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Abstract 
 

A methodology based on the algorithmic complexity theory has been applied to 
assess the relative efficiency of the stocks listed on Bovespa. We provide eight 
alternative listings of the top ten stocks according to their efficiency rates. 
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1 Introduction 
 

When physicists talk about the efficiency of a system, they imply its 
relative efficiency. An efficiency rate refers, for example, to the relative 
proportion of energy converted to work. If a piston engine is rated as 30% 
efficient, this implies that, on average, 30% of the engine’s fuel is consumed for 
useful work, with the remaining 70% lost to heat, light, or noise. In contrast, 
economists commonly think of the efficiency of markets—that is, the capacity of 
the market prices to convey nonredundant information in absolute terms [1]. 
However, efficiency rates based on the relative amount of nonredundant 
information conveyed by financial prices can be calculated with the help of the 
algorithmic complexity theory [3]. The price of an idealized, absolutely efficient 
market conveys completely nonredundant information; in such a case, this market 
is said to be 100% efficient. The idealized efficient market generates a time series  



 
 
with a dense amount of nonredundant information. Essentially, the algorithmic 
complexity theory predicts that such a series shows statistical features that are 
almost indistinguishable from those observed in genuinely random time series [6]. 
Accordingly, measuring the deviation from randomness yields the relative 
efficiency of a market. The efficiency rates of stock exchanges, foreign-exchange 
markets [3], and the markets for the stocks of selected individual companies listed 
on the New York Stock Exchange, the Nasdaq Stock Exchange, and the Sao Paulo 
Stock Exchange (Bovespa) [2] have been already calculated using that approach. 
In this study, we apply the same methodology for evaluating the majority of the 
stocks listed on Bovespa. We also extend the methodology to consider eight 
alternative methods of finding the efficiency rates. 
 The rest of this article is organized as follows: Section 2 explains the 
measure of algorithmic complexity, Section 3 presents data and elaborates further 
on the methodology applied, Section 4 conducts the analysis, and Section 5 
concludes the study. 
 
 
2 Measuring algorithmic complexity 
 

In Shannon’s entropy of information theory, the expected information 
content of a series is maximized if the series is genuinely random. In this case, 
there is maximum uncertainty, and no redundancy, in the series. The algorithmic 
complexity of a string is the length of the shortest computer program that can 
reproduce the string. However, the shortest algorithm cannot be computed. 
Nevertheless, there are several methods to circumvent this problem. Lempel and 
Ziv [5] suggest a useful measure that does not rely on the shortest algorithm; 
furthermore, Kaspar and Schuster [4] provide an easily calculable measure of the 
Lempel-Ziv index, which runs as follows. 
 A program either inserts a new digit into the binary string 1, , nS s s= K  or 
copies the new digit to S . The program then reconstructs the entire string up to 
the digit r ns s<  that has been newly inserted. Digit rs  does not originate in the 
substring 1 1, , rs s −K ; otherwise, rs  could simply be copied from 1 1, , rs s −K . To 
learn whether the rest of S  can be reconstructed by either simply copying or 
inserting new digits, 1rs +  is initially chosen and subsequently checked as to 
whether it belongs to one of the substrings of S ; in such a case, it can be obtained 
by simply copying it from S . If 1rs +  can indeed be copied, the routine continues 
until a new digit (which once again needs to be inserted) appears. The number of 
newly inserted digits plus one (if the last copying step is not followed by insertion 
of a digit) yields the complexity measure, c , of the string S . 
 As an illustration, consider the following three strings of 10 binary digits 
each. 

A 0000000000 
B 0101010101 
C 0110001001 

 



 
 
At first sight, one might correctly guess that A is less random, so that A is less 
complex than B, which in turn is less complex than C. The complexity index, c , 
agrees with such an intuition. In the string A, one has only to insert the first zero 
and then rebuild the entire string by copying this digit; thus, 2c = , where c  is the 
number of steps necessary to create a string. In the string B, one has to 
additionally insert digit 1 and then copy the substring 01 to reconstruct the entire 
string; thus, 3c = . In the string C, one has to further insert 10 and 001, and then 
copy 001; thus, 5c = . 

