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Abstract

We develop discrete-time models for analyzing the long run equilibrium out-
comes on invasive species management in two-patch environments with migration.
In particular, the focus is upon a situation where removal operations for invasive
species are implemented only in one patch (controlled patch). The new features
of the model are that (i) asymmetry in density dependent migration is considered,
which may originate from impact of harvesting as well as heterogeneous habitat
conditions, and (ii) the effect of density-dependent catchability is well-taken to
account for the nature that required effort level to remove one individual may rise
as the existing population decreases. The model is applied for agricultural damage
control in the raccoon problem that has occurred in Hokkaido, Japan. Numerical
illustration demonstrates that the long run equilibrium outcomes highly depend
on the degree of asymmetry in migration as well as the sensitivity of catchability
in response to a change in the population size of invasive species. Furthermore, we
characterize the conditions under which the economically optimal effort levels are
qualitatively affected by the above two factors and aiming at local extermination
of invasive species in controlled patch is justified.
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“The problem of invasive species and their control is one of the most pressing applied

issues in ecology today (Hastings et al., 2006).”

1 Introduction

The invasive species have increasingly been acknowledged as a global threat, since they

could fundamentally destroy indigenous ecosystem after its establishment (Shigesada

and Kawasaki, 1997; Perrings et al., 2000a). Although there are several unique char-

acteristics accompanied with invasive species that contribute to social damage, one

critical feature is that they tend to spread or disperse very quickly once they succeed

in invasion. Such quick dispersion partly reflects the fact that native species do not

possess defensive skills against newcomers in many cases (Perrings et al., 2000b).

Many governmental attempts have been made to eradicate the established invasive

species. Unfortunately, however, only a few succeeded, and most of them failed espe-

cially when the habitat is sufficiently large (Bomford and O’Brien, 1995). That is, the

management official ends up halting eradication attempts (Myers et al., 1998; Bomford

and O’Brien, 1995; Clout and Veitch, 2002). When the invasive species are widespread

in a large habitat, catchability could be decreasing in the population size of invasive

species. This implies that the cost of removing the last 1-10% population becomes pro-

hibitively expensive, and thus achieving extermination appears to be extremely difficult

(Myers et al., 1998; Bomford and O’Brien, 1995). In summary, we call such a problem

“the issue of density-dependent catchability.”

Given the historical fact, many researchers and practitioners sometimes recommend

“area-wise control,” which includes attempts for local extermination. Such regimes in

invasive species management are that removal operations for invasive species are made

only in some part of the whole habitat where some important industry or ecological
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asset is located such as agriculture. Real world examples in which area-wise control

is undertaken as a management strategy include: raccoon (Procyon lotor) problems in

Hokkaido, Japan, Crown-of-thorns starfish (Acanthaster planci) problems in Okinawa,

Japan, and many other instances in various places as well. As an example from native

species control problems, sika deer management program is well-known, which has

been enforced since 1998 in Hokkaido, Japan. In this program, Hokkaido is divided

into several regions and area-wise control strategies are undertaken (Matsuda et al.,

1999).

Whereas area-wise controls have recently emerged as a management scheme in inva-

sive species management, a series of literature, which analyze the management strategy

in this vein, mainly focus upon a situation where invasive species are reproduced and

removals are implemented in a single closed system (Eisewerth and Johnson, 2002; Per-

rings, 2005; Hastings et al., 2006; Olson and Roy, 2002). However, such a framework is

not appropriate when removal efforts are locally implemented.

It is noted by several papers that a meta-population model is more appropriate

since (i) local removals potentially impact the inter- and intra-species competition,

and (ii) habitat conditions may simply be heterogenous (Delong and Lamberson, 1999;

Holt, 1985; Hastings, 1982). As a result, density dependent migration may become

asymmetric (Armstrong and Skonhoft, 2006; Tuck and Possingham, 1994). Although

there may be several works which consider area-wise controls, none of them, to the best

of our knowledge, explicitly examine the effect of a meta-population structure, density-

dependent catchability and asymmetry in migration in the invasive species management.

Thus this paper seeks to tackle these issues. At this point, several open questions come

to mind:

1. What would be an appropriate measure for effectiveness of removal efforts from

the long run perspective?
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2. Is there any situation where it is better to aim at local extermination even with

a meta-population?

3. How do the degree of asymmetry in migration and the density-dependent catch-

ability affect the long-run equilibrium outcome?

4. How does an economically optimal effort level change with the above two factors?

The goal and contribution of this research are to develop a simple framework of

discrete-time models for analyzing the long-run consequences of removal operations for

a meta-population, and to answer a set of the aforementioned questions in the context

of invasive species management. In particular, an ecological model with two-patch

environments is proposed, considering the key features of invasive species controls: (i)

asymmetry in density dependent migration, and (ii) the effect of density-dependent

catchability, i.e., required effort level to remove one individual could rise as the existing

stock decreases.

