test for normality is the same as in the linear case. The test is a 
diagnostic test for non-normality based on the 3rd (skewness) and 4th (kurtosis) moments 
of a distribution. Let tu  be the true error terms which have a standard deviation uσ . Then 

s t
t

u

uu
σ

=  is the standardized true model errors. The null hypothesis is 

( ) ( )3 4

0 : 0 and 3s s
t tH E u E u= =  

The alternative hypothesis is ( ) ( )3 4

1 : 0 or 3s s
t tH E u E u≠ ≠ . Thus the tests checks 

whether the 3rd and 4th moments of the standardized residuals are consistent with a 
standard normal distribution. The test statistic is 

( ) ( )
2 2

3 41 1

1 1

ˆ ˆ 3
6 24

T T
s s
t t

t t

T TLJB T u T u− −

= =

⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑  where ˆ s
tu  is the standardized estimated 

residuals, ( )31

1

ˆ
T

s
t

t

T u−

=
∑  and ( )41

1

ˆ
T

s
t

t

T u−

=
∑  are measures for the skewness and the kurtosis of 

the distribution, respectively. Under the null hypothesis, the test statistic has an 
asymptotic ( )2 2χ  distribution. Large values of the test statistics, hence small p-values, 
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indicate non-normality. If the null hypothesis is rejected, the normal distribution is 
rejected. If the null hypothesis is not rejected, it does not necessarily means that the 
distribution is normal. It means that the underlying distribution has the same first four 
moments as the normal distribution. In practice, the first four moments are of particular 
interest and deviations from the normal distribution beyond that point may not be too 
important. If the null hypothesis is rejected, this is interpreted as a model defect. Non-
normal residuals can also be a consequence of neglected nonlinearities, e.g. threshold, 
smooth transition, etc. or ARCH effects. Modeling these features may result in a more 
satisfactory model with normal residuals. 
 

3. The Econometric Model 
 
In this section, we propose the following model to analyze the relation between inflation 
and money growth: 
 

( )
( ) ( )

0 1 1 0 1 1

0 1 1 0 1 1       

t t p t p t q t q

t p t p t q t q t

y y y x x

y y x x G u

α α α β β β

δ δ δ φ φ φ

− − − −

− − − −

= + + + + + + + +

+ + + + + + + • +
 

 
where ty  is the inflation rate, tx  the excess money growth, and ( )G •  the logistic 
transition function with K = 1. 
 
If inflation turns out to have a unit root, which is likely, then the model takes the 
following form: 
 

( )
( ) ( )

0 1 1 0 1 1

0 1 1 0 1 1       

t t p t p t q t q

t p t p t q t q t

y y y x x

y y x x G u

α α α β β β

δ δ δ φ φ φ

− − − −

− − − −

Δ = + Δ + + Δ + + + + +

+ Δ + + Δ + + + + • +
 

 
in which case, the acceleration of the inflation is modeled. 
 

4. Data10 
 
We collect quarterly data for the US, which include consumer price index (CPI), gross 
domestic product (GDP), GDP deflator (DEF), and M1 money supply (M1) from the 
International Financial Statistics (IFS) database. The sample period is 1959Q2-2007Q3, 
which makes 194 observations. M1 is seasonally adjusted. We divide GDP by DEF to 
obtain real GDP (RGDP). Then we transform CPI, M1, and RGDP into inflation (INF), 
money growth (MG), and real GDP growth (RGDPG), respectively, by first taking 
natural logs and then taking the first differences. Finally, we subtract RGDPG from MG  
 

                                                 
10 EViews and PcGive software packages were used to obtain results in this section. 
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Figure 2: US Inflation and Excess Money Growth (1959Q2-2007Q3) 
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to obtain excess money growth (XMG). Figure 2 shows INF and XMG together. As can 
be seen, the excess money growth fluctuates more than the inflation. The inflation is 
relatively smooth. The large hike in the 3rd quarter of 2001 is probably the effect of the 
war in Iraq11. 
 
