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Abstract

One of the most profound features of electricity spot prices are the price spikes. Markov regime-switching (MRS)
models seem to be a natural candidate for modeling this spiky behavior. However, in the studies published so far, the
goodness-of-fit of the proposed models has not been a major focus. While most of the models were elegant, their fit
to empirical data has either been not examined thoroughly or the signs of a bad fit ignored. With this paper we want
to fill the gap. We calibrate and test a range of MRS models in an attempt to find parsimonious specifications that
not only address the main characteristics of electricity prices but are statistically sound as well. We find that the best
structure is that of an independent spike 3-regime model with heteroscedastic diffusion-type base regime dynamics
and shifted spike regime distributions. Not only does it allow for consecutive spikes or price drops, which is consistent
with market observations, but also exhibits the ‘inverse leverage effect’ reported in the literature for spot electricity
prices.

Keywords: Electricity spot price, Spikes, Markov regime-switching, Heteroscedasticity, Inverse leverage effect.

1. Introduction

The valuation of electricity contracts is not a trivial task. If the model is too complex the computational burden
will prevent its on-line use in trading departments. On the other hand, if the price process chosen is inappropriate to
capture the main characteristics of electricity prices, the results from the model are unlikely to be reliable.

The uniqueness of electricity as a commodity prevents us from simply using models developed for the financial
or other commodity markets. Electricity cannot be stored economically and requires immediate delivery, while end-
user demand shows high variability and strong weather and business cycle dependence. Effects like power plant
outages or transmission grid (un)reliability add complexity and randomness. The resulting spot price series exhibit
strong seasonality on the annual, weekly and daily level, as well as, mean reversion, very high volatility and abrupt,
short-lived and generally unanticipated extreme price changes known as spikes or jumps.

Despite numerous attempts (for reviews see e.g. Benth et al., 2008; Bunn, 2004; Kaminski, 2004; Weron, 2006),
the need for realistic models of price dynamics capturing the unique characteristics of electricity and adequate deriva-
tives pricing techniques still has not been fully satisfied. It is the aim of this paper to suggest parsimonious models for
electricity spot price dynamics that not only address the main characteristics of electricity prices but are statistically
sound as well. The parsimony is a prerequisite of derivatives pricing, especially simulation techniques, where the
numerical burden can be substantial. The statistical adequacy, on the other hand, is a requirement in any modeling
task.
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We focus on Markov regime-switching (MRS) models, which seemto be a natural candidate for modeling the
spiky, non-linear behavior of electricity spot prices. In a way, they offer the best of the two worlds; they are a trade-off
between model parsimony and adequacy to capture the unique characteristics of power prices. In contrast to threshold
type regime-switching models (like TAR, STAR, SETAR), in MRS models the regimes are only latent. Consequently,
MRS models do not require an upfront specification of the threshold variable and level and, hence, are less prone to
modeling risk.

Yet, despite this latency, there are still enough ‘free parameters’ in MRS models to make the calibration procedure
a tough exercise, even for experienced professionals. Firstly, the number of regimes has to be agreed upon. In almost
all published studies only 2-regime models were considered, most likely due to a lower computational burden. Apart
from a base regime, a spike (or excited) regime was introduced for modeling the extreme price behavior. However,
there is no fundamental reason for not considering 3- or multi-regime specifications. In fact, analyzing UK half-
hourly electricity spot prices Karakatsani and Bunn (2008) identified three regimes, with the third regime capturing
the most extreme prices. The estimated switching pattern suggested a two-stage spike reversal to normal prices.
Also, for many of the very low prices a technical (or fundamental) event underlying the non-standard behavior can be
identified, justifying existence of a separate ‘down-spike’ or ‘drop’ regime.

Secondly, the stochastic processes defining the price dynamics in each of the regimes have to be selected. The
base regime is typically of a mean-reverting diffusion-type, however, for the spike regime(s) a number of specifications
have been suggested, ranging from mean reverting diffusions to heavy tailed random variables.

Finally, the dependence between the regimes has to be decided upon. Dependent regimes with the same random
noise process in all regimes (but different parameters) lead to computationally simpler models. On the other hand,
independent regimes allow for a greater flexibility and seem to be a more natural choice for a process which, from
time to time, radically changes its dynamics.

This paper is intended as a guide to MRS models for spot electricity prices. In Section 2 we present the datasets
and explain the deseasonalization procedures. In Section 3 we explain the estimation process and goodness-of-fit
testing. Next, in Section 4 we review the first and second generation models and discuss their pros and cons. In
Section 5 we calibrate various MRS models to deseasonalized prices and log-prices, evaluate their goodness-of-fit
and select the optimal model structure. Finally, in Section 6 we conclude.

2. The datasets

2.1. Three markets, six datasets
In this study we use mean daily (baseload) day-ahead spot prices from three major power markets: the Euro-

pean Energy Exchange (EEX; Germany), the PJM Interconnection (PJM; U.S.) and the New England Power Pool
(NEPOOL; U.S.). For each market the sample totals 2926 daily observations (or 418 full weeks) and covers the 8-
year period January 1, 2001 – January 4, 2009. To see how robust are the presented models and how well they perform
under different market conditions each dataset is split into two subsamples of equal length (1463 daily observations
or 209 weeks each): January 1, 2001 – January 2, 2005 (EEX1, PJM1 and NEP1) and January 3, 2005 – January 4,
2009 (EEX2, PJM2 and NEP2), see Figures 1-2.

Note, that the different dynamics of spot electricity prices in the second four-year period coincide with a change in
market fundamentals. The electricity price hike in 2005 was largely due to higher natural gas (NG) prices. In Europe,
the fuel prices were pushed up by the decline in North Sea production and a cold winter of 2005/2006 (Davoust, 2008).
The introduction of CO2 emission costs in January 2005 (Benz and Trück, 2006) added momentum. In the U.S., the
doubling of NG prices was initiated by hurricanes Katrina and Rita which damaged Gulf of Mexico production, pro-
cessing and transportation infrastructure. This volatile period was followed by roughly 18 months of more moderate
prices and the second ‘fuel bubble’, which started in September/October 2007 and ended in July/August 2008 with
the burst of the ‘oil bubble’ (Hamilton, 2009; Khan, 2009).

In Figures 1-2 we illustrate these facts using data from NG, crude oil and coal markets. The choice of these
three fuel drivers is motivated by the fact that they are the major fuel sources: coal in EEX and PJM, oil and NG in
NEPOOL (Ernst & Young, 2006; NPCC, 2007; PJM, 2009). Moreover, most of the electricity price variation can be
explained by the level of NG prices as a result of the supply stack structure, in which NG is the marginal fuel – the
fuel that sets the price most often (Eydeland and Wolyniec, 2003; Weron, 2006). We use the National Balancing Point
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Figure 1: Mean daily spot prices and their long-term seasonalcomponents (LTSC; thick blue lines) for the EEX power market in Germany (top
panels). The fundamental price drivers – the National Balancing Point (UK) natural gas day-ahead prices and the McCloskey North West Europe
Steam Coal Index (rescaled by 100 to fit in the plot) – are shown for comparison in the bottom panels. The NBP prices are quoted in GBP/therm,
but have been rescaled to the GBP/mmbtu units to make them more comparable to the Henry Hub prices in Figure 2. The unit mmbtu stands for
one million British thermal units or 10therms. The first four years (January 1, 2001 – January 2, 2005) of the study period are presented in the left
panels and the latter four years (January 3, 2005 – January 4, 2009) in the right panels.