While we do not obtain analytical characteristics due to non-linearity in the form of

density-dependent catchability, we demonstrate that it could be utilized for a real world

case study of invasive species management. For the purpose of illustration, the model

is applied to agricultural damage control in the raccoon problem that has occurred

in Hokkaido, Japan. In this application, we consider two economic functions so as to

measure the effectiveness of removal effort levels: 1. agricultural damage originating

from roaming raccoons and 2. removal costs which are formulated as a function of

removal efforts. We first investigate the long run equilibrium outcomes of ecological

variables and the associated economic functions, and then discuss an economically

optimal effort level.
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2 Model

Management officials seek to balance the cost of removal operations and damage that

originates from roaming invasive species. Therefore, management officials are sometimes

determined to implement removal operation only in some part of the whole habitat areas

of invasive species as noted in the previous section. This may be due to the fact that

the whole habitat areas could be too huge to be covered by removal operation, or the

budget in every period may not be sufficient to do so.

The simplest framework for the analysis of such a situation is applying an ecological

model in two-patch environments (Holt, 1985). The area in which removal operations

are implemented is denoted as controlled patch, and the other areas in which no removal

operation is implemented are denoted as uncontrolled patch.

2.1 Ecological model

Consider the following system of population dynamics over time in the two-patch envi-

ronments in which removal operations are implemented only in one patch:

X1,t+1 = F (X1,t)−M(X1,t, S2,t)

= X1,t + r1X1,t(1−X1,t/K1)−m(βX1,t/A1 − S2,t/A2),

(1)

and

X2,t+1 = F (S2,t) + M(X1,t, S2,t)

= S2,t + r2S2,t(1− S2,t/K2) + m(βX1,t/A1 − S2,t/A2),

(2)

S2,t = X2,t −H2,t, (3)

where
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X1,t is invasive species population in uncontrolled patch at period t;

X2,t is invasive species population in controlled patch at the beginning of period t;

ri, i = 1, 2 is the intrinsic growth rate of habitat i;

Ki, i = 1, 2 is the carrying capacity of habitat i;

Ai, i = 1, 2 is the area of habitat i;

m(> 0) is a parameter representing the general magnitude of migration between habi-

tats;

β(> 0) is a parameter to take account of the fact that the migration may be due to

different habitat potentials within the two sub-populations caused by harvesting

in controlled patch and by heterogeneous habitat conditions;

H2,t is population removed in controlled patch at period t;

S2,t is escapement in controlled patch at period t.

In the above model, we simply ignore heterogeneity in the density and in the mi-

gration probability within the habitat. In addition, we assume that the per capita

migration rates in habitats 1 and 2 are respectively m′βA2 and m′A1, which is propor-

tional to the area of destination. The numbers of migrants from habitat 1 to 2 and

from 2 to 1 are respectively m′βA2X1 and m′A1S2. Replacing m′A1A2 by m, we obtain

equations (1) and (2). Parameter β plays a key role in determining the long run equi-

librium outcomes, which represents the degree of asymmetric migration in two-patch

habitats.

The above system of difference equations is similar to the one of the continuous

time model employed in Armstrong and Skonhoft (2006). However, there are some

distinct points to be noted. First, we choose the discrete-time setting for the purpose
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of applications since the time series data on raccoon population, economic damage,

and estimated biological parameters are collected in the discrete manner. In fact, most

basic statistics and data are yearly based in the raccoon problems. We also believe that

the discrete-time formulation is more convenient for the purpose of applying the model

to case studies in general.

Second, a stock-recruitment model is employed to take account of density-dependent

catchability (Tuck and Possingham, 1994; Clark, 1990). This must be distinguished

from a straightforward discretization of the continuous-time model as adopted in the

application of fishery models. The discretization scheme as in fishery literature causes

a problem that the effect of density-dependent catchability is not well-taken, whose

standard specification can be found in Conrad (1999). Such a choice of discretization is

more likely to yield the result that extermination is desirable. On the other hand, the

stock-recruitment model enables us to incorporate the density-dependent catchability

well as demonstrated in what follows.

To capture the effect of density-dependent catchability, a continuous-time submodel

representing a production function is introduced in each intra-period as follows.