Table 1 shows some summary statistics for the two series. The average inflation is about 
1% per quarter whereas the average excess money growth is about 0.4%. As can be seen 
from the standard deviation figures, XMG fluctuates almost twice as INF. Both series are 
left-skewed, which means small values are more often observed than large values, but 
INF is more skewed. The high kurtosis values for both series show that their peak is 
greater than a normal distribution. As a result, the Jarque-Bera test rejects the null 
hypothesis of normality for both series. 
 
 
 
 
 
 

                                                 
11 Looking at the figure, one can see that the excess money growth and the inflation seem to move together 
until around 1990, after which the relation seems to have fallen apart. In order to investigate this further, we 
run two separate regressions, one using the data until 1990 and the other after 1990. The regressions show 
that the relation still holds after 1990. 
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Table 1: Summary Statistics 
 

INF XMG
Obs 202.0000 194.0000
Mean      0.9979 0.3616
Median  0.8327 0.2585
Maximum 3.8217 7.0869
Minimum -0.8560 -2.5620
Std. Dev.  0.7608 1.4819
Skewness  1.1942 0.7797
Kurtosis  4.7092 4.5545
Jarque-Bera 72.6008 39.1924
Probability 0.0000 0.0000  

 
Figure 3 shows the autocorrelation (ACF) and the partial autocorrelation (PACF) 
functions. The ACF for INF dies out slowly but that for XMG relatively quickly. The 
PACF for INF indicates an at least AR(6) process whereas that for XMG an AR(2). 
 

Figure 3: ACF and PACF of the Series 
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Next we run unit root tests to determine if the series is stationary. To obtain robust 
results, we use the augmented Dickey-Fuller (ADF), the Phillips-Perron (PP), and the 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. Table 2 shows the results. All the 
auxiliary regressions contain an intercept but no time trend. For the ADF tests, the degree 
of augmentation is selected by a search over 12 lags based on the Akaike information 
criterion. For the PP and KPSS tests, the spectral estimation method is Barlett kernel and 
the automatic bandwidth selection is Newey-West. The tests conclude that there is no unit 
root in both series. 
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Table 2: Unit Root Tests 
 

%1 %5 %10

INF 5 -2.9374 -3.4637 -2.8761 -2.5746
XMG 4 -3.6293 -3.4650 -2.8767 -2.5749

INF 9 -5.2792 -3.4629 -2.8758 -2.5744
XMG 6 -9.3288 -3.4643 -2.8764 -2.5747

INF 10 0.3064 0.7390 0.4630 0.3400
XMG 9 0.2394 0.7390 0.4630 0.3400

ADF Test

Phillips-Perron Test

KPSS Test

Significance Level
Test StatisticAugmentationSeries

 
 

5. Results 
 
This section presents the estimation results and interprets them. The subsections follow 
the modeling cycle mentioned before. We also conduct a deterministic extrapolation 
exercise to understand the implications of the linear and nonlinear models for the long-
run inflation rates. 
 

5.1. Specification 
 
The specification stage starts with setting up a linear model. The basic issue is to 
determine which lags of each variable to include in the model. For that purpose, we 
follow a general-to-specific strategy12. The basic idea is to start with a reasonably general 
model and then to make it parsimonious by eliminating unnecessary lags based on the t-
ratios or some information criteria, e.g. Akaike or Schwarz. For that purpose, we include 
8 lags for each variable assuming that past values beyond 2 years have no or negligible 
effect on the current value of the inflation rate. Then we run a comprehensive 
specification search which estimates every possible subset of the regressors and picks the 
one that minimizes the Akaike information criterion. The resulting model, which has 
some lags ignored, is shown in Table 3. 
 