The complexity of a string grows with its length. The genuinely random 
string asymptotically approaches its maximum complexity, r , as its length, n , 
grows following the rule 

2loglim n
nn

c r
→∞

= =  [4]. One may thus compute a positive 

finite normalized complexity index c
rLZ =  to obtain the complexity of a string 

relative to that of a genuinely random one. Under the broad definition of 
complexity proposed by Lempel and Ziv [5], almost all sequences of sufficiently 
large length are found to be complex. To obtain a useful measure of complexity, 
they then consider a De Bruijn sequence, which is commonly viewed as a good 
finite approximation of a complex sequence [5]. After proving that the De Bruijn 
sequence is indeed complex according to their definition and that its complexity 
index cannot be less than one, they decided to fix it as a benchmark against which 
other sequences could be compared. Thus, a finite sequence with a complexity 
index greater than one is guaranteed to be more complex than (or at least as 
complex as) a De Bruijn sequence of the same size. Note that the LZ index is not 
an absolute measure of the complexity (which is perhaps nonexistent), nor is the 
index ranged between zero and one. A previous work [3] by the authors of this 
study provides more details on the LZ index. 
 
 
3 Data and methodology 
 

The data regarding the stocks of companies listed on the Bovespa were 
collected from the website of the stock exchange. For this study, 55 companies 
(Table 1) that had data for the entire period ranging from August 2000 to 
September 2008 were considered. This nearly corresponds to eight years of daily 
data, that is, 2,000 observations of opening prices. This analysis was carried out 
using the returns of such series. 

To calculate the LZ index using the method described in Section 2, one 
needs first to express the original series of returns as binary, ternary, quaternary 
data, and so on. Unfortunately, the calculation of the LZ index is sensitive to 
whether the coding is binary, ternary, or quaternary, in addition to the stability 
basin chosen [3]. To remedy this problem, in this study, eight alternative methods 
of coding the data have been adopted—four ternary and four quaternary. 

The return series were coded as ternary strings as follows [3]. Assuming a 
stability basin b  for a return observation tρ , a data point td  of the ternary string 
was coded as 0  if  t td bρ= ≤ − ; 1  if  t td bρ= ≥ + ; and 2  if  t td b bρ= − < < + . 
It was arbitrarily considered that b = 0.25% and b = 0.50%. Although these values  



 
 
have been found to be appropriate using numerical experiments, future research is 
still needed to rigorously justify the choice of b. Furthermore, it should be noted 
that one can get a binary series by shrinking the stability basin to 0b = . As an 
illustration, the five daily percentage returns of the week from 18 to 22 June 2007 
of the Standard & Poor’s 500 index can be compared using the value of b = 0.25% 
to produce the following percentage returns: 0.652, –0.1226, 0.1737, –1.381, and 
0.6407. Thus, the trading week should be coded as 12201. 

The return series were coded as quaternary strings adopting the following 
criterion: 0  if  t td bρ= < − ; 1  if  0 >t td bρ= > − ; 2  if   > 0t td b ρ= + > ; and 

3  if  t td bρ= > + . Each series was coded considering the center of the stability 
basin either at zero or at the historical mean of the series (Table 2). 

To find the LZ index of the time series, sliding time windows were 
considered; the index for every window was calculated and then the average was 
obtained. For example, in the time series of 2,000 data points and a chosen time 
window of 1,000 observations, the LZ index of the window from 1 to 1,000 was 
first computed; then the index of the window from 2 to 1,001 was derived, and so 
on, up to the index of the window from 1,001 to 2,000. Then the average of the 
indices was calculated. To obtain the efficiency rate, LZ = 1 was considered as the 
threshold, with the number of occurrences where the LZ index had reached values 
above one being considered as the measure of relative efficiency. 
 