ḣ = dh/dτ = (X2,t − h(τ))q(X2,t − h(τ))e(τ) = p(X2,t − h(τ))e(τ),

= (X2,t − h(τ))b(X2,t − h(τ))θ−1e(τ) = b(X2,t − h(τ))θe(τ),

(4)

where

τ denotes an instant of time in an intra-period such that t ≤ τ ≤ t+ M, 0 <M< 1, and

M denotes the length of time in removal operation implemented in that period t;

e(τ) is the effort level devoted at instant τ for t ≤ τ ≤ t+ M;

h(τ) is the stock size removed by operations at instant τ for t ≤ τ ≤ t+ M;
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X2,t − h(τ) is the existing population of invasive species (escapement) at instant τ, t ≤

τ ≤ t+ M;

q(·) = b(X2,t − h(τ))θ−1 is density-dependent catchability, b is some coefficient to be

adjusted for measurement units and θ ≥ 0 is the sensitivity of catchability;

p(·) = b(X2,t − h(τ))θ is catch per unit of effort (CPUE)

with the boundary conditions that

h(t) = 0, h(t+ M) = H2,t, t = 0, 1, . . . ,∞. (5)

Combining the specifications of equations (4) and (5), we analytically derive a pro-

duction function of H2,t, which is analogous to solving an initial value problem of the

first-order ordinary differential equation (4) with the boundary conditions (5). Solving

for H2,t yields

H2,t = X2,t −
[
X1−θ

2,t − (1− θ)b

∫ t+M

t

e(τ)dτ

] 1
1−θ

, (6)

where Et =
∫ t+M

t
e(τ)dτ represents the total effort level of removal operations devoted

by the management officials in period t, and the second term in the right-hand side is

the escapement level in period t, i.e.,

S2,t =

[
X1−θ

2,t − (1− θ)b

∫ t+M

t

e(τ)dτ

] 1
1−θ

= X2,t −H2,t. (7)

This type of sub-continuous model in an intra-period for the production function

is first introduced by Clark (1990), and many other researchers implicitly adopt such

specification as well (Moxnes, 2003; Reed, 1979). With this approach, the effect of

density-dependent catchability and CPUE that has actually occurred in each intra-

period is well-taken in the sense that required effort level of catching one individual
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may rise as the existing population decreases.

For clearer understanding, refer to Figure 1 in which catchability and CPUE are

graphically shown as a function of the existing population of invasive species in an

intra-period. The initial poulation prior to any removal operation is X2,t. As time

goes on in each intra-period, removal efforts are made, and the existing population of

X2,t − h(τ) gradually decreases. At the same time, CPUE is monotonically decreasing,

while marginal change in catchability depends on whether or not the sensitivity of

catchability, θ, is larger than unity. If it is larger than unity, catchability decreases in

the existing population, otherwise it increases. A series of these events that occurs in

each intra-period during removal operations are graphically described in Figure 1.

A parameter of our interest is the sensitivity of catchability, θ, which represents the

index for the percent change of catchability in response to 1 % change in the existing

invasive species stock. Put differently, it represents how CPUE depends on the existing

population of invasive species. As Figure 1 shows, if θ > 1, CPUE is convex in the

existing population, otherwise concave.

Here, it must be noted that if the sensitivity of catchability is larger than unity,

i.e., θ > 1, extermination of invasive species is impossible, otherwise possible. This fact

may be noticed by checking the second term in the right hand side of equation (6), that

is, the escapement level is

[
X1−θ

2,t − (1− θ)b

∫ t+M

t

e(τ)dτ

] 1
1−θ

=
[
X1−θ

2,t − (1− θ)bEt

] 1
1−θ .

This term is positive for any finite effort level of Et when θ is larger than unity. In

other words, when θ > 1, the required effort level for extermination is infinite, which

implies infeasibility of eradication. However, even though θ < 1, it does not imply that

extermination is easy. In this case, as the sensitivity of catchability is approaching one,
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extermination gets more difficult and costly actions. The sensitivity of catchability, θ,

and adjustment parameter, b, in the production function are identified from the field

data, which we describe in the calibration section.

The decision that must be made by the management officials is to set an annual

effort level for removal operations, Et, t = 0, 1, . . .. In real world, this is measured

by aggregate days for which traps had been set in the field. It is common that the

government officials announce the target of total effort level they seek to achieve in

each period. In this paper, it is assumed that the government sets effort levels to

some constant and keeps the level all over the remaining periods, since it works as a

benchmark analysis for the population dynamics.

We also admit that an optimal removal effort via dynamic programming or optimal

control can be derived under the assumptions that the current estimates of population

level in two patches are accurately measured. However, we do not take this approach,

and leave a topic to be addressed in the future. As is often the case with invasive

species management, the population estimates especially outside the controlled patch

are unavailable or not collected by the government agency. Therefore, even though it

is possible to derive an optimal feedback strategy of removals, as in the sense of Tuck

and Possingham (1994), it is quite difficult to be implemented due to the informational

obstacles in reality. Thus, constant annual effort is assumed along the line of the above

argument, i.e., Et = E for all t = {0, 1, 2, . . .}, but the government can choose the level

of E.