 
 
 
 
 
 
 
 
 

                                                 
12 See Hendry (1995). 
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Table 3: The Linear Model 
 

Model:
Estimation Method:
Sample:
Dependent:
Variable  Coeffs Std Err  t-Stat p-Values
Constant 0.1424 0.0555 2.5663 0.0111
INF_1  0.6862 0.0622 11.0321 0.0000
INF_2  -0.2767 0.0790 -3.5049 0.0006
INF_3  0.6284 0.0686 9.1592 0.0000
INF_6  -0.1843 0.0608 -3.0323 0.0028
XMG  -0.0397 0.0219 -1.8128 0.0716
XMG_3 0.0308 0.0222 1.3910 0.1660
XMG_8 0.0421 0.0210 2.0015 0.0469
R-Squared 0.7323 Adj R-Squared 0.7218
RSS 29.1920 Regression S.E. 0.4050
Tests Stat p-Value
Joint Significance 69.5778 0.0000
F-AR(4) 0.4035 0.8060
F-AR(8) 0.7138 0.6791
Jarque-Bera 0.0035 0.9982
F-ARCH(4) 3.5420 0.0050
F-ARCH(8) 2.0732 0.0410
F-Heteroskedasticity 1.6044 0.0821
RESET y2 3.2445 0.0734
RESET y3 3.8076 0.0241
RESET y4 2.5600 0.0566
Hansen - Variance 0.5208
Hansen - Joint 2.3275

0.4700
2.3200

5% Critical Vlue

Linear Regression
Ordinary Least Squares
1961(2) - 2007(3) (186 Observations)
INF

 
 
The results suggest that although the inflation rate seems to be a mostly autoregressive 
process, the excess money growth cannot be eliminated as an explanatory variable. The 
null hypothesis that each lag, including the zeroth lag, of the excess money growth is 
equal to zero is rejected by an F-test with a test statistic of 3.2937 and a p-value of 
0.0219. However, it seems that the explanatory power of the excess money supply is 
slight since none of the t-ratios of its coefficients is much greater than 2. The estimated 
model has moderately high adjusted and unadjusted R-squared values. The joint 
significance test suggests that the explanatory variables are meaningful as a group. The 
LM tests for the residual autocorrelation detect no problem up to the eight lag. The 
Jarque-Bera test does not reject the null hypothesis of normality. 
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Though the model has the pros mentioned above, it also has some problems. For instance, 
the residuals show signs of contemporary13 and autoregressive conditional 
heteroskedasticity (ARCH). This can be seen from the p-values which are less than 0.10. 
The RESET tests also indicate model misspecification. Finally, Hansen (1992)’s variance 
and joint stability tests show that the variance and the coefficients as a group are not 
stable over time since the test statistics are higher than the 5% critical values. Another 
problem is related to the estimated coefficients. It seems that the zeroth lag of the excess 
money growth has the wrong sign, which implies that an increase in the excess money 
growth decreases the inflation rate, which is counter-intuitive. However, this is not the 
only study that reports a result like this. For instance, Crowder (1998) also reports 
“negative short-run relation between base growth and inflation”14. A possible explanation 
is that the coefficient is probably statistically insignificant. The reason is that one cannot 
expect a significant relation between the current excess money growth and the current 
inflation rate. In other words, a change in the current excess money growth is not likely to 
have any effect on the current inflation rate though it is likely to have any effect on the 
future inflation rates. Besides, it should be remembered that the main reason for 
specifying a linear model is to create a starting point for the nonlinear model 
specification. Finally, as will be seen from the deterministic extrapolation exercises at the 
end of this section, the long-run relation between excess money growth and inflation is 
still positive for the linear model. Considering all the drawbacks of the linear model, an 
interesting question to ask at this point is whether a nonlinear model would do better than 
the linear one. 
 
The next step in the specification phase is to run the linearity test developed by 
Luukkonen, Saikkonen, & Teräsvirta (1988). Since the linear model indicates that long 
lags can be significant in modeling inflation with its own lags and the excess money 
growth, we include a maximum of 8 lags in the linearity tests. The results are shown in 
Table 4. 
 