(NBP) natural gas day-ahead prices in the UK as a proxy for the European NG market. In the U.S. the largest and
most important natural gas hub is the Henry Hub in Louisiana. As for the two other fuels, we use the McCloskey
North West Europe Steam Coal Index as a proxy of the European coal market and two HWWI indexes – the HWWI
World Crude Oil Index and the HWWI World Coal Index – as proxies for the U.S. fuel markets.

The natural gas/electricity price dependence can be seen very well in the period mid-November 2005 – mid-March
2006 (days #310-#445 in the right panels of Figure 1). The sudden increase of European NG prices led to an instant
increase of on-peak prices (and hence mean daily prices) in the EEX market. In the U.S., the Henry Hub price
spike in late February 2003 (due to a severe cold front that increased demand and reduced supply by freezing-off

producing wells; days #780-#790 in the left panels of Figure 2) caused spikes in PJM and NEPOOL prices, though
not necessarily the most severe in history. The influence of all three fuels – NG, oil and coal – on electricity can be
seen in the last months of 2008. Due to the sub-prime crisis in the U.S., the global economy went into a recession and
the demand for energy products dramatically decreased. The burst of the ‘oil bubble’ in mid-2008 had an immediate
effect on the U.S. power markets (PJM and NEPOOL), but a delayed effect on the European power market (EEX). In
the latter case, the spot electricity prices dropped irrespective of the relatively constant NBP prices; the falling coal
prices eventually led to the price decrease.

Obviously, fuel prices are the primary drivers of spot electricity prices. However, the actual marginal costs of
the different generators can be influenced by a number of physical constraints. As a result, fuel costs might not be
a sufficient proxy for the actual marginal cost of generation (Eydeland and Wolyniec, 2003). Also we cannot neglect
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Figure 2: Mean daily spot prices and their long-term seasonalcomponents (LTSC; thick blue lines) for the PJM and NEPOOL power markets in
the U.S. (top panels). The fundamental price drivers – the Henry Hub natural gas daily closing prices and the HWWI World Crude Oil and Coal
Indexes (rescaled by 100 to fit in the plot) – are shown for comparison in the bottom panels. The first four years (January 1, 2001 – January 2,
2005) of the study period are presented in the left panels and the latter four years (January 3, 2005 – January 4, 2009) in the right panels.
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the strategic bidding practices, which at times significantly change the spot prices. Having all this in mind and not
wanting to focus the paper on modeling the fuel stack/bid stack/electricity spot price relationships we will use a single
non-parametric long-term seasonal component (LTSC) to represent the long-term non-periodic fuel price levels, the
changing climate/consumption conditions throughout the years and strategic bidding practices. As can be seen in
Figures 1-2, the LTSC – obtained by wavelet smoothing of electricity spot prices (see the next Section for details) –
pretty well reflects the ‘average’ fuel price level, understood as a combination of NG, crude oil and coal prices.

2.2. Deseasonalization
There are different suggestions in the literature for dealing with the seasonal pattern in electricity price dynamics.

Here we follow the ‘industry standard’ and represent the spot pricePt by a sum of two independent parts: a (pre-
dictable) seasonal componentft and a stochastic componentXt, i.e. Pt = ft + Xt. Further, we letft be composed of
a weekly periodic partst and a long-term seasonal componentTt, which represents the long-term non-periodic fuel
price levels, the changing climate/consumption conditions throughout the years and strategic bidding practices.

As in Weron (2009) the deseasonalization is conducted in three steps. First,Tt is estimated from daily spot prices
Pt using a wavelet filtering-smoothing technique (for details see Trück et al., 2007; Weron, 2006). Recall, that any
function or signal (here:Pt) can be built up as a sequence of projections onto one father wavelet and a sequence of
mother wavelets:S J +DJ +DJ−1+ ...+D1, where 2J is the maximum scale sustainable by the number of observations.
At the coarsest scale the signal can be estimated byS J. At a higher level of refinement the signal can be approximated
by S J−1 = S J +DJ. At each step, by adding a mother waveletD j of a lower scalej = J−1, J−2, ..., we obtain a better
estimate of the original signal. This procedure, also known as lowpass filtering, yields a traditional linear smoother.
Here we use theS 8 approximation, which roughly corresponds to annual (28 = 256 days) smoothing, see the thick blue
lines in Figures 1-2. The price series without the LTSC is obtained by subtracting theS 8 approximation fromPt. Next,
the weekly periodicityst is removed by applying the moving average technique (see e.g. Brockwell and Davis, 2002;
Weron, 2006) and subtracting the resulting ‘mean’ weekly pattern. Finally, the deseasonalized prices, i.e.Pt − Tt − st,
are shifted so that the minimum of the new process is the same as the minimum ofPt (the latter alignment is required
if log-prices are to be analyzed). The resulting deseasonalized time seriesXt can be seen in Figure 8.

Before we start modeling the stochastic components, two important facts should be mentioned for clarity. Firstly,
in terms of smoothing properties wavelet filters show some resemblance to kernel density estimators (KDE). In fact,
a KDE with a Gaussian kernel and standard deviation of ca. 90 days yields seasonal components similar to the
wavelet estimated LTSC in Figures 1-2. However, unless a complicated local bandwidth choice is employed, KDE
are not locally adaptive and for datasets with seasonal components of varying in time frequencies and amplitudes,
like electricity spot prices, the bandwidth is typically either too small or too large. Wavelet filters do not share this
drawback and, in general, are superior to KDE (Härdle et al., 1998).

Secondly, while wavelets offer a very good in-sample fit to the data, their ability to forecast past the near future
is rather bad (Ramsey, 2002). A very small number of wavelet coefficients are typically needed to provide good
fits to any historical data, but the set of relevant coefficients varies period by period. The reason for this is that
individual wavelet functions are localized in time, i.e. the mass of oscillations is concentrated on a small time interval.
Consequently, the functions (time series) that are represented by wavelets do not have to be homogeneous over time.
This is quite unlike sines and cosines. Fourier analysis assumes that the signal is homogeneous over time, that over
any subinterval of the observed time series the precise same frequencies hold at the same amplitudes. This property
makes trigonometric representations suitable for forecasting ... at the cost of offering a generally poor in-sample fit.
One might argue that the latter can be corrected for by including a smoothing component, like in De Jong (2006),
where a sine function is combined with an Exponentially-Weighted Moving Average (EWMA). But this approach
essentially boils down to smoothing the prices with a KDE, a wavelet filter or the EWMA itself.