2.2 Bionomic steady state

Under the assumption of constant effort level Et = E, there may exist a steady state

at which Xi,t+1 = Xi,t, S2,t+1 = S2,t, H2,t+1 = H2,t, i = 1, 2, t = τ, . . . ,∞ for some

τ > 0. For simplicity, we drop the subscript of t to denote a set of the variables at the
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steady state in what follows, i.e., X1, X2, S2, H2. The bionomic steady state can now

be characterized by the following system of equations:

r1X1(1−X1/K1) = m(βX1/A1 − S2/A2),

X2 = S2 + r2S2(1− S2/K2) + m(βX1/A1 − S2/A2),

S2 = X2 −H2,

(X2 −H2)
1−θ =

(
X1−θ

2 − (1− θ)bE
)
.

(8)

The system derives from equations (1), (2), (3) and (6), and possesses four unknowns

of X1, X2, S2, H2 and four equations.

Unfortunately, it is impossible to solve the steady state equilibria in the analytic

form. However, we confirm that there are two equilibria in which (i) all variables are

zero, and (ii) they are interior. The stability of such a interior equilibrium is checked by

formulating the Jacobian matrix, following the starndard procedure (Edelstein-Keshet,

1988). We have identified that it is stable in most plausible parameter spaces.

2.3 Economic model

We introduce two economic functions which work for measuring the effectiveness of

some constant removal effort level: which are (i) costs of removal operation and (ii)

social damage that accrued from roaming invasive species. While removal cost is easy

to measure, what is social damage may be difficult to reach consensus. Social damage

in control patch could mainly be divided into the following two types; (i) agricultural

economic loss and (ii) ecological one. Whereas there does not exist a good measure of

ecological loss, data on agricultural economic damage has been collected by Hokkaido

government, Japan (Hokkaido-government, 2006). Thus, we adopt the agricultural

economic loss as a proxy representing social damage.
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The operation cost for removal is taken from the standard specification of renewable

resource management, i.e,

Ct = cEt, (9)

where c is constant marginal cost per unit effort. On the other hand, agricultural

damage is assumed to be a class of the following power function of the escapement level

at period t, i.e.,

Dt = D(S2,t) = aSd
2,t, (10)

where parameters of a and d are estimated from available data.

Given the above economic functions of removal costs and social damage out of in-

vasive species, we propose that the social welfare in the long run equilibrium may be a

good measure of economic effectiveness from a long run perspective. As noted in the

previous section, a stable equilibrium exists when government officials set some con-

stant annual effort of E. In this case, it is guaranteed that all ecological variables of

(X1,t, X2,t, S2,t, H2,t) converges to X1, X2, S2, H2 in the long run, independently of the

initial population levels as far as the parameters and effort level are unchanged. Of

course, the steady state depends on the annual constant effort E, that is, the equilib-

rium can be reexpressed as X1(E), X2(E), S2(E), H2(E). Thus, welfare in the long run

equilibrium is written as

W (E) = −C −D(S2) = −cE − aS2(E)d. (11)

One of the aims in this research is to suggest an economically optimal level of constant

annual effort, that is,

E∗ ∈ argmaxE∈R+ W (E), (12)

which is equivalent to finding an effort level that minimizes the social welfare loss in an
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interior equilibrium.

3 Model calibration and parameter estimations

Figure 2 displays the locations of controlled and uncontrolled patches on raccoon man-

agement in Hokkaido, Japan. The more densed colored and less colored patches in an

area framed by a black line in that figure correpsond to controlled and uncontrolled

patch, respectively. In this section, the model introduced in the previous section is

calibrated to capture the population dynamics with density dependent migration for

the purpose of application to raccoon problems in Hokkaido, Japan.

3.1 Biology

In this subsection we introduce how to determine a set of parameters necessary for the

numerical analysis of population dynamics, based on the result of field research as well

as life table of raccoons in Hokkaido. We mainly focus on an intrinsic growth rate, r,

and carrying capacity, K, in each patch.

With respect to the intrinsic growth rates, the governmetal reports provide some

benchmark method from life table of raccoons (Hokkaido-government, 2006). For this

calculation of intrinsitc growth rate, several assumptions in life table must be made: sex

ratio of male and female, pregnancy rate, litter size, natural death rate and child death

rates of adults and juveniles within a single year. We adopt the same values for these

parameters and calculation method noted in Hokkaido report (Hokkaido-government,

2006), and finally obtain r = 0.61, which is employed in a simulation throughout the

rest of the paper.

With respect to carrying capacity of K, our decision is based on the recent field

research conducted by Maesaki et. al. (2001). They report that the range of estimation
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in density per km2 is approximately 0.5 ∼ 4.1. Given this field survey, we adopt 4/km2

for the carrying capacity. Since we know the areas of controlled and uncontrolled

patch, which are A2 = 9, 506km2 and A1 = 38, 527km2, multiplying these with density

yields the approximation of carrying capacities of uncontrolled and controlled patches

as K1 = 154, 112 and K2 = 38, 028, which are used in numerical analysis.