As can be seen from the table, the selected transition variable is the second lag of 
inflation and the suggested model is LSTR1. These results show that the inflation rate can 
be modeled with a smooth transition regression model containing 2 regimes and the 
nonlinear dynamic process is governed by the second lag of the inflation itself. 
 
 
 
 
 
 
 
 
 
 
 
                                                 
13 The White test for heteroskedasticity. 
14 Crowder (1998), p. 239. 
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Table 4: The Linearity Tests 
 

Transition Variable F          F4        F3        F2        Suggested Model
INF(t-1)           0.0003 0.3294 0.0390 0.0000 LSTR1
INF(t-2)*          0.0002 0.1214 0.1633 0.0000 LSTR1
INF(t-3)           0.0035 0.4223 0.2183 0.0001 LSTR1
INF(t-4)           0.0033 0.2565 0.1436 0.0006 LSTR1
INF(t-5)           0.0401 0.3255 0.4420 0.0048 LSTR1
INF(t-6)           0.0031 0.2100 0.0565 0.0038 LSTR1
INF(t-7)           0.0522 0.9266 0.1852 0.0009 Linear
INF(t-8)           0.0378 0.8150 0.1995 0.0010 LSTR1
XMG(t)           0.0010 0.5072 0.0399 0.0001 LSTR1
XMG(t-1)         0.0043 0.1242 0.0369 0.0266 LSTR1
XMG(t-2)         0.2429 0.7091 0.3160 0.0619 Linear
XMG(t-3)         0.3811 0.7283 0.3757 0.1362 Linear
XMG(t-4)         0.2463 0.6115 0.2449 0.1401 Linear
XMG(t-5)         0.1096 0.1042 0.7378 0.0700 Linear
XMG(t-6)         0.2131 0.5901 0.9015 0.0044 Linear
XMG(t-7)         0.7318 0.7295 0.9302 0.1451 Linear
XMG(t-8)         0.0970 0.2365 0.3266 0.0881 Linear
TREND                0.0042 0.0276 0.0334 0.1911 LSTR1  

 
 

5.2. Estimation15 
 
The model is estimated with nonlinear least squares (NLS). The minimization algorithm 
is BFGS. The estimated nonlinear model is shown in Table 5. First a few words about 
how we reached the final model. The estimation started with all of the 8 lags for each 
variable. Then we eliminated the regressor with the highest p-value or the lowest t-stat in 
absolute value in order to reduce the number of model parameters (model reduction). We 
continued in this fashion to eliminate the regressors until we reached the point where it 
didn’t make too much sense to eliminate one more regressor. This process is similar to 
the method suggested by Brüggemann & Lütkepohl ( 2001). 
 
 
 
 
 
 
 
 
                                                 
15 The results in this section were obtained with the JMulTi econometric package. 
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Table 5: The Nonlinear Model 
 

variable     estimate s.d.  t-stat p-value

CONST       0.1886 0.0773 2.4418 0.0157
INF(t-1)  0.6275 0.0806 7.7850 0.0000
INF(t-2)  -0.2604 0.1047 -2.4869 0.0139
INF(t-3)  0.3365 0.0858 3.9209 0.0001
INF(t-6)  -0.1883 0.0701 -2.6867 0.0080
INF(t-7)  0.2394 0.0701 3.4146 0.0008
XMG(t-8) 0.0397 0.0191 2.0754 0.0396