We want to emphasize that the focus of this paper is not on forecasting the trend-seasonal patterns, rather on
modeling the dynamics of the stochastic components. Hence, in what follows we will concentrate only on the de-
seasonalized pricesXt or log-prices log(Xt), as seen in Figures 8 and 9, respectively. Forecasting the trend-seasonal
patterns beyond the next few days or weeks is a very difficult task, not only in the power markets but also in either
the financial markets or in the economy generally. Models fitted to historical data are seldom able to anticipate major
events, like the ‘oil bubble’ of 2007/2008. There is hope, though. The information carried by forward prices provides
insights as to the future evolution of spot prices. Using one of the techniques of constructing smooth forward price
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curves in electricity markets (Benth et al., 2007; Borak and Weron, 2008; Fleten and Lemming, 2003) we might be
able to forecast the LTSC with a decent accuracy. But if this is the right approach has yet to be tested.

3. Statistical inference for MRS models

3.1. Basic properties
The underlying idea behind the Markov regime-switching (MRS) scheme is to model the observed stochastic

behavior of a specific time series by two (or more) separate phases or regimes with different underlying processes.
In other words, the parameters of the underlying process may change for a certain period of time and then fall back
to their original structure. The switching mechanism between the states is Markovian and is assumed to be governed
by an unobserved (latent) random variable. The underlying processes, though, do not have to be Markovian, but are
often assumed to be independent from each other.

In the simplest case of a 2-regime model, the spot price can be assumed to display either normal or very high
prices (or spikes) at each point in time, depending on the regimeRt = b (‘base’) orRt = s (‘spike’). Consequently,
we have a probability law that governs the transition from one state to another. The transition matrixP contains the
probabilitiespi j of switching from regimei at timet to regimej at timet + 1:

P = (pi j) =

(

pbb pbs
psb pss

)

=

(

1− pbs pbs
psb 1− psb

)

. (1)

In the more general case of a 3-regime model, the transition matrixP takes the form:

P = (pi j) =





















pbb pbs pbd
psb pss psd
pdb pds pdd





















, with pii = 1−
∑

j,i
pi j. (2)

The subscripts{b, s, d} represent the ‘base’, ‘spike’ and ‘drop’ (‘downward spike’) regimes, respectively.
Because of the Markov property the current stateRt at timet of a Markov chain depends on the past only through

the most recent valueRt−1. Consequently the probability of being in statej at timet + m starting from statei at timet
is given by

P(Rt+m = j | Rt = i) = (P′)m · ei, (3)

whereP′ denotes the transpose ofP andei denotes theith column of the identity matrix.

3.2. Calibration
Calibration of MRS models is not straightforward since the regime is only latent and hence not directly observable.

Here we follow Hamilton (1990), Kim (1994) and Janczura and Weron (2010a) and apply a variant of the Expectation-
Maximization (EM) algorithm. This is an iterative two-step procedure which starts with computing the conditional
probabilitiesP(Rt = j|x1, ..., xT ; θ) for the process being in regimej at time t, based on starting valuesθ̂(0) for the
parameter vectorθ of the underlying stochastic processes. These probabilities are referred to as ‘smoothed inferences’.
Then, in the second step, new and more exact ML estimatesθ̂ for all model parameters are calculated using the
smoothed inferences from step one. With each new vectorθ̂(n) the next cycle of the algorithm is started in order to
reevaluate the smoothed inferences. Every iteration of the EM algorithm generates new estimatesθ̂(n+1), as well as,
new estimates for the smoothed inferences. Each iteration cycle increases the log-likelihood function and the limit of
this sequence of estimates reaches a (local) maximum of the log-likelihood function.

It is interesting to note, that if the regimes are independent from each other, then during a spike (or a drop) the
base regime becomes latent. If it is defined by an autoregressive process (as in the majority of models considered in
the literature), then the calculation of the base regime density – which is used in both steps of the iterative procedure
– requires storing the whole set of probabilitiesP(Rt = it,Rt−1 = it−1, ...,R1 = i1). Obviously, this leads to a high
computational burden. As a solution, Huisman and de Jong (2003) suggested to use probabilities of only the last
10 observations, while Ethier and Mount (1998) used a 2-state model with mean-reverting AR(1) processes sharing
the same set of random innovations (only the parameters of the two AR(1) processes varied between the regimes).
Instead, following Janczura and Weron (2010a), we propose to replace the latent variables from the base regime with
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their expectationsE(Xt,b|x1, ..., xt). The subscripts inXt,b denote the time and regime, respectively. These expectations
can be obtained from the following recursive formula:

E(Xt,b|x1, ..., xt) = xtP(Rt = b|x1, ..., xt) + E(g(X1,b, ..., Xt−1,b, ǫ1, ..., ǫt−1)|x1, ..., xt−1)P(Rt , b|x1, ..., xt),

where the functiong(X1,b, ..., Xt−1,b, ǫ1, ..., ǫt−1) = Xt,b defines the base regime dynamics (as formula (5) in the case of
the mean-reverting AR(1) process) andǫ1, ..., ǫt−1 is a white noise sequence. The main advantage of this procedure is
efficiency – it requires storing probabilities concerning the last observed price only, as opposed to the last 10 prices in
the Huisman and de Jong (2003) approach.

3.3. Goodness-of-f t
We evaluate the adequacy of the models on the base of descriptive statistics, as well as, a goodness-of-fit hypothesis

test. The former include the Inter-Quartile and the Inter-Decile Range, i.e. the difference between the third and the
first quartiles (IQR) or ninth and first deciles (IDR). The quantile-based measures rather than the less robust to outliers
moment-related statistics are used. Furthermore, we report thep-values of the Kolmogorov-Smirnov goodness-of-fit
test (K-S test) measuring the difference between the empirical (sample) and theoretical (model implied) marginal
distributions. Since the K-S test cannot be applied directly to prices (or log-prices) as they are not i.i.d. in the
considered models, following Janczura and Weron (2010b) we transform the data using the smoothed inferences and
obtain a mixture of i.i.d. samples resulting from the two (or three) regimes. The K-S test is then performed for the
regimes, as well as, for the whole sample.

4. Overview of MRS models for spot electricity prices

4.1. First generation models
To our best knowledge, the MRS models were first applied to electricity prices in Deng (1998) and Ethier and Mount

(1998). Deng (1998) considered three models of spot price dynamics in a derivatives pricing context (formal parame-
ter estimation was not performed). These included a 2-state regime-switching specification for the log-prices in which
the base regime was driven by an autoregressive process of order one, i.e. AR(1), and the spike regime by the same
AR(1) process (i.e. with the same parameters) shifted by an exponentially distributed random variable (spike/jump
size). In a parallel paper Ethier and Mount (1998) proposed a 2-state model with mean-reverting AR(1) processes for
the log-prices in both regimes. The processes shared the same set of random innovations – only the parameters of the
two AR(1) processes varied between the regimes. Strong empirical support for the existence of different means and
variances in the two regimes was found for data from four U.S. and Australian markets. A similar model was later
used by Heydari and Siddiqui (2010) in a gas-fired power plant valuation problem in the UK market, but was found
inferior to mean-reverting stochastic volatility models over long-term forecast periods.