With respect to the remaining two parameters in the population dynamics, that

is, β and m, associated with migration, there are no available data or field research

that can be used for identification. Instead, we suppose some range of values for these

parameters, and describe how they affect the resulting outcomes in the discussion. At

this point, we simply note that three values for β are assumed β = {0.5, 1.0, 1.5}, and

the rate of migration between two patches, m = 875, as a starting point.

3.2 Social damage

A series of annual reports issued by Hokkaido government suggest that agricultural

damage is a main factor that motivates her to implement removal controls of raccoons.

Therefore, this paper takes agricultural damage or loss as a proxy for social damage as

mentioned previously.

Figure 3 illustrates the relationship between agricultural damage (unit: ten thou-

sand yen) and estimated escapement, i.e., X2,t−H2,t collected as data over the last ten

years in the controlled patch (Hokkaido-government, 2006). Surprisingly enough, the

curvature is not convex, but concave in the sense that marginal agricultural damage

appears to be decreasing in the escapement level. This result is opposite to the usual

assumption that a series of past economic literature have adopted. This result may be

due to several reasons. First, it has been remarked that the way of collecting data on

agricultural damage is subject to measurement errors. For instance, farmers, who suf-

fer from roaming raccoons in an early stage, may tend to over-report the agricultural
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damage due to psychological or cognitive reasons. Second, raccoons are well-known

to posseess opportunistic and omnivorous feeding habits (Ikeda et al., 2004). They

therefore may seek to obtain another source of preys if agricultural products for their

forage become scarce to a certain degree. In any event, the evidence for the relationship

between agriculutral damage and the escapement of raccoons remains scarce and the

reasons must be further investigated.

We estimate the damage function of Dt = D(S2,t) = aSd
2,t by running the following

regression:

log(D) = log(a) + d log(esc) + ε,

where esc represents the escapement level of population estimated in the controlled

patch as an independent variable.

The OLS regression results are reported in Table 1. As expected, escapement is

not so significant even at the 10% level. However, agricultural damage seems to be

dependent on the escapement level from practical consideration, and we will use these

estimated values of â = 538.30, d̂ = 0.2169 in numerical illustration.

3.3 Catchability and catch per unit of effort (CPUE)

There are not sufficient data to estimate CPUE and catchability in controlled patch,

although some estimates of (i) population prior to removal operations, (ii) the number

of populations removed, and (iii) total effort devoted within a single year are available

in specific years. For example, such estimates in 2006 are given as follows: Population

estimate prior to removal operation, population removed and total effort are X2,2006 =

4, 907, H2,2006 = 1, 140 and E2006 = 64, 360 trap days, respectively. Based on these

limited data, the best thing one can do is to introduce several plausible scenarios that

may be the case in reality, and identify the catchability and CPUE depending on each
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scenario.

The scenarios we will assume with respect to catchability and CPUE are:

1. (Eradication is Infeasible (EI)), In this scenario, we set θEI = 1.1, bEI = 1.78 ×

10−6.

2. (Eradication is Difficult, but Feasible (EDF)), θEDF = 0.9, bEDF = 9.48× 10−6.

3. (Eradication is Possible, (EP)), θEP = 0.5, bEP = 2.69× 10−4.

Utilizing the above three estimates in 2006 and production function of equation (6)

gives the parameter values of each scenario, that is, θ and b.

First, it must be recalled that the sensitivity of catchability, θ, tells us whether

extermination is feasible or not. Since we never know its true value with the current

removal technology and methods for our case study, it is good to assume several pos-

sibilities. Therefore, we first set θEI = 1.1, θEDF = 0.9, θEP = 0.5, and each scenario

is named EI, EDF, EP, respectively, after the degree of difficulty in achieving exter-

mination corresponding to the value of the sensitivity of catchability. Once we set the

sensitivity of catchability and given the estimates of X2,2006, H2,2006, E2006 in 2006, we

can calculate adjustment parameter, b, from equation (6). Rearranging equation (6)

yields

b =
X1−θ

2,t − (X2,t −H2,t)
1−θ

(1− θ)Et

, (13)

which enables us to identify the values of bEI , bEDF , bEP as listed above.

In the result section that follows, we will compare the long run equilibrium outcomes

across each scenario, which plays an important role in determining the economically

optimal level of constant annual effort associated with asymmetric migration between

two patches.
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4 Result

We present numerical results in this section, using the parameter values and functional

forms for key variables calibrated from the data in the raccoon problem, Hokkaido,

Japan. The baseline parameters are summarized in Table 2.