CONST       0.8327 0.2588 3.2176 0.0016
INF(t-1)  0.2640 0.1347 1.9604 0.0517
INF(t-2)  -0.4916 0.2151 -2.2849 0.0236
INF(t-3)  0.6124 0.1669 3.6686 0.0003
INF(t-7)  -0.4440 0.1222 -3.6326 0.0004
XMG(t)  -0.1906 0.0534 -3.5665 0.0005
XMG(t-1) 0.1553 0.0630 2.4647 0.0148
XMG(t-2) -0.2296 0.0604 -3.8020 0.0002
XMG(t-4) -0.1186 0.0643 -1.8449 0.0669
XMG(t-6) -0.1706 0.0704 -2.4224 0.0165
XMG(t-8) 0.1928 0.0628 3.0696 0.0025
Gamma       13.3477 8.6190  NaN NaN
C1          1.4805 0.0429  NaN NaN

Linear Part

Nonlinear Part

 
 
 
The most interesting part of the final model is that although only the 8th lag of the excess 
money supply is significant in the linear part, almost all of the lags in the nonlinear part 
are significant. This is a strong indication that the excess money supply affects the 
inflation nonlinearly. 
 
As can be seen from the table, the inflation is mostly an autoregressive process since its 
lags are significant in both the linear and the nonlinear parts. However, the linear part is 
dominated by the lags of the inflation. On the other hand, the lags of the excess money 
growth are mostly significant in the nonlinear part. 
 
The fit of the model seems to be better compared to the linear model. The unadjusted and 
adjusted R-squared values are 0.8293 and 0.8302. The estimated value of the gamma is 
13.3477, which indicates a moderately smooth transition between regimes. The transition 
value, 1c  in the logistic transition function, is 1.4805 with a standard error of 0.0429. This 
means that when the quarterly inflation rate two quarters ago surpasses 1.4805%, the 
economy switches from one regime to another. The regimes can be interpreted as the  
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Figure 4: The Transition Function over Time 
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low- and the high-inflation regimes. In other words, inflation rates below (above) 
1.4805% can be regarded as low (high) inflation periods. Figure 4 shows the high-
inflation regimes, which are the early 1970s, the late 1970s, the early 1980s, and the early 
1990s. As can be seen from the figure, the U.S. experienced mostly low inflation in the 
sample period. Figure 5 shows the fitted and the actual values. 
 

Figure 5: The Fitted and Actual Values of Inflation 
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Figure 6: The Linear and Nonlinear Parts of the Fitted Values 
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Figure 6 shows the linear and nonlinear parts of the fitted values separately. Since the 
fitted values for the complete model are obtained from 

( )2 1
ˆˆ ˆˆ ˆ' ' ; ,t t t ty G y cγ−= +φ z θ z  where ty  is the inflation rate at time t , the fitted values for 

the linear part are ˆ ' tφ z  and those for the nonlinear part are ( )2 1
ˆ ˆ ˆ' ; ,t tG y cγ−θ z . Notice that 

the nonlinear part has fitted values only when the transition function is non-zero. It 
should be remembered that the fitted values for the linear part represent inflation when 
the economy is in low-inflation regime, in other words, when ( )2 1ˆ ˆ; , 0tG y cγ− = . Thus the 
nonlinear fitted values can be interpreted as adjustments for high-inflation regimes. 
 
Figure 7 shows the transition function versus the transition variable. The vertical axis is 
the transition function and the horizontal axis is the transition variable. When the 
transition variable is less (higher) than 1.4805 and thus the transition function is less 
(higher) than 0.5, the economy is in low-inflation (high-inflation) regime. We should 
emphasize that the vertical axis should not be interpreted as recession probabilities as in 
the Markov switching regression model (MSR) developed by Hamilton (1989). Unlike 
the MSR model, the variable that determines regimes is observable in the STR models. 
As a result, in the STR models, the regime that the system is in is known given the values 
of the transition variable, ts , and the transition value, 1̂c . 
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Figure 7: The Transition Function vs. the Transition Variable 
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5.3. Evaluation 
 
In this section, we evaluate the linear and nonlinear models. First, we run a couple of 
misspecification tests for the nonlinear model. Then we conduct a series of deterministic 
extrapolation experiments with the models to characterize the quantitative properties of 
the excess money growth and the inflation rate. 
 