Huisman and Mahieu (2003) proposed a regime-switching model with three possible states in which the initial
jump regime was immediately followed by the reversing regime and then moved back to the base regime, i.e. with
psd = pdb = 1 in (2). Andreasen and Dahlgren (2006) studied a similar MRS model – in their model the spot price
could jump up or down if it was in the neutral state (base regime) and it could only jump back to its neutral state if
it was in one of the jump regimes. Consequently, these models did not allow for consecutive high prices (in fact of
log-prices) and, hence, did not offer any obvious advantage over jump-diffusion models.

This restriction was relaxed by Huisman and de Jong (2003), who proposed a simple independent spike (IS) 2-
regime model for deseasonalized log-prices. The base regime was modeled by a mean-reverting AR(1) process and
the spike regime by a normal distributed random variable whose mean and variance were higher than those of the
base regime process. The third regime was not needed to pull prices back to stable levels, because the prices were
independent from each other in the two regimes. Kosater and Mosler (2006) reported that for EEX 2000-2004 data
the IS 2-regime model outperformed the model of Ethier and Mount (1998) in terms of short/medium-term forecasts
(up to 1 month), while the opposite was true for long-term forecasts. They were able to improve the forecasts if the
spike regimes in these models had two sets of parameters – one for business days and one for holidays.

The IS 2-regime model was further investigated by Weron et al. (2004), who introduced log-normally distributed
spikes. In a follow up paper Bierbrauer et al. (2004) tested whether using Pareto distributed spikes would lead to
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better models for deseasonalized Nord Pool log-prices from the period 1997-2000. This was not the case, as the
Pareto distribution seemed to overestimate the spike sizes. The best model (in terms of the likelihood) turned out to
be the one with log-normal spikes, closely followed by the model of Huisman and de Jong (2003), i.e. with Gaussian
spikes. The 3-regime model of Huisman and Mahieu (2003) came in last.

De Jong (2006) proposed another modification of the basic IS 2-regime model with autoregressive, Poisson driven
spike regime dynamics (a similar model was later considered by Mari, 2008). Using 2001-2006 data from eight
European and U.S. power markets he compared it to several spot price models. On average the new model yielded the
best fit (again in terms of the likelihood), but the IS 2-regime model with Gaussian spikes was nearly as good. Like
in the previously mentioned study, the 3-regime model of Huisman and Mahieu (2003) yielded a significantly worse
fit, comparable to that of a mean-reverting jump diffusion (MRJD) and slightly worse than that of the threshold model
of Geman and Roncoroni (2006). In a related study Bierbrauer et al. (2007) introduced an IS 2-regime model with
exponentially distributed spikes. For 2000-2003 EEX market data they found it inferior to MRS models with normal
or log-normal spikes, but much better than the non-linear mean-reverting model of Barlow (2002) or the MRJD model
of Kluge (2006) with two different mean-reversion rates for the normal and the jump parts.

The main problem with the discussed above first generation models is that they possess a critical flaw. Namely,
they do not classify the regimes correctly. This flaw, in many cases, leads to negative ‘expected spike sizes’, i.e.
E(Xt,s) < E(Xt,b), and a significant discrepancy between the often bimodal empirical distribution of (log-)prices
classified as spikes and the unimodal theoretical spike distribution, see Figures 3 and 4. Modeling prices themselves
instead of log-prices (as proposed by Weron, 2009) generally eliminates the unwanted feature of negative ‘expected
spike sizes’. However, still some of the low prices are classified as being in the spike regime, see the lower left panel
in Figure 3. The lower number of ‘sudden drops’ classified as spikes suggests that the calibration scheme does a better
job of identifying the spikes in prices than in log-prices. But the classification is far from perfect.

4.2. Second generation models
The above mentioned first generation models have two common features. Firstly, not the prices themselves, but

rather log-prices are considered. Secondly, the base regime (and in some cases the spike regime as well) is driven by
a mean-reverting diffusion process of the form:

dXt,b = (α − βXt,b)dt + σbdWt = β

(

α

β
− Xt,b

)

dt + σbdWt, (4)

whereWt is the Brownian motion (i.e. a Wiener process),α
β

is the long term mean reversion level,β is the speed
of mean reversion andσb is the volatility. In the fixed income literature this popular process is known as the
Vasicek (1977) model, in mathematics as the (generalized) Ornstein-Uhlenbeck process (Janicki and Weron, 1994),
while in signal processing – when discretized – as an AR(1) process or an autoregressive time series of order one
(Brockwell and Davis, 2002):

Xt,b = α + (1− β)Xt−1,b + σbǫt, (5)

whereǫt has the standard Gaussian distribution.
But is this the right choice for the base regime dynamics? Should we model prices or log-prices? What about

the regime-switching mechanism – perhaps we could use fundamental information to improve the fit? The second
generation models try to address some of the deficiencies of the first generation models. They can be grouped into
two categories: (i) those that use fundamental information (system constraints, weather variables) to better model
regime-switching and (ii) those that propose statistical refinements (to ultimately improve the goodness-of-fit).

In the first group, Mount et al. (2006) proposed a 2-regime model with two AR(1) regimes for log-prices and
transition probabilities dependent on the reserve margin. Using PJM data from 1999-2000 they showed that the
estimated switching probability from the base (low) to the spike (high) regime predicts price spikes well if the reserve
margin is measured accurately. This is in line with the qualitative findings of Kanamura andŌhashi (2008), who
showed that the transition probabilities cannot be constant, but depend on the current demand level relative to the
supply capacity, the deterministic trend of demand change, and the trend generated by the deviation of temporary
demand fluctuation from its long-term mean.

Anderson and Davison (2008) went one step further and explicitly modeled power plant failure and repair in a
hybrid 2-regime model, which included sub-models for forced outages, planned outages and load. Using PJM data

8



300 600 900 1200
2

3

4

5

6
PJM1 [Jan 1, 2001 − Jan 2, 2005]

Lo
g−

pr
ic

e 
[U

S
D

/M
W

h] Base
Spike

300 600 900 1200
0

0.5
1

P
(S

)

300 600 900 1200
1

2

3

4

5

6
EEX2 [Jan 3, 2005 − Jan 4, 2009]

Lo
g−

pr
ic

e 
[E

U
R

/M
W

h] Base
Spike

300 600 900 1200
0

0.5
1

P
(S

)

300 600 900 1200
0

100

200

300

EEX1 [Jan 1, 2001 − Jan 2, 2005]

P
ric

e 
[E

U
R

/M
W

h]

Base
Spike

300 600 900 1200
0

0.5
1

P
(S

)

300 600 900 1200
2

3

4

5

6
NEP1 [Jan 1, 2001 − Jan 2, 2005]

Lo
g−

pr
ic

e 
[U

S
D

/M
W

h] Base
Spike

300 600 900 1200
0

0.5
1

P
(S

)

Figure 3: Sample calibration results for 2-regime models with Vasicek, i.e. AR(1), base regime dynamics and alternative spike regimes fitted
to deseasonalized prices or log-prices from three major power markets.Top left: An independent spike (IS) model with normal spikes fitted to
PJM log-prices.Top right: The Ethier and Mount (1998) model with AR(1) spike regime fitted to EEX log-prices.Bottom left and right: An IS
model with lognormal spikes fitted to EEX prices and NEPOOL log-prices, respectively. The corresponding lower panels display the probability
P(S ) ≡ P(Rt = s) of being in the spike regime. The prices or log-prices classified as spikes, i.e. withP(S ) > 0.5, are additionally denoted by dots
in the upper panels. For descriptions of the datasets see Section 2 and Figures 1-2.

from the years 2000-2003 they concluded that the model performed better when modeling the seasons where the
planned outages were known. In a non-MRS context, studying the 2003-2006 data for the England and Wales market,
Cartea et al. (2009) reached similar conclusions. They showed that the incorporation of forward looking information
on capacity constraints significantly improved the modeling of spikes, both timing and magnitude.

