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ESTIMATING VARIANCES AND COVARIANCES
IN A CENSORED REGRESSION MODEL

Giorgio Calzolari, Gabriele Fiorentini

1. INTRODUCTION

In empirical work we often encounter models where the dependent variables
are limited in their range. Although their use is perhaps more frequent in the
microeconometric analysis of survey data, also time series models provide exam-
ples of this kind. As well pointed out by Maddala in the introductory notes to
his book (1983, p. 1), it is not always necessary to introduce the complications
implied by this type of models. “For instance, if we believe that prices are
necessarily positive, we might postulate that they have a log-normal distribu-
tion rather than the normal. On the other hand, in the l[imited-dependent-
variable models discussed in this book, the variables are limited to their range
because of some underlying stochastic choice mechanism”.

The case considered in this paper is the so called censored regression model.

The first application of this model to economic problems was proposed in a
pioneering work by Tobin (1958). Analysing demand for durable goods, he
observed a concentration of observations around zero, as most households
report zero expenditure on automobiles or other durable goods during any year.
The linearity assumption underlying the regression model was clearly inappro-
priate, and some suitable form of discontinuity had to be introduced. This led
to a censored regression model like

y, =y if RHS>0
y,=0 if RHS<0

.
¥ = x,B+u, { 1)
where y; is a nonobservable random variable, x, is the vector of exogenous
explanatory variables at time ¢, B is the vector of unknown coefficients, y, is the
observed censored value of the dependent variable. Given the strict connection

with the literature on probit’s models, to synthetyse in one word the concept
“Tobin’s probit”, Goldberger (1964) introduced the term Tobiz.
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To distinguish it from its various generalisations, model (1) is usually re-
ferred to as the standard Tobit model. Here the threshold is zero, but we may
easily generalise the model to accomplish for nonzero thresholds and even
thresholds varying from individual to individual. It is easy to imagine a model
where the threshold acts on the opposite side, like an upper bound rather than
a lower bound. For example (Green, 1985), if we investigate the relationship
between the sale of tickets and the price of tickets for a match in the stadium,
we should expect a decreasing function with an upper threshold given by the
maximum capacity of the stadium.

Other applications of the censored regression model to economic problems
are illustrated in Maddala (1983, pp. 4-6). Consider for example “a change in
a household’s holding of liquid assets during a year. The variable... cannot be
smaller than the negative of the household’s assets at the beginning of the year,
because one cannot liquate more assets than one owns”. Again, other examples
may be related to the labour market. For instance, a married woman partici-
pates in the labour force if the market wage is greater than her valuation of
time in the household (i.e. the reservation wage), otherwise she does not partici-
pate.

Ordinary least squares estimation method is clearly inappropriate for these
types of models; it produces in fact inconsistent estimates of the parameters j
and a? (see, for instance, Dhrymes, 1986).

A number of alternative estimators for 8 and &2 exist, and their properties
have been investigated under a number of alternative conditions. Heckman
(1976) proposed a two-stage estimation method. Powell (1983) introduced a least
absolute deviation estimator. Fishe, Maddala and Trost (1979), Arabmazar and
Schmidt (1981) investigated the problem of heteroskedasticity, Robinson (1982)
analysed problems connected with serial correlation, while Arabmazar and Schmidt
(1982), Nelson (1981), Newey (1987), Ruud (1986) and Smith (1987) discussed
problems connected with the non-normality of the error terms. Also the prob-
lem of limited dependent variables in a system of simultaneous equations have
been treated in the literature; see, for example, Amemiya (1983), Flood and
Tasiran (1989), Nelson and Olson (1978), Sickles and Schmidt (1978).

Since our study has a very specific purpose, we shall focus on one estimation
method (maximum likelihood) and one type of model, the standard Tobit model
(1), under classical assumptions.

2. THE LIKELIHOOD FUNCTION

Let
o x,B
P, = cumulated distribution of a standard normal evaluated at e
xB
c

¢, = probability density of a standard normal evaluated at

Estimating variances and covariances in a censored regression model JLt

¥, = summation referring to the zero observati_ons
%, = summation referring to non-zero observations
T, = number of nonzero observations.
Assuming independent identically distributed normal error terms #,, the log-

likelihood function is given by
T ’
log L(B,0) = ¥ log(1 - ®,) - log 0° - —Ziz— S (5, - xB). 2)
0 1

Unlike other types of models whose likelihood function may present multiple
maxima, in our case the likelihood function is globally concave (Olsen, 1978).

Maximisation of the log-likelihood (2) provides an estimate of t‘hf.: unknown
parameters B and &? which is consistent and asymptotically efficient under
suitable regularity conditions.