5.3.1. Specification Tests 
 
Table 6 shows several misspecification tests for the nonlinear model. The LM test for 
autocorrelation in the residuals detects no problem up to 8 lags. Similarly, the ARCH 
tests for the 4th and 8th lags show that, unlike the linear model, the nonlinear model is not 
affected by autoregressive conditional heteroskedasticity in the residuals. Jarque-Bera test 
does not reject the null hypothesis of normality. Parameter constancy tests also cannot 
detect any problem with the model. 
 
Finally, we run the test for no remaining nonlinearity and the results are shown in Table 
7. We try every lag of the two model variables as the transition variable. We conclude 
that there is no remaining nonlinearity in the model since the values in the second column 
are all greater than or equal to 0.10. 
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Table 6: Specification Tests for the Nonlinear Model 
 

Lag  F-value df1    df2   p-value
1 0.0662 1 157 0.7972
2 0.1238 2 155 0.8836
3 0.4412 3 153 0.7239
4 0.3300 4 151 0.8575
5 0.3468 5 149 0.8837
6 0.3885 6 147 0.8855
7 0.3724 7 145 0.9171
8 0.3388 8 143 0.9496

Lag Ch-Sq-Stat p-value F-Stat p-value
4 1.6099 0.8070 0.4062 0.8040
8 3.5406 0.8960 0.4519 0.8879

Test Stat p-value Skewness Kurtosis
1.4922 0.4742 0.2024 3.1902

transition function F-value df1 df2 p-value
H1 1.5472 18 139 0.0827
H2 1.2638 36 121 0.1748
H3 1.3852 54 103 0.0789

Test of No Error Autocorrelation 

ARCH-LM Test

Jarque-Bera Normality Test

Parameter Constancy Test

 
 

5.3.2. Deterministic Extrapolation 
 
As further evaluation of the linear and nonlinear models, we conduct a few deterministic 
extrapolation exercises. 
 
No External Shocks 
 
The basic idea behind the first deterministic extrapolation exercise is explained in the 
following steps. First, the random term in each model is equated to zero. In other words, 
external shocks are assumed not to exist. Second, the estimated coefficients are placed in 
their corresponding equations (deterministic parts of the models). Third, the models are 
iterated over time. In this iteration, the values of each variable not used in the estimation 
due to model lags are used as the starting values. Each value of inflation obtained by this 
iteration is placed back in the equations and the iteration continues. If the iterated values 
of inflation converges to a constant value, the converged value is the long-run value of 
inflation. If the iterated values do not converge, the model is labeled as unstable. 
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Table 7: Test for Remaining Nonlinearity 
 

transition variable F F4 F3 F2
INF(t-1)        0.1157 0.1261 0.0687 0.4030
INF(t-2)        0.1035 0.0715 0.2016 0.2260
INF(t-3)        0.3921 0.4339 0.1046 0.5389
INF(t-4)        0.7809 0.4685 0.3598 0.6816
INF(t-5)        0.4875 0.6055 0.1407 0.2953
INF(t-6)        0.8066 0.7861 0.1399 0.8873
INF(t-7)        0.5905 0.8919 0.0503 0.6315
INF(t-8)        0.9530 0.8526 0.7113 0.4420
XMG(t)   0.1000 0.3115 0.0458 0.1698
XMG(t-1) 0.3321 0.8438 0.1704 0.0619
XMG(t-2) 0.6036 0.5764 0.8416 0.0723
XMG(t-3) 0.2329 0.3891 0.7810 0.0056
XMG(t-4) 0.4128 0.4812 0.4400 0.1198
XMG(t-5) 0.9041 0.5381 0.8245 0.4509
XMG(t-6) 0.3099 0.1877 0.7142 0.0945
XMG(t-7) 0.5434 0.4052 0.3928 0.2487
XMG(t-8) 0.9837 0.7143 0.8545 0.8495

Test of No Remaining Nonlinearity

 
 
 
Figure 8 shows the iterated values of the linear model. As can be seen, the values 
converges to a stable equilibrium after fluctuating a couple of periods. The long-run 
equilibrium of the inflation is approximately 1.05%. Interestingly, this is very close to the 
mean value of the inflation series (0.99%) as can be seen from Table 1. 
 