Throughout this section, we treat the long run equilibrium outcomes under the

constant annual effort. We have confirmed that all the equilibrium outcomes presented

in this section are invariant with an initial population level. In other words, the same

equilibrium outcomes, independently of initial population levels, are reached as far as

the parameters and effort levels keep unchanged.

Figure 4 provides a set of 9 panels (3 × 3), which displays equilibrium outcomes

of an ecological model, depending on each scenario and parameter set. The horizonal

axis in each panel represents the constant annual effort level measured by total days for

which traps has been set in the field, while the vertical axis denotes ecological variables

of X1, X2, S2. The panels in the 1st, 2nd and 3rd rows measure X1, X2, S2, and the

1st, 2nd and 3rd columns correspond to the scenarios of EP, EDF and EI, respectively.

Each panel provides a comparison of three lines, each of which is corresponding to the

parameter of asymmetric migration: β = {0.5, 1.0, 1.5}: β = 0.5 (line without dots),

β = 1.0 (solid line with dots), β = 1.5 (thin line with dots).

As can be seen from Figure 4, the parameter of asymmetric migration, β, affects

the long-run equilibrium. In general an increase in β yields more raccoon population in

controlled patch, X2, and less population in uncontrolled patch X1. This result follows

our intuition.

On the other hand, difference in S2 due to asymmetric migration of β depends on the

annual effort level of E. If E is sufficiently small, then difference in S2 is obvious (See

the effort level of 0 ∼ 300, 000 in the 3rd row panels of Figure 4). However, once E gets

sufficiently large, then the difference becomes small or negligible (See the effort level of
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300, 000 ∼ 600, 000 in the 3rd low panels of Figure 4, and also refer to Table 3). Such a

trend for sufficiently large effort levels arises due to the two different reasons depending

on each scenario. In EP, local extermination is simply achieved, i.e., S2 = 0, for all

β = {0.5, 1.0, 1.5} when sufficiently large efforts are devoted. In fact, the effort levels

required for extermination are 310,000, 420,000, and 510,000, depending on parameter

values of β = {0.5, 1.0, 1.5} (Confirm this from the row of EP in Table 3 and also from

Figure 4).

In terms of EDF and EI, CPUE gets very low in an equilibrium as effort level is

sufficiently increased and the existing population in controlled patch decreases. This

feature in an equilibrium reflects the fact that effectiveness of one unit effort rapidly

declines, and thus the difference in the population level prior to removal operation has

negligible impacts on the resulting escapement level afterwards. Thus, difference in

S2 becomes small as effort levels are sufficiently large, although extermination is not

achieved in EDF and EI (See the columns of EDF and EI in Table 3).

Here, it must be recalled that extermination is technically feasible in EDF and EP.

For the range of effort levels we employed in numerical analysis, it is succeeded in EP

when the effort level of E are set more than 310,000, 420,000, 510,000 depending on

β = 0.5, 1.0, 1.5, respectively, and it is not achieved in EDF for all β (See Table 3).

This suggests that even though extermination is technically possible, the difference in

the sensitivity of catchability, θ, significantly affects the annual effort level at which

eradication is succeeded in an equilibrium. In general, as the sensitivity of catchability

is larger, the effort level that is required for extermination would increase as illus-

trated. In summary, analysis of an ecological model suggests that both the sensitivity

of catchability and the degree of asymmetric migration are crucial in determining the

equilibrium outcome especially on whether local extermination is succeeded or not in

controlled patch.
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We have looked at the ecological outcomes so far. In turn, we now present the

economic consequence in what follows. Figure 5 provides a set of 9 panels (3×3), which

displays equilibrium outcomes associated with social welfare defined in equation (11)

where the 1st, 2nd and 3rd rows correspond to the equilibrium welfare when constant

marginal cost is set as c is 200, 100, 50, respectively, while the 1st, 2nd and 3rd columns

correspond to the scenarios of EP, EDF, and EI, respectively. Each panel provides a

comparison of three lines, each of which corresponds to the parameter of asymmetric

migration, β = {0.5, 1.0, 1.5}: β = 0.5 (line without dots), β = 1.0 (solid line with

dots), β = 1.5 (thin line with dots).

Figure 5 enables us to identify an economically optimal level of constant annual

effort from the long run perspective. It is the one which gives the highest value of

W (E) as defined in equation (12). For instance, when c = 200 and the scenario is EI,

then an economically optimal effort level is zero. Because W is the highest at E = 0

(See the panel of the 1st row and 3rd column in Figure 5). It implies that any positive

removal effort does not pay off compared to the case of E = 0 for all β = {0.5, 1.0, 1.5}

in the long run. As another example, focus on the case of EI when c = 50 (See the

panel of the 3rd row and the 3rd column in Figure 5). Then it can be observed that

an economically optimal effort level is about 220,000 for all β = {0.5, 1.0, 1.5}. This

suggests that setting E = 220, 000 pays off compared to any other effort level from the

long run perspective, irrespective of the degree of asymmetric migration.