3. ESTIMATORS OF THE COVARIANCE MATRIX

Several different estimators of the covariance matrix of B and 62 can now be
used. They are numerically different, but asymptoticz.llly'equivalentA Equiva-
lence rests upon the property that, under correct spcciflc.atlon of the mode'l and
suitable regularity conditions, all these covariance estimators asymptotically
give the inverse of Fisher’s information matrix. . . .

These different estimators are typically — even if not necessarily - assocllated
with different computer algorithms (see Hall, 1984, for a survey on available

mputer programs).
- Lgt us sll)lp;;ose to use some Newton-like method to maximi'se the likelihqod.
At each iteration of the process, we compute the vector of first order.der.wa—
tives of the log-likelihood (gradient) and the matrix of second order derlyatlves
(Hessian). Upon convergence of the iterative maximisation process, the inverse
of the Hessian calculated in the last iteration is a suitable estimate of the
covariance matrix for B and 6.

The first derivatives of the log-likelihoods are (Amemiya, 1984)

dlogL _ 1 o 1 CB)x 3)
B oxi-w I
ologl _ 1 BN 1Sy, - xpY (4)
dot  20° %‘% 1-9, 25 206° ; £
while the blocks of the Hessian matrix are
logl 1 _jz_[ﬂ_i(l_(p)x,ﬂ}”,_L Y s 5)
aﬂaﬂ/ - o % (1_¢l)2 o 0_2 t ¢ 7t 0_2 - vt
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M log L _ 1 o, 1 2 x/Bo
0% 20 S -7 [02 1= ®)0p) _(1_‘1”)“%}‘?
1 ’ ’
" 2 ~ x(B)x] (6)
G

d*logL 1 o 1 ,
Aoty a0 Sy [7“ = ®)BP 1 - @) - TP J

7 1
P X - xB)
200 gt TP (7

If our program takes advantage of the Berndt, Hall, Hall and Hausman's
(1974) suggestions, we can replace the Hessian with a matrix of outer products
of the first derivatives of the log-likelihoods, both in the maximisation process
and for estimating variances and covariances of B and 62

With the method of scoring the inverse of the estimated information matrix
is used. Its blocks are (Amemiya, 1985, p. 373)

dlogL) 1 x] I

E[ oBIp’ ]“‘72 [@ o ‘“u_‘(pt)—@t}zx; (8)
92 lOgL 1 T (x'ﬁ)z 2 ’

El—8—= |=__2_ 2l _ L X, ’
[802813’] Zoﬁ,é[q" o ey ;fo ©)

3 log L 1 & B ; ;X
E[ og ]:_4042[%M+¢1ﬂ_‘:i_2¢,) (10)
£=1

.Maximisation can also be performed in some other way (e.g. Fair, 1977). In
this case, estimates of variances and covariances of B and 67 are obtained by
calculating one of the above three matrices at the end of the maximisation
process.

Also not associated with a particular maximisation algorithm is the robust
estimator of the coefficient covariance matrix, whose use has become more and
more popular in the last few years. This estimator was discussed in White
(1980) for the linear regression model with heteroskedastic errors, then ex-
tended in White (1982, 1983) and Gourieroux et a/ (1984) to cover more
general types of models. It gives the covariance matrix of the parameters when
the model is not correctly specified (misspecification consistent). Under correct
specification, also this estimator is equivalent to the others, as it gives asymp-
totically the inverse of the Fisher’s information matrix.

Let us now suppose to estimate a model in practice by maximum likelihood
and to calculate, upon convergence of the maximisation algorithm, the four
different estimates of the variance-covariance matrix. Of course we are per-
fectly aware that these covariance estimators are equivalent only for large
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samples. However, as the four matrices are computed at the same parameters
values, we would probably expect that even for a small sample the four groups
of results had to be sufficiently close to one another, and that if significant
differences are found, they had to be interpreted as an indication of misspecification
(e.g. White 1982). This seems not to be true, unless the sample size is really very
large. Even in absence of misspecification, large differences are encountered in
small samples, and the sign of the differences is almost systematic.

Similar results have appeared in the literature, related to Probit model (Griffiths
et al., 1987), to simultaneous equations (Calzolari and Panattoni, 1988a), and
to the linear regression model (Parks and Savin, 1990).

Other recent studies have been focused on the finite sample behaviour of the
robust covariance estimator, all evidencing that it tends to underestimate the
coefficient covariance matrix if the model is correctly specified. Chesher and
Jewitt (1987) identify conditions under which this covariance estimator is down-
ward biased in the linear regression model (the heteroskedasticity consistent
covariance estimator). They show that the bias critically depends on the regres-
sion design and can be severe. MacKinnon and White (1985) propose some
finite sample corrections for this covariance estimator in linear regressions,
while the sampling experiments in Prucha (1984) or in Calzolari and Panattoni
(1988b) clearly evidence a similar need for systems of simultaneous equations.
Like all these papers, also here we use a Monte Carlo experiment to investigate
the finite sample properties of the four covariance matrix estimators in the
context of the standard Tobit model.