In a complementary study to Mount et al. (2006), Huisman (2008) noted that the availability (to every market
participant) of the reserve margin data is limited. Hence, he proposed to use temperature as a proxy. Interpreting the
results from three MRS models fitted to the Dutch APX log-prices from the period 2003-2008, Huisman showed that
the probability of spike occurrence increases when temperature deviates substantially from mean temperature levels.
However, in general, temperature does not provide as much information as the reserve margin.

In the second group of models the focus has been on refining the statistical tools used for describing the dynamics
of electricity prices. Examples range from non-orthodox approaches originating in physics to more ‘traditional’
econometric ones. For instance, Lucheroni (2009) suggested to model a seasonally and irregularly peaking price
dynamics using a FitzHugh–Nagumo system of coupled nonlinear stochastic differential equations. The rationale
behind this approach stems from the fact that second order dynamics is obviously richer than first order (like in
autoregressions). It can sustain oscillations even without periodic driving, and, when driven, its behavior can be very
complex.

The more ‘traditional’ econometric refinements have been aimed at two common flaws of the first generation
models: negative ‘expected spike sizes’ and regime misclassification. While most of the mentioned above models
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Figure 4: Comparison of empirical (sample) and theoretical (model implied) spike regime probability distribution functions in the first generation
2-regime models. The models and datasets are the same as in Figure 3. Note, that for the Ethier and Mount (1998) model the distributions of the
noise in the AR(1) process driving the spike regime are plotted (top right).

were elegant, their fit to empirical data has either been not examined thoroughly or the signs of a bad fit ignored.
To eliminate the unwanted feature of negative ‘expected spike sizes’ Weron (2009) proposed to build models not

for log-prices, but prices themselves. In a follow up paper Janczura and Weron (2009) tested IS 2-regime models for
electricity spot prices with Vasicek and CIR-type (see Cox et al., 1985) dynamics for the base regime and median-
shifted spike regime distributions. For EEX market data from the period 2001-2009 they found that models with
shifted spike regime distributions (which assign zero probability to prices below the median price) led to more realistic
descriptions of electricity spot prices and that by introducing CIR-type heteroscedasticity in the base regime – in place
of the standard mean-reverting, constant volatility dynamics – better spike identification was obtained.

We continue this line of research and in the following Section calibrate and test a range of MRS models. The
ultimate objective is to find the optimal model structure – a parsimonious specification that not only addresses the
main characteristics of electricity spot prices but is statistically sound as well. We start with a more thorough than
in Janczura and Weron (2009) analysis of the impact of shifted spike distributions on the goodness-of-fit. It is inter-
esting to note that, to our best knowledge, this paper was the first one in the ‘MRS electricity spot price modeling
literature’ where actually hypothesis testing (based on the Kolmogorov-Smirnov test) was performed. We further
improve the testing methodology and use it to identify correctly specified MRS models. Next, in Section 5.2 we test
whether heteroscedastic (not only CIR-type) base regime dynamics lead to better models. Finally, based on these
results in Section 5.3 we introduce a new class of IS 3-regime models that addresses the deficiencies of other MRS
specifications.
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Table 1: Goodness-of-fit statistics for 2-regime models withVasicek, see eqns. (4)-(5), base regime dynamics and median-shifted lognormal
or Pareto spike distributions. Models for prices are summarized in columns 2-7, for log-prices in columns 8-13.p-values of 0.05 or more are
emphasized in bold.

Prices Log-prices
Simulation K-S test p-value Simulation K-S test p-value

Data IQR IDR LogL Base Spike Model IQR IDR LogL Base Spike Model
Shifted lognormal spikes

EEX1 9% 11% -4193.7 0.0012 0.4061 0.0032 30% 30% 403.0 0.0000 0.7371 0.0000
EEX2 13% 3% -5066.9 0.0090 0.4732 0.0149 27% 16% 399.6 0.0000 0.6313 0.0000
PJM1 9% -1% -4385.9 0.0341 0.4346 0.0530 19% 8% 777.4 0.0007 0.3219 0.0012
PJM2 -3% 3% -5012.1 0.0887 0.9196 0.0893 3% 6% 780.1 0.0747 0.4147 0.0696
NEP1 2% 2% -4327.1 0.0247 0.5093 0.0561 9% 8% 610.4 0.0002 0.8316 0.0003
NEP2 0% -2% -4665.9 0.0823 0.8416 0.1251 8% 0% 1417.9 0.0088 0.7430 0.0170

Shifted Pareto spikes
EEX1 7% 9% -4218.6 0.0000 0.0000 0.0000 27% 27% 436.9 0.0000 0.0123 0.0000
EEX2 10% 1% -5101.8 0.0188 0.0008 0.0412 26% 16% 374.6 0.0000 0.0166 0.0000
PJM1 8% -5% -4447.2 0.0500 0.0000 0.0500 20% 6% 755.2 0.0007 0.0000 0.0012
PJM2 0% 1% -5161.6 0.0041 0.0000 0.0007 6% 7% 744.9 0.02620.3508 0.0147
NEP1 -2 -6% -4366.1 0.0300 0.0000 0.0300 8% 3% 546.7 0.0001 0.0000 0.0003
NEP2 13% 0% -4703.1 0.0230 0.0000 0.0097 9% 0% 1409.7 0.0024 0.0000 0.0083

5. Empirical results

5.1. 2-regime models with shifted spike distributions and Vasicek base regime dynamics
To cope with the problem of spike misclassification, Janczura and Weron (2009) introduced median-shifted log-

normal:
log(Xt,s − X(q)) ∼ N(µs, σ

2
s), Xt,s > X(q), (6)

and Pareto:
Xt,s ∼ FPareto(σs, µs) = 1−

(

µs

x

)σs

, x > µs ≥ X(q), (7)

spike regime distributions. In the above formulasX(q) denotes theq-quantile,q ∈ (0, 1), of the dataset (deseasonalized
prices or log-prices). Generally the choice ofq is arbitrary, however, in this paper we restrict itq = 0.5, i.e. the median.
On one hand, this is motivated by the statistical properties of the model in which small fluctuations (around the LTSC)
are driven by the base regime dynamics. Only the large positive deviations should be driven by the spike regime
dynamics, which implies thatq has to be set to a value≥ 0.5 yielding a spike regime distribution with the mass
concentrated well above the median. On the other hand, this choice ofq is motivated by the fact thatX(0.5) can be
interpreted as a value representing the average capacity margin in a power market. When the price exceeds this value
the spikes occur.