Close inspection of Figure 5 reveals that the qualitative features of W (E) in EP

are quite different from those in EDF and EI. In EP, the economically optimal effort

level is located where local extermination is just achieved if constant marginal cost is

sufficiently small, i.e., c = {100, 50}, otherwise zero effort is economically optimal (See

the column of EP in Table 3, and the three panels of the 1st columns in Figure 5).

Thus, in this situation the problem simply reduces to “Is the constant marginal cost of

18



c small enough that local extermination pays off?” When c = {50, 100}, it is optimal

to aim at local extermination so that an economically optimal effort levels must be

adapted with β. When c = 200, zero effort level is optimal.

Whenever the sensitivity of catchability is sufficiently small, the same qualitative

feature with respect to W (E) as in EP holds. In this case, economically optimal effort

levels could be highly dependent upon degree of asymmetric migration, β. This reflects

the fact that in EP , the effort level required for eradication increases as β rises (See

Table 3).

In EDF and EI, the optimal effort levels are zero or some strictly positive effort

level, which could be independent of parameters of asymmetric migration β. If c = 50,

then the optimal effort level is located around 220, 000 ∼ 230, 000 and its levels appears

to be independent of the degree of asymmetric migrations β in both scenarios (See the

two panels of the 3rd row and 2nd, 3rd columns in Figure 5). Next, observe the two

panels of c = 100 (See the two panels of 2nd row and 2nd and 3rd columns in Figure 5).

In EDF, only when β = 0.5, it is optimal to set about E = 200, 000, otherwise zero. In

EI, the optimal effort level appears to be around E = 150, 000 for all β. Finally observe

the two panels of c = 200 (See the two panels of the 3rd row, and 2nd, 3rd columns in

Figure 5). In these cases, the optimal effort level is zero irrespetive of β so that any

positive level of removal effort cannot be justified in both scenarios (See the two panels

in the 1st row and 2nd, 3rd columns in Figure 5).

From a series of the above numerial results in EDF and EI, we draw the following

observations: whenever the sensitivity of catchability is sufficiently high and some pos-

itive effort is economically desirable for all β, then the economically optimal effort level

could be almost independent of the degree of asymmetric migration. This is in sharp

contrast with the case of EP.

In this result section, we choose the limited parameter set of constant marginal cost
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c = {200, 100, 50}. However we can say what would happen if it takes other parameter

ranges of c. If constant marginal cost of c takes the value larger than 200, the optimal

effort levels simply remains zero for all scenarios. If c is less than 100, the qualitative

features of optimal effort levels are almost identical to the ones with the cases of c = 50

in all scenarios. Therefore, our result presented in this section could be viewed as an

exhaustive list of important results.

Finally we summarize the findings; it is demonstrated that only when the sensitivity

of catchability is sufficiently small such as EP scenario, local extermination at controlled

patch yields an optimal welfare in an equilibrium. Accordingly, the optimal effort level

must change with β as illustrated above for local eradication. On the contrary, if the

sensitivity of catchability is sufficiently large such as EDF or EI, it is never optimal to

aim at local extermination, rather it could be better to aim at keeping low escapement

level at the controlled habitat. In such a situation, an economically opitmal effort

level could be almost independent of the degree of asymmetric migrations β (See the

three panels of the 3rd row in Figure 5). It must be noticed that this feature is in

contrast with that in the case of low sensitivity of catchability. Therefore, identifying

the sensitivity of catchability in terms of current removal technology is important to

determine a socially desirable goal as well as the relationship between an economically

optimal effort level and the degree of asymmetric migrations.

5 Discussion

The Hokkaido government currently appears to set local extermination in controlled

patch as her goal on this raccoon problem, and aims at implementing an annual effort

level of E = 80, 000 ∼ 100, 000 trap days. From our research, the current goal is

justified only if the current technology or method for removal of raccoons exhibits a
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sufficiently low sensitivity of catchability and the constant marginal cost per unit effort

is sufficiently low. It is testable, and the estimate on the sensitivity of catchability

really helps guiding where we should go on this problem.

Although we do not present all the patterns of numerical results, we confirm that

migration parameter of m will not qualitatively impact on the equilibrium outcomes of

both ecological variables and economic functions. In other words, for the wide range of

m, only when the sensitivity of catchability is sufficiently small, local extermination is

economically desirable. However, once θ is sufficiently high, then local extermination is

never optimal and keeping the low escapement by setting the optimal effort level ranged

between 150,000 and 230,000. Reflecting these numerical results with real practice on

the raccon problems in Hokkaido, we recommed that effort level be increased up to

about 150, 000 ∼ 230, 000 if the sensitivity of catchability with current technology

is sufficiently high. On the contrary, if the current removal technology possesses a

sufficiently low θ, the “strike level of removal effort” for local extermination must be

carefully evaluated, which highly depends on the migration rate from uncontrolled areas.