The nonlinear model draws a different picture, however. We present the results according 
to the extreme values of the transition function. When 0G = , the economy is in the low-
inflation regime. The deterministic extrapolation of the nonlinear model for this case is 
shown in Figure 9. Since the nonlinear part of the model vanishes when G = 0, the linear 
part and the combined model coincide. That’s why Inf and InfLin overlap in the figure. 
InfNln is zero so it is not drawn. As can be seen from the figure, the long-run inflation for 
the low-inflation regime is 0.5% per quarter. 
 
Figure 10 shows the results of the deterministic extrapolation when G = 1. When G = 1, 
the economy is in high-inflation regime. The solid line shows the combined model, that is 
linear part plus nonlinear part. The dashed line shows the linear part. Finally, the dotted 
line shows the nonlinear part. During high-inflation regimes, the long-run value of the 
inflation rate is around 2.5% for the combined model. For the linear part, it is around 2%. 
For the nonlinear part, it is around 0.5%. The results indicate that the long-run quarterly 
inflation was in the range 0.5%-2.5% for the sample period and was stable in the US. 
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Figure 8: Deterministic Extrapolation of Inflation for Linear Model 
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Figure 9: Deterministic Extrapolation of Inflation for Nonlinear Model When G = 0 
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Figure 10: Deterministic Extrapolation of Inflation for Nonlinear Model When G = 1 
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External Shock to Inflation 
 
The second deterministic extrapolation exercise differs from the first one in that an 
external shock is applied to the model. This is done by setting the error term to a 
constant, one to be exact, in the first iteration and to zero in the following iterations. This 
is an impulse shock, meaning a one-time external shock to the economy. The aim of this 
exercise is to see its long-run effect on the inflation. 
 
Figure 11 shows the effects of this one-time external shock on the long-run value of the 
inflation for the linear model. As can be seen from the figure, the external shock is 
eliminated over time since the inflation rate converges to the same value obtained without 
the shock. In other words, the long-run value of the inflation is about 1.05% with and 
without the external shock. 
 
As Figures 12 and 13 show, similar results are obtained for the nonlinear model when G 
= 0 and G = 1. The effects of the impulse shock disappear over time. The iterated 
inflation rates corresponding to the linear, nonlinear, and combined parts first fluctuate 
considerably and then converges to their long-run values obtained without an external 
shock applied. Once again, the results indicate that the linear and the nonlinear models 
are stable and the external shocks to the economy are eliminated over time. 
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Figure 11: Effects of an Impulse External Shock in the Linear Model 
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Figure 12: Effects of an Impulse External Shock in the Nonlinear Model When G = 0 
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Figure 13: Effects of an Impulse External Shock in the Nonlinear Model When G = 1 
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External Shock to Excess Money Growth 
 
The third deterministic extrapolation exercise includes an impulse shock to the excess 
money growth. This exercise is important to understand the effects of a change in the 
excess money growth on the inflation rate in the long-run. The effect of a 1% increase in 
the excess money growth in the linear model is shown in Figure 14. As can be seen from 
the figure, the long-run value of the inflation is 1.34%, which is about 0.3 higher than the 
long-run inflation in the absence of an increase of 1% in the excess money growth. This 
result indicates that an increase of 1% in the excess money growth increases the long-run 
value of the inflation by 0.3%. 
 