Extending the study of Janczura and Weron (2009) in this Section we calibrate the IS 2-regime model with shifted
spike distributions and Vasicek base regime dynamics, see eqns. (4)-(5), not only to deseasonalized electricity spot
prices, but also to deseasonalized log-prices. The analysis is conducted for all six datasets covering the three power
markets: EEX, PJM and NEPOOL (and not only EEX as in the original paper).

Note, that shifted spike distributions assign zero probability to prices below a certain quantile of the dataset. In
consequence, none of the low prices are classified as spikes anymore. Comparing Figure 5 with the bottom panels in
Figure 4 we can observe that the fits of the median-shifted lognormal spike regime probability distribution functions
to the empirical ones are much better than for the models with non-shifted lognormal spikes.

The goodness-of-fit statistics for the 2-regime models with shifted spike distributions fitted to the six considered
datasets are summarized in Table 1. They include the quantile-based measures IQR and IDR, the log-likelihoods and
the p-values of the K-S test for the individual regimes and the whole model. The reported IQR and IDR values are
in fact average (over 100 samples) percentage changes between the values of IQR and IDR for the dataset and the
simulated trajectories. A positive value, say, 9% for EEX1 (first row in Table 1) indicates that the model implied IQR
is 9% wider than the IQR of the deseasonalized data. A negative value, say,−3% for PJM2 (fourth row in Table 1)
means that the IQR of the deseasonalized data is 3% wider than the model implied IQR.
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Figure 5: Comparison of empirical (sample) and theoretical (model implied) spike regime probability distribution functions in the 2-regime model
with median-shifted lognormal spikes and Vasicek base regime dynamics. The fits are much better than for the models with non-shifted spike
regime distributions, see Figure 4.

The IQR and IDR measures imply that while the models more or less capture the quantiles of the price processes,
they fail in case of log-prices. This is especially true for the most spiky EEX market (in both periods). Only one of
the models for log-prices – median-shifted lognormal spikes for PJM2 – passes the K-S test at the 5% level. But this
is the dataset with the lowest number of extreme observations.

Comparing the lognormal and Pareto spikes we see that the latter do not provide a good fit to the data. None of the
models with Pareto spikes passes the K-S test for the spike regime (except for PJM2 log-prices), although in one case
(PJM1 prices) the overall model fit is acceptable. On the other hand, the lognormal spike regime itself passes the K-S
test in all cases (both for prices and log-prices). As a result, the models with median-shifted lognormal spikes yield a
reasonable fit to moderately spiky prices in the PJM and NEPOOL markets.

Looking at the log-likelihoods we can observe a similar picture. In all cases (except for EEX1 log-prices) the
models with shifted lognormal spikes provide a better fit than the corresponding models with shifted Pareto spikes.
This is somewhat surprising given that distributions with power-law decay (α-stable) provide a better fit to the desea-
sonalized EEX and NEPOOL price changes than the lighter tailed distributions (hyperbolic, NIG), see Weron (2009).
Perhaps, the better fit of a power-law distribution to the few extreme observations does not offset the worse fit to the
less severe prices in the considered models.

5.2. 2-regime models with shifted spike distributions and heteroscedastic base regime dynamics
Due to the cutoff at the median in the models with median-shifted spike regime distributions, the price or log-price

‘drops’ are not classified as spikes anymore. This does not, however, seem to be a good approach for log-price models
(except for datasets with practically no ‘drops’ as PJM2); the extremely low log-prices can hardly be modeled by the
Vasicek process. A possible remedy is to use different dynamics for the base regime. Janczura and Weron (2009)
utilized the square root process of Cox et al. (1985), but nothing prevents us from considering here more general
heteroscedastic processes of the form:

dXt,b = (α − βXt,b)dt + σbXγt,bdWt, (8)

whereγ = const. The corresponding discrete time process:

Xt,b = α + (1− β)Xt−1,b + σbXγt−1,bǫt, (9)

is obtained by applying the Euler scheme to (8).
In this model the volatility is dependent on the current price levelXt,b. For positiveγ, the higher the price level

the larger are the price changes. For negativeγ, the lower the price level the larger are the price changes. Compared
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Table 2: Goodness-of-fit statistics for 2-regime models withheteroscedastic base regime dynamics and median-shifted lognormal spike distribu-
tions. Models for prices are summarized in columns 2-8, for log-prices in columns 9-15.p-values of 0.05 or more are emphasized in bold.

Prices Log-prices
Simulation K-S test p-value Simulation K-S test p-value

Data γ IQR IDR LogL Base Spike Model γ IQR IDR LogL Base Spike Model
Shifted lognormal spikes

EEX1 -0.43 0% 0% -4169.3 0.0022 0.2365 0.0050 -4.08 22% 26% 625.5 0.0000 0.9865 0.0000
EEX2 -0.32 10% 2% -5041.7 0.0125 0.2306 0.0276 -3.69 22% 12% 551.8 0.0000 0.5875 0.0000
PJM1 0.10 5% 1% -4356.4 0.0853 0.5408 0.1607 -1.02 17% 6% 793.1 0.0006 0.1924 0.0011
PJM2 0.16 1% -1% -4989.3 0.5882 0.1802 0.5435 -0.01 1% 2% 804.2 0.0582 0.1843 0.0995
NEP1 0.22 2% 0% -4326.3 0.0317 0.4754 0.0742 -1.35 9% 12% 643.1 0.0003 0.8524 0.0003
NEP2 0.62 0% 0% -4654.0 0.0828 0.3566 0.0983 -2.37 1% -1% 1445.2 0.0368 0.1724 0.0980
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Figure 6: Sample calibration results for the 2-regime model with median-shifted lognormal spikes fitted to NEP2 prices. The difference between
Vasicek (left) and heteroscedastic (right) base regime dynamics is clearly visible. Note, that due to the cutoff at the median, none of the price
‘drops’ are classified as spikes anymore.

to Vasicek dynamics (4)-(5), we can expect that now the moderately extreme prices will be classified as ‘normal’ and
not spiky. Indeed, this effect can be observed in Figure 6.

It is interesting to note, thatγ can be interpreted as a parameter representing the ‘degree of inverse leverage’.
Recall, that the ‘inverse leverage effect’ reflects the observation that positive electricity price shocks increase volatility
more than negative shocks. Knittel and Roberts (2005) attributed this phenomenon to the fact that a positive shock to
electricity prices can be treated as an unexpected positive demand shock. Therefore, as a result of convex marginal
costs, positive demand shocks have a larger impact on price changes relative to negative shocks. This is opposed to
the ‘leverage effect’ found in the financial markets, where it is often observed that downward movements of equity
prices induce higher volatility than upward movements of the same magnitude (Nelson, 1991).