In this paper, we focus on agricultural damage as a reason for raccoon controls, and

demonstrate a result that it is concave in the escapement level. What if it is convex?

The answer for this question is that local extermination is simply more unlikely to be

justified in our analytic framework, since reducing the population to zero is not so an

attractive option, compared to the concave damage function.

This research takes the perspective that many of the management decisions of “area-

wise controls” in an invasive species might be legitimately analyzed through a simple

deterministic meta-population model with migration. In addition, we restrict our atten-

tion to the class of “constant annual effort” as a choice for the management officials. In

reality, however, the model adopted in this research could be viewed as primitive, and

it is totally possible to extend it into several directions for more real policy guidance:
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(1) Multiple stochasticities such as growth uncertainty and implementation error could

be incorporated into a model in which a Mote Carlo simulation may be of some use,

(2) the optimal feedback strategy of removal controls can be derived through dynamic

programming or optimal controls even under uncertainties as in the sense of Tuck and

Possingham (1994), (3) the most important extension that must be made in the fu-

ture is how we incorpolate loss of ecological services into the analytic framework of the

mathematical model.
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Table 1: Estimates of parameters of agricultural damage

Estimated Coefficients Standard Errors t stat
log a 6.2884 0.9727 6.4643

d 0.2169 0.1226 1.7678

R2 = 0.3424; Adjusted R2 = 0.2329.

Table 2: The baseline parameters

Parameter Description Value
(r1, r2) Intrinsic growth rates (0.61,0.61)

K1 Carrying capacity in uncontrolled patch 154,112
K2 Carrying capacity in controlled patch 38,028
A1 Area in uncontrolled patch 38,527
A2 Area in controlled patch 9,506
m Dispersion 875

(a, d) Parameters in agricultural damage (538,0.2169)

Table 3: S2: Escapement in equilibrium

0 100000 200000 300000 400000 500000 600000

β = 0.5 35418 25637 562 1 0 0 0
β = 1.0 38028 29462 16296 655 19 0 0
β = 1.5 40286 32463 21954 4189 448 10 0
β = 0.5 35418 13378 2022 698 319 159 81
β = 1.0 38028 18051 4524 1621 757 389 207
β = 1.5 40286 21451 6950 2610 1237 646 351
β = 0.5 35418 8874 2293 1070 620 397 269
β = 1.0 38028 12367 3855 1839 1064 676 453
β = 1.5 40286 15061 5183 2507 1448 915 610

EP

EDF

Constant Annual Effort, E (trap days)

EI

S2
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Figure 1: Catchability and CPUE as a function of the existing population size in each
intra-period

controlled patch

uncontrolled patch

3.1 Biology

本研究の対象地は北海道の西側の真ん中で、黒い四角で囲った部分。この地図の赤い地域が

controlled patch、ピンクの地域がuncontrolled patchを示している。面積をそれぞれ計算

した結果、controlled patchは 9506 km2 、uncontrolled patchは 38527 km2となった。

The study site is located in west-central Hokkaido, which is framed by black 

square (figure1). The map show that red area is controlled patch, and pink area 

is uncontrolled patch. We calculated each area, controlled patch is 9506 km2 and 

uncontrolled patch is 38527 km2.

Figure1 map（北海道の報告書から引用）

In 2001, MAESAKI, AOYAGI, and HAYASI estimated a density of 0.5―4.1 raccoons/km2 

in controlled patch. We think K of raccoons/km2 as 1. Because we seem that 4.1 

raccoons/km2  of  maximum  value  is  very  high  density  in  field,  additionally 

considering of scattering an unsuitable area.  

We calculated r drawing upon the report. The report was calculated in such an 

assumption and algorithm. 

assumption

1 初年度の生息頭数は３０００頭とする。

number of first year is 3000.

2 初年度の２歳以上の個体は６０％、１歳の個体は４０％とする。

Rate of above two years old is 60%,and one years old is 40%.

Figure 2: Location map of controlled and uncontrolled patches in Hokkaido, Japan
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Figure 3: Scatter plot between agricultural damage and estimated escaped population
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Figure 4: Equilibrium outcomes of ecological variables as a function of constant effort,
β = 0.5 (line without dots), β = 1.0 (solid line with dots), β = 1.5 (thin line with dots)
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Figure 5: Equilibrium outcomes of social welfare as a function of constant effort, β = 0.5
(line without dots), β = 1.0 (solid line with dots), β = 1.5 (thin line with dots)
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