4. SIMULATION RESULTS

In this section, which is the main part of the paper, we report the results of
the simulation experiments. First the design of the Monte Carlo is outlined,
then the specification of the models employed in the experiments are described
and finally results are discussed.

4.1. Design of the Monte Carlo Experiments

To compare the different estimators of the variances and covariances in
small-medium sized samples, a wide set of Monte Carlo experiments have been
performed on several models. For each model we start from a given vector of
true parameters held fixed over all replications, we fix a sample period lenght
and generate values of the explanatory variables in different ways:

e models 1, 2, 4 and 5: explanatory variables have been kept fixed at their
historical values and for longer samples have been repeated consecutively.

e model 3: a multivariate normal generator, with given means and covariance
matrix has been used; explanatory variables in different time period were

generated independently; dummy variables were randomly generated with 0

or 1 values.
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s model 6: the explanatory exogeneous variables are generated with a strong
leptokurtic design.

Random values of the disturbance terms, #,, over the sample period, are then
generated independently of the explanatory exogeneous variables with normal
distribution, zero mean, the given variance, and independent over time. Values
of the endogeneous variable are finally computed with simulation. With the
generated data we now estimate parameters by maximum likelihood and we
compute, at the values that maximise the likelihood (B and 62), the four
estimates of the covariance matrix of 3 and &2

For each model, given a sample period lenght, we perform 1000 replications
of the Monte Carlo process. A table displays the mean value of each parameter
estimates, the mean variance estimated with the four methods, and the mean
squared error ratios (ratios between each mean variance estimate and the Monte
Carlo M.S.E.).

The last column displays the number of times that we found an outer product
estimated variance greater than the corresponding Hessian estimate. In our
experiments this is the inequality that occurs more often.

The experiment is then repeated with different sample lenghts. Rather than
displaying detailed results for each experiment, we summarize, for groups of
parameters, the percentage number of cases in which the variance computed
from the matrix of outer products is greater than the corresponding variance
computed from the Hessian matrix.

4.2. Models Specifications

MobpgL 1. From the monthly monetary model of the Bank of Italy (Banca
d’Italia, 1988, p. 79), we consider the equation of discount window borrowing.

Y,=1000¢q + ¢, Y, _ 4 + IOOCZXI,, + 10c¢; X2’t+ C4X3,,+ cs(X” - X“_ D+u, (11)

Y = Discount window borrowing

X, = Overnight rate

X, = Discount rate

X, = Monetary base of Treasury net of open-market operation (flows)
X, = Monetary base abroad

T=42 Truncated observations: 26% 1000 Replications

MobkeL 2. A different specification of the previous model has been consid-
ered, so model 2 is a simplified version of the equation for demand of discount
window borrowing (Banca d’Italia, 1988, p. 79)

Y, =1000cq + 100c, (X, , - X, )+, X5+ 03( Xy - Xy o)+ 2, (12)

T=42 Truncated observations: 26% 1000 Replications

Estimating variances and covariances in a censored regression model 329

MobeL 3. This model is a simplified version of the equation proposed by
Witte (1980) as an economic model of crime.

X X X X, X5, Xy
< i Lk £ 4 tie +u, (13)
Y, =10 To000 T2 100 T To0 TS4T00 T TI0 T TI0
¥ = Number of arrests per month free .
X, = Accumulated work release funds received
X, = Number of months until first job after release
X, = Hourly wage after release
X, =Age (in years) at release
X5 = Dummy (1 if serious alcohol or drug problem)
X, = Dummy (1 if married)
T=150 Truncated observations: 30% 1000 Replications

MODEL 4. A naive version of Mroz’s model for married women labour supply
{Mroz, 1987)

Y, =100c, +100¢c,X,, + ¢, X, , + e Xyt Xy, tesXs, + Xy T 61 X5,
X
+eXg, +6Xo, +Ero )1:)00‘ +u, (14)

Y =Wife’s hours of work

X, =Children less than 6 years old in the household
X, =Chlidren between ages 6 and 18

X; =Wife's age

X, =Wife's educational attainment, in years

Xs; =Husband’s age .

X, =Wife’s father’s educational attaiments

X, = Unemployment rate in county of residence

X. =Dummy (1 if live in large city)

— Years of wife’s previous labor market experience
1o = Wife’s property income

T=200 Truncated observations: 60% 1000 Replications

MopEL 5. A simplified version of Mroz’s model for married women labour
supply (Mroz, 1987)

X Kot (15)
Y, =100¢, +100c,X, , F0, Xy 0Ky + 04Ky, TEs 100 %
T=753 Truncated observations: 43% 1000 Replications



330 G. Calzolari, G. Fiorentini

4.3. Inequalities on estimated variances

While for models 4 and 5 only one set of experiments has been performed ,
for the first three models the experiments have been repeated with longer
sample periods. In table 6 we display in a synthetic way the results related to
the inequality between the Hessian and the O.P. estimates of the variances for
models 1, 2 and 3.