 
4 Analysis 
 

Table 3 shows the top ten stocks in terms of their efficiency rate according 
to the ternary methods, and Table 4 presents the top ten based on the quaternary 
methods. Table 3 shows that Gerdau and Unipar appeared among the top ten in all 
the four ternary methods. Petrobras, Itau, and Cteep appeared in three out of four 
ternary methods. Vale, Itausa, Duratex, Ultrapar, Randon, Copel, and Souza Cruz 
appeared among the top ten in two out of four ternary methods. Table 3 also 
suggests that the choice of the stability basis b weighs more than the core of the 
stability basin chosen, whether zero or the historical mean. For example, Table 3 
shows that, with the exception of Duratex, the choice of b did not alter the 
rankings of the stocks that appeared at least twice. 
 Table 4 shows that Bradesco and Gerdau appeared among the top ten in all 
the quaternary methods. Unipar ranked first in three out of four quaternary 
methods. Itau, Confab, Souza Cruz, and Duratex also appeared in three out of four 
quaternary methods. Itausa, Petrobras, Banco do Brasil, Siderurgica Nacional, and 
Embratel appeared in two out of four quaternary methods. Overall, the efficiency 
rates were more concentrated under the ternary methods than under the quaternary 
ones. For example, Duratex dropped from its 99.6% efficiency rate in the third 
ternary method to 60.4% in the seventh quaternary method. The reductions in the 
efficiency rates under the quaternary methods are because the maximum 
complexity of four digit strings is greater than that of three digit strings. 
 Table 5 shows the number of appearances of 26 stocks among the top ten 
considering all the eight methods applied herein. Not surprisingly, those appearing  



 
 
 
more number of times are the stocks with greater weight in the Bovespa index 
(Table 6). 
 
 Figures 1 and 2 show the LZ complexity index of selected stocks derived 
over 1,000 sliding windows using two of the ternary methods. Figure 1 shows the 
index using method 1 for (a) Bradesco (average LZ = 1.0357; efficiency rate = 
99.8%), (b) Itau (average LZ = 1.0323; efficiency rate = 99.5%, (c) Celesc 
(average LZ = 1.004; efficiency rate = 56.1%), and (d) Aracruz (average LZ = 
0.9981; efficiency rate = 44.8%). 

 
Figure 2 shows the index using method 2 for (a) Gerdau (average LZ = 

1.0420; efficiency rate = 100.0%), (b) Unipar (average LZ = 1.0339; efficiency 
rate = 99.9%), (c) Bombril (average LZ = 1.0006; efficiency rate = 50.2%), and 
(d) Acesita (average LZ = 1.0004; efficiency rate = 44.0%). 
 
 
 
5 Concluding remarks 
 

Financial efficiency is commonly treated as absolute efficiency. The 
current authors have previously devised a methodology based on the algorithmic 
complexity theory, which facilitates calculation of the relative efficiency of 
financial markets. In this study, we have further applied this methodology to the 
markets of the stocks listed on the Bovespa. Thereafter, the stocks have been 
ranked according to their efficiency rate. 
 
 Though the relative efficiency has an edge over absolute efficiency in 
theoretical terms, problems do persist with the measure based on algorithmic 
complexity; this fact should be addressed by future research. Rankings are 
dependent both on the stability-basin chosen and on the method by which the data 
are coded. This article has tried to remedy such a deficiency by applying eight 
alternative methods—four ternary and four quaternary, in addition to using two 
distinct stability basins. Finally, the results have succeeded in indicating economic 
wisdom. The stocks that have been rated as the most efficient ones are  those of 
Gerdau, Unipar, Itau, Petrobras, Bradesco, Confab, Souza Cruz, and Duratex. Not 
surprisingly, these are exactly the ones with greater weights in the Bovespa index. 
 