The estimates ofγ, as well as, the goodness-of-fit statistics for the 2-regime models with median-shifted lognormal
spikes and heteroscedastic base regime dynamics are summarized in Table 2. Results for the models with Pareto spikes
are not reported due to the poor fit, even after allowing forγ , 0. Only lognormal spike distributions will be considered
in the remainder of the paper.

Comparing the log-likelihoods with the ones for Vasicek base regime models, we note that in all cases a better
fit was obtained. Thep-values of the K-S goodness-of-fit test have not, however, increased in all cases (see NEP2
prices). This is likely due to the fact that the K-S test focuses on the largest deviation between the model and em-
pirical distribution function, while the log-likelihood averages over all observations. Probably using the integral-type
W2 statistic of Cramér-von Mises (see e.g.Čižek et al., 2005) instead of the extremum-based Kolmogorov-Smirnov
statistic would result in more convergent behavior of the two goodness-of-fit measures.

Looking at the IQR and IDR measures we see a similar picture to the one in Table 1. Although the deviations
from dataset statistics are generally smaller than before, in most cases the models still fail to capture the quantiles of
the log-prices. Again this feature is most pronounced for the spiky EEX log-prices. Also EEX prices are the hardest
to model. While the considered models yield a reasonable fit to moderately spiky prices in the PJM and NEPOOL
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Figure 7: A zoom-in on sample calibration results for the IS 3-regime models with heteroscedastic base regime dynamics and median-shifted
lognormal spikes and drops fitted to prices or log-prices (for complete calibration results see Figures 8 and 9). Apparently spikes and price drops
come in clusters. Assuming that a (log-)price spike or drop lasts only for one day is a very limiting approximation. The corresponding lower panels
display the probabilitiesP(S ) ≡ P(Rt = s) andP(D) ≡ P(Rt = d) of being in the spike or drop regime, respectively. The (log-)prices classified as
spikes or drops, i.e. withP(S ) > 0.5 or P(D) > 0.5, are denoted by dots or ‘x’ in the upper panels.

markets, the EEX base regime dynamics does not conform to the model implied price dynamics. Note, that in the case
of this market the estimatedγ is negative, indicating the ‘leverage effect’, as opposed to the ‘inverse leverage effect’
reported for spot electricity prices (Bowden and Payne, 2008; Knittel and Roberts, 2005). This suggests that the base
regime model (8) tries to catch the lower than ‘normal’ prices observed in the data, leaving the extreme positive
observations to be modeled by the spike regime. For the same reasonγ is negative in case of log-price models. This
behavior is the main motivation for considering 3-regime models in the next section.

5.3. A new class of 3-regime models
The 3-regime model of Huisman and Mahieu (2003) assumed that the initial jump regime was immediately fol-

lowed by the reversing regime and then moved back to the base regime, i.e.psd = pdb = 1 in the transition matrix
(2). In doing so, their model did not allow for consecutive high prices (in fact of log-prices). Indeed, the extreme
prices are normally quite short-lived and, as soon as the weather phenomenon or outage is over, prices fall back to an
equilibrium level due to the supply and demand adjustment in the markets. However, as can be seen in Figure 7 the
adjustment is not instantaneous. Spikes and price drops come in clusters. The transition probabilities for staying in
the spikepss or drop regimepdd confirm this observation (see Table 3). They are smaller than the probabilities for
staying in the base regimepbb, nonetheless they are all greater than 0.6, implying that on average it is more likely to
observe another spike (drop) after a spike (drop) than a return to the base regime.

Having this in mind we introduce here a new class of independent spike (IS) 3-regime models with heteroscedastic
base regime dynamics of the form (8), shifted lognormal distribution (6) for the spike regime and inverted shifted
lognormal distribution:

log(−Xt,d + X(0.5))∼ N(µd, σ
2
d), Xt,d < X(0.5), (10)

for the ‘drop’ (or ‘downward spike’) regime. The ‘inversion’ can be interpreted as taking a mirror image of the
lognormal probability density function with respect to the origin.

Calibration results for the IS 3-regime models with heteroscedastic base regime dynamics and median-shifted
lognormal spikes and drops are presented in Figures 8 and 9. Parameter estimates and goodness-of-fit statistics are
summarized in Tables 3 and 4, respectively. Comparing with Table 2 we note that the parameterγ is no longer
negative, which is consistent with the ‘inverse leverage effect’ reported for spot electricity prices. The ‘drop’ regime
seems to do the job of modeling the low (log-)prices well. For price modelsγ ranges from 0.0742 (nearly Vasicek
dynamics) for NEP2 to 0.6595 (a little over CIR-type dynamics) for PJM1. For log-price modelsγ is generally much
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Table 3: Calibration results for the IS 3-regime model with heteroscedastic base regime dynamics and median-shifted lognormal spikes and drops.
Parameter estimates are summarized in columns 2-9, transition probabilities for staying in the same regimepii in columns 10-12 and unconditional
probabilities of being in each of the regimes in columns 13-15.

Parameters Probabilities
Data γ α β σ2

b µs σ2
s µd σ2

d pbb pss pdd R = b R = s R = d
Prices

EEX1 0.6309 14.0717 0.4509 0.1215 2.4027 0.5590 1.7227 0.3573 0.91 0.80 0.81 0.67 0.11 0.22
EEX2 0.3070 17.8797 0.3501 3.2502 2.9152 0.5562 2.8504 0.1800 0.96 0.90 0.86 0.74 0.17 0.09
PJM1 0.6595 9.4038 0.2607 0.1232 2.9057 0.4640 2.4766 0.0967 0.95 0.82 0.79 0.78 0.13 0.09
PJM2 0.1724 21.0813 0.3792 7.9227 3.0481 0.3134 2.6768 0.0949 0.88 0.83 0.73 0.63 0.23 0.14
NEP1 0.5262 7.9267 0.2587 0.4608 3.2267 0.4883 2.7220 0.0689 0.98 0.84 0.73 0.91 0.08 0.01
NEP2 0.0742 13.0526 0.2063 13.8627 3.1856 0.2459 2.5783 0.1033 0.97 0.91 0.92 0.76 0.18 0.06

Log-prices
EEX1 0.4102 1.5442 0.4491 0.0034 -1.1627 0.3322 -1.5900 0.5313 0.91 0.80 0.81 0.66 0.10 0.24
EEX2 1.9558 0.8815 0.2445 0.0001 -0.5775 0.2220 -0.9674 0.2025 0.98 0.90 0.84 0.85 0.06 0.10
PJM1 0.4481 0.9874 0.2877 0.0054 -0.4987 0.2135 -0.9753 0.1921 0.97 0.86 0.79 0.84 0.08 0.09
PJM2 0.5057 1.0746 0.2663 0.0037 -0.8978 0.1659 -1.0892 0.1483 0.96 0.84 0.78 0.80 0.11 0.08
NEP1 1.9984 0.8651 0.2128 0.0001 -0.7526 0.1151 -0.9654 0.1328 0.99 0.63 0.82 0.94 0.01 0.05
NEP2 1.0923 0.9094 0.2184 0.0003 -1.1018 0.1540 -1.5246 0.1589 0.96 0.91 0.91 0.70 0.16 0.14

Table 4: Goodness of fit statistics for the IS 3-regime models with heteroscedastic base regime dynamics and median-shifted lognormal spikes and
drops.p-values of 0.05 or more are emphasized in bold.