Figure 15 shows the effect of an impulse shock of 1% to the excess money growth in the 
nonlinear model when G = 0 (low-inflation regime). The long-run value of the inflation is 
about 0.66%. This is approximately 0.16% higher than the inflation rate obtained without 
the impulse shock. The results indicate that a 1% impulse shock to the excess money 
growth increases the inflation by 0.16% during low-inflation regime. 
 
Finally, Figure 16 shows the effect of an impulse shock of 1% to the excess money 
growth in the nonlinear model when G = 1 (high-inflation regime). The long-run value of 
the inflation is about 3.35%. This is approximately 0.75% higher than the inflation rate 
obtained without the impulse shock. The results indicate that a 1% impulse shock to the 
excess money growth increases the long-run inflation by 0.75% during high-inflation 
regime. 
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Figure 14: Effects of an Impulse Shock to the Excess Money Growth in the Linear 
Model 
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Figure 15: Effects of an Impulse Shock to the Excess Money Growth in the Nonlinear 
Model When G = 0 
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Figure 16: Effects of an Impulse Shock to the Excess Money Growth in the Nonlinear 
Model When G = 1 
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6. Conclusion 
 
The basic findings of the paper can be summarized as follows. First of all, the relation 
between the inflation and the excess money growth in the US seems to be a nonlinear one 
as indicated by the linearity and specification tests. The nonlinear relation is well 
captured by the smooth transition regression models. Second, as the first deterministic 
extrapolation exercise shows, the inflation is stable in both the linear and nonlinear 
models. Third, an external impulse shock to the inflation has no effect on the long-run 
inflation rate. This is also supported by both the linear and nonlinear models. Fourth, a 
1% impulse shock to the excess money growth has a 0.3% positive effect on the long-run 
inflation rate in the linear model. On the other hand, the same shock has 0.16% effect in 
the low-inflation regime and 0.75% effect in the high-inflation regime in the nonlinear 
model. 
 
It would be useful to compare the results obtained in this paper to those already found in 
the literature. Christensen (2001) finds a one-to-one long-run relation between money 
growth and inflation for the US. Our results indicate that the relation is not one-to-one. 
However, Christensen uses money growth but we use excess money growth. So a direct 
comparison may not be appropriate. Using impulse response analysis, Crowder (1998) 
also reports that a shock to money growth effects inflation on a one-to-one basis. A shock 
to inflation however effects neither money growth nor inflation. This result is in line with 
our findings. Milas (2007) finds that a 1% increase in annual money growth rate 
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increases annual inflation by only 0.07%. Interestingly, this ratio between money growth 
and inflation does not hold even under low-inflation regime in our nonlinear model. 
Kugler and Kaufmann (2005) find that a 5% money growth rate is compatible with a 2% 
inflation rate. The ratio 2/5 is close to the ratio in our linear model, which is 1.5/5. De 
Grauwe and Polan (2005) find that the relation between money growth and inflation is 
not proportional for most of the countries, which is our finding for the US. As a final 
note, we should emphasize that none of the papers mentioned here cites the quantitative 
relation between money growth and inflation under different inflation regimes, e.g. high- 
and low-inflation. This is one of the achievements of this paper. 
 
It should be stressed that more research is required to determine how robust the results in 
this study are. Using data from other countries or using different money supply and 
inflation measures seem to be the next steps in that respect. It is also desirable to subject 
the nonlinear model to more analyses. For instance, it would be interesting to apply 
Granger causality tests and see the direction of causality between the excess money 
growth and the inflation. Another interesting analysis would be the comparison of in- and 
out-of-sample16 inflation forecasting performances between the linear and nonlinear 
models. Still another important improvement of the paper might be the use of a 
multivariate STR analysis where excess money growth and inflation are endogenous 
variables. Throughout the paper, we assume the effect of a change in velocity on inflation 
is zero or negligible. A possible improvement of the model may be the addition of a 
change in velocity to excess money growth and use the resulting series as explanatory 
variable for inflation. These constitute our research agenda for the future. 
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