 
 
 
 
 
 
 
 
 



 
 
 
Table 1. Trade and company names of the 55 companies listed on Bovespa, which have been considered in this work

Stock Company 

Acesita Acesita 

Ambev Companhia de Bebidas das Américas 

Americanas Lojas Americanas 

Aracruz Aracruz Celulose 

Banco do Brasil ON Banco do Brasil 

Banco do Brasil PN Banco do Brasil 

Bombril Bombril 

Bradesco Banco Bradesco 

Celesc Centrais Elétricas de Santa Catarina 

Cemig ON Companhia Energética de Minas Gerais 

Cemig PN Companhia Energética de Minas Gerais 

Cesp Companhia Energética de São Paulo 

Coelce Companhia Energética do Ceará 

Confab Confab Industrial 

Copel ON Companhia Paranaense de Energia 

Copel PN Companhia Paranaense de Energia 

Coteminas Companhia Tecidos Norte de Minas 

Cteep Companhia de Transmissão de Energia Elétrica Paulista 

Duratex Duratex 

Eletrobras ON Centrais Elétricas Brasileiras 

Eletrobras PN Centrais Elétricas Brasileiras 

Emae Empresa Metropolitana de Águas e Energia 

Embraer Empresa Brasileira de Aeronáutica 

Embratel ON Embratel Participações 

Embratel PN Embratel Participações 

Forja Taurus Forjas Taurus 

Fosfertil Fertilizantes Fosfatados 

Gerdau Gerdau 

Itau Banco Itaú 

Itausa Investimentos Itaú 

Magnesita Magnesita Refratários 

Marcopolo Marcopolo 

Pao de Acucar Companhia Brasileira de Distribuição 

Paranapanema Paranapanema 

Petrobras ON Petróleo Brasileiro 

Petrobras PN Petróleo Brasileiro 

Randon Randon Implementos e Partipações 

Sabesp Companhia de Saneamento Básico do Estado de São Paulo 

Siderurgica Nacional Companhia Siderúrgica Nacional 

Souza Cruz Souza Cruz 

Telemar ON Tele Norte Leste Participações 

Telemar PN Tele Norte Leste Participações 

Telemig ON Telemig Celular Participações 

Telemig PN Telemig Celular Participações 

Telenorte Tele Norte Celular Participações 

Telesp ON Telecomunicações de São Paulo 

Telesp PN Telecomunicações de São Paulo 

Tim ON TIM Participações 

Tim PN TIM Participações 

Ultrapar Ultrapar Participações 

Unipar União de Indústrias Petroquímicas 

Usiminas Usinas Siderúrgicas de Minas Gerais 

Vale ON Companhia Vale do Rio Doce 

Vale PN Companhia Vale do Rio Doce 

Vcp Votorantim Celulose e Papel 

Note: 
ON common stock 
PN preferred stock 
 
 
 
 
 

Table 2. The eight methods considered in this study 
Method Coding Stability basin Core of the 

stability basin 

1 ternary 0.0025 0 

2 ternary 0.0025 historical mean 

3 ternary 0.005 0 

4 ternary 0.005 historical mean 

5 quaternary 0.0025 0 

6 quaternary 0.0025 historical mean 

7 quaternary 0.005 0 

8 quaternary 0.005 historical mean 

 
 

 

 
 
 
 
 
 



 
 

Table 3. Top ten companies in terms of greatest efficiency rates: ternary methods 
Method 1 Method 2 Method 3 Method 4 

Stock Efficiency rate, % Stock Efficiency rate, % Stock Efficiency rate, % Stock Efficiency rate, % 