Simulation K-S test p-values
Data IQR IDR LogL Base Spike Drop Model

Prices
EEX1 -1% 3% -3798.2 0.8371 0.0726 0.8576 0.5719
EEX2 5% -1% -4848.5 0.5510 0.2920 0.9196 0.3168
PJM1 2% 0% -4153.9 0.3876 0.7052 0.7715 0.4072
PJM2 2% 0% -4723.2 0.4824 0.3273 0.0244 0.4828
NEP1 0% 0% -4266.6 0.0404 0.6121 0.9092 0.0609
NEP2 5% 0% -4610.3 0.1359 0.7911 0.8771 0.1059

Log-prices
EEX1 -2% 5% 1181.2 0.7297 0.3341 0.1971 0.5001
EEX2 7% 1% 931.1 0.1392 0.3571 0.2095 0.4234
PJM1 8% 1% 1002.9 0.3413 0.2726 0.9080 0.4640
PJM2 1% 2% 1030.2 0.2165 0.4604 0.2887 0.5258
NEP1 1% 2% 864.1 0.1661 0.8762 0.2947 0.2553
NEP2 6% 0% 1573.7 0.6858 0.7338 0.2334 0.8796

higher – from 0.4102 (nearly CIR-type dynamics) for EEX1 to 1.9984 for NEP1. The highγ results in the base regime
covering most of the moderately spiky log-prices – the probability of being in the spike regimeP(R = s) is only 1%
for NEP1 log-prices. This feature is also visible in the bottom left panel of Figure 9. The unconditional probabilities
for price and log-price models are qualitatively similar. The probability of being in the base regimeP(R = b) ranges
from 0.63 to 0.91 for prices and from 0.66 to 0.94 for log-prices. The probabilities of being in one of the extreme
regimes are generally significantly lower, however, EEX1 drops and PJM2 spikes are likely to be observed for more
than 20% of time. The probabilities of staying in a given regimepii are relatively high, withpbb being the highest and
ranging from 0.88 for PJM2 prices to 0.99 for NEP1 log-prices. The spikes tend to be more persistent than drops –
the probabilitiespss are on average higher thanpdd – but the differences are not large.

Regarding the robustness of the results in the two considered periods (2001-2004 vs. 2005-2008) we note that,
while in the case of log-price models there is no recognizable pattern, the price models in the second period are less
heteroscedastic – the ‘degree of inverse leverage’ is lower. They exhibit lower values ofγ which is offset by higher
volatility σ2

b in the base regime. Also the level parameterα is higher in the second period. But this is due to the
deseasonalization scheme which shifts the prices so that the minimum of the new process is the same as the minimum
of the original prices.

Comparing the log-likelihoods with the ones for the 2-regime models, we note that in all cases a better fit was
obtained. In fact, in most cases a significantly better fit. Moreover, most of the p-values of the K-S goodness-of-fit
test have increased. Also looking at the IQR and IDR measures we see a general improvement over the results for
previously analyzed models (Tables 1-2). The deviations for price models do not exceed 5%. For log-price models the
improvement is even more visible – the deviations do not exceed 8%, whereas before they reached as much as 27%
in Table 2 and 30% in Table 1.

The EEX (log-)prices are no longer hard to model. All correspondingp-values are well above the 5% threshold.
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Figure 8: Calibration results for the IS 3-regime models withheteroscedastic base regime dynamics and median-shifted lognormal spikes and drops
fitted to prices. The rectangle in the top right panel (EEX2) indicates the range of prices plotted in the left panel of Figure 7.
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Figure 9: Calibration results for the IS 3-regime models withheteroscedastic base regime dynamics and median-shifted lognormal spikes and drops
fitted to log-prices. The rectangle in the bottom left panel (NEP1) indicates the range of log-prices plotted in the right panel of Figure 7.
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Now, the PJM2 prices exhibit the lowest fit ... but only for the drop regime (p-value of 0.0244); the whole model
p-value is nearly 50%. Overall all models yield acceptable fits. The situation is even better for log-price models. Here
not only modelp-values but also allp-values for the individual regimes exceed the 5% threshold.

6. Conclusions

In this paper we have calibrated and tested a range of Markov regime switching (MRS) models in an attempt to
find parsimonious specifications that not only address the main characteristics of electricity prices but are statistically
sound as well. To this end, we have applied not only the standard descriptive statistics, but also performed hypothesis
testing (based on the Kolmogorov-Smirnov test). This novel approach allowed us to reject the incorrectly specified
MRS models.

The analysis of models proposed in the literature has revealed their weaknesses. While most of the models are
elegant, their fit to empirical data is often statistically unacceptable. This situation led us to proposing in Section 5.3
a new class of independent spike (IS) 3-regime models with shifted spike and drop distributions and heteroscedastic
base regime dynamics. In an extensive empirical study this new class of models was found superior to other MRS
models.

In contrast to the 3-regime model of Huisman and Mahieu (2003) the new class of models allows for consecutive
spikes (high prices) or drops (low prices), which is consistent with market observations. Furthermore, the introduction
of heteroscedastic base regime dynamics, with the ‘level of heteroscedasticity’ or the ‘degree of inverse leverage’
measured by the parameterγ, led us to the conclusion that the IS 3-regime model is consistent with the ‘inverse
leverage effect’ reported for spot electricity prices (Bowden and Payne, 2008; Knittel and Roberts, 2005). In contrast,
in the 2-regime models negativeγ was observed in the majority of cases.

Regarding goodness-of-fit, the new class of models provides a statistically good fit to all six datasets. Also visually
the fit is acceptable. However, in a few cases there seem to be too many (log-)prices classified into one of the extreme
price regimes. In particular, EEX1 drops and PJM2 spikes are likely to be observed for more than 20% of time. We
believe that there is still room for improvement in this case. A possible remedy would be to shift the spike and drop
distributions not by the median, but by a different (higher) quantile of the dataset. Indeed, preliminary estimation and
simulation results seem to confirm this hypothesis, however, more research is needed to find a robust and universal
solution.

We also have to mention that since the Kolmogorov-Smirnov goodness-of-fit test measures the deviations in the
marginal distributions, but not the temporal behavior, the timing of spikes was not checked. In fact, as in most other
MRS models the timing is random. As Mount et al. (2006) and Cartea et al. (2009) have shown, the timing of the
spikes could be improved by incorporating forward looking information on capacity constraints. Unfortunately, the
availability (to every market participant) of the reserve margin data is limited. If temperature is used as a proxy for the
reserve margin (as in Huisman, 2008), the results are not as good. Moreover, accurate weather forecasts beyond a few
days are currently unavailable. A viable alternative might be introducing a seasonal transition matrix in the model.
Whether this approach leads to a practical and robust solution has yet to be tested.
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