Bradesco 99.80 Gerdau 100.00 Unipar 99.60 Gerdau 99.60 

Itausa 99.50 Unipar 99.90 Duratex 99.60 Confab 99.20 

Telesp ON 98.70 Cteep 99.00 Gerdau 99.20 Unipar 98.90 

Gerdau 98.20 Banco do Brasil ON 97.50 Cteep 97.80 Copel PN 98.80 

Unipar 98.20 Ultrapar 96.40 Randon 97.30 Souza Cruz 96.40 

Ultrapar 98.00 Petrobras ON 95.20 Copel PN 96.50 Pao de Acucar 96.00 

Cteep 97.30 Forja Taurus 95.00 Souza Cruz 96.50 Itau 95.10 

Itau 97.20 Itausa 94.80 Confab 96.30 Randon 94.10 

Petrobras ON 97.10 Sabesp 94.70 Vale PN 95.70 Marcopolo 94.00 

Duratex 97.10 Itau 94.20 Petrobras ON 95.50 Vale PN 93.70 

Note: 
ON common stock 
PN preferred stock 

 
 

Table 4. Top ten stocks in terms of greatest efficiency rates: quaternary methods 
Method 5 Method 6 Method 7 Method 8 

Stock Efficiency rate, % Stock Efficiency rate, % Stock Efficiency rate, % Stock Efficiency rate, % 

Unipar 98.20 Unipar 93.40 Unipar 73.30 Duratex 56.10 

Itausa 88.80 Gerdau 78.00 Duratex 60.40 Souza Cruz 56.00 

Usiminas 81.60 Itausa 68.90 Petrobras PN 54.20 Bradesco 52.80 

Itau 78.00 Souza Cruz 67.20 Cteep 49.30 Confab 52.80 

Bradesco 77.80 Embratel PN 63.20 Itau 49.20 Banco do Brasil ON 52.50 

Tim ON 72.60 Petrobras PN 63.00 Siderurgica Nacional 46.40 Embratel PN 48.60 

Confab 69.10 Itau 61.20 Confab 46.40 Gerdau 45.30 

Banco do Brasil ON 66.70 Duratex 60.90 Souza Cruz 45.40 Embraer 40.70 

Gerdau 62.50 Siderurgica Nacional 58.30 Gerdau 43.20 Randon 37.10 

Paranapanema 59.60 Bradesco 55.70 Bradesco 38.20 Pao de Acucar 33.60 

Note: 
ON common stock 
PN preferred stock 
 
 

Table 5. Most ranked stocks among the top ten under all the eight methods applied 
Company Number of appearances 

in the top ten 

Gerdau 8 

Unipar 7 

Itau 6 

Petrobras, Bradesco, Confab, Souza Cruz, Duratex 5 

Itausa, Cteep 4 

Banco do Brasil, Randon 3 

Vale, Pao de Acucar, Siderurgica Nacional, Ultrapar, Embratel, Copel 2 

Embraer, Usiminas, Telesp, Sabesp, Marcopolo, Tim, Paranapanema 1 

 



 
 
 
 
 

Table 6. Weights of the stocks in the Bovespa index as of October 2008, % 
Stock Weight 

Petrobras 15.4 

Vale 12.7 

Bradesco 3.6 

Siderurgica Nacional 3.3 

Itau 3.2 

Usiminas 3.0 

Gerdau 2.9 

Banco do Brasil 2.4 

Unibanco 2.4 

Itausa 2.3 

 
 

 

 

Figure 1. LZ complexity index over 1,000 sliding windows for (a) Bradesco (average LZ = 1.0357; 
efficiency rate = 99.8%), (b) Itau (average LZ = 1.0323; efficiency rate = 99.5%, (c) Celesc (average LZ = 
1.004; efficiency rate = 56.1%), and (d) Aracruz (average LZ = 0.9981; efficiency rate = 44.8%). These 
results were obtained using method 1. 

 

 

 

 



 

 

Figure 2. LZ complexity index over 1,000 sliding windows for (a) Gerdau (average LZ = 1.0420; 
efficiency rate = 100.0%), (b) Unipar (average LZ = 1.0339; efficiency rate = 99.9%), (c) Bombril 
(average LZ = 1.0006; efficiency rate = 50.2%), and (d) Acesita (average LZ = 1.0004; efficiency rate = 
44.0%). These results were obtained using method 2. 
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