As far as the QML estimator of the variances is concerned we observe in
tables 1 to 5, that the QML variance estimate is, on average, always slightly
smaller than the corresponding Hessian estimate.

4.4. Artificial Models 6 and 7

Two artificial models have been specified and simulated to investigate some
behaviors of the alternative estimators under extreme conditions.

Model 6 has 10 explanatory exogeneous variables as well as the constant
term (12 parameters, including 62). All values of the explanatory variables have
been randomly generated with a strong leptokurtic design. These conditions
were identified as critical in other type of models (e.g. Calzolari and Panattoni,
1988b). Four different sample lenghts have been used for simulation: T = 100,
T=200, T=1000 and T=5000. For this model, some results are presented in
graphical form, as described in the next section.

Model 7 is a very simple one, with a single constant regressor, like one of the
models used by Nelson and Savin (1988) to investigate the nonmonotonic
behavior of the power in the Wald test for Tobit models.

TABLE 1

Model 1: mean estim. parameters, mean estim. variances, and M.S.E. ratios

par.  True Est. {nt. Hes. O.P. QML [MSE H/MSE OP/MSE W/MSE OP>H
I -1.99  -2.000 2.640 2.670 3.450 2.660 0.86 0.87 1.13 0.87 B85.6%
¢ -.048 -0.032 .030 .030 056 023 0.83 0.83 1.55 0.65 91.6%
c, 2.76 2.834 2.073 2.087 3.041 1.987 0.81 0.81 1.19 0.78 86.8%
¢y -4.89 -5.423 21.789 21.931 29.519 21.744 0.86 0.87 1.17 0.86 92.3%
cy -.09% -0.101 .003 .003 .004 .002 0.84 0.85 1.32 0.77  90.0%
c -.318 -0.325 .013 014 020 013 0.85 0.92 1.25 0.81 89%.4%
o? 152E4 129E4 149E9 I53E9 242E9 140E9 0.98 1.01 1.59 0.92 94.0%
TABLE 2

Model 2: mean estim. parameters, mean estim. variances, and M.S.E. ratios

par.  True Est. Inf. Hes. O.P. QML I/MSE H/MSE OPIMSE W/MSE OP>H
¢q 1.105 1.107 .064 064 .082 .062 0.87 0.87 1.12 0.85 80.8%
[ 1.89 1.935 1.356 1.362 1.794 1.309 0.91 0.92 1.20 0.88 79.4%
¢ ~.100 -.101 .002 .002 .003 .002 0.91 0.91 1.26 0.87 80.7%
3 -.365  -0.371 012 012 016 QL 0.94 0.95 1.26 0.90 83.0%

ol 167E4 116E4 119E9 121E9 173E9 111E9 1.02 1.03 1.48 095 87.2%
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TABLE 3

Model 3: mean estim. parameters, mean estim. variances, and M.S.E. ratios

par.  True Est. Inf. Hes. O.P. QML I/MSE H/MSE OP/MSE WIMSE OP>H
cqy 4.59 4.645 655 659 939 614 0.88 0.88 1.26 0.82 925‘;’2
< -1.13 -1.300 562 .582 1.000 457 0.97 1.00 1.72 0.79 93.3%
[ 1.76 1.710 314 315 533 275 0.89 0.89 1.51 0.78 23.8%
cy -3.92 -3.940 1.050 1.060 1.520 979 0.34 0.85 1.21 0.72 9x.7%
¢4 -.721 -0.718 059 .060 .090 .054 0.84 0.85 1.28 0.7 : .9%
s 511 0.499 127 128 164 126 0.88 0.88 1.13 0.87 93;0%
A -.236  -0.201 153 154 .208 .149 0.85 0.86 1.16 0.83 ,17
G? 012 012 .70E-9 .70E-5 1.0E-5 .67E-5 0.85 0.86 1.23 0.81 93.1%
TABLE 4

Model 4: mean estim. parameters, mean estim. variances, and M.S.E. ratios

par.  True Est. Inf. Hes. O.P. QML I/MSE H|MSE OP/MSE W/MSE OP>H

16 0.94 89.4%
33 0.96 90.4%
04 0.84 88.6%
19 0.92 84.0%
32 1.02  88.6%
21 0.94 81.4%
39 1.08 90.2%
20 0.98 90.0%
13 092 94.2%
08 0.88 82.2%
11 0.78 88.2%
.35 0.94 92.2%

g 10.9 12.4 131.1 131.9 156.9 127.1 0.97 0.98
< -10.5 -11.0 5.91 5.97 7.68 5.52 1.02 1.03
c; 36.9 32.4 7398 7444 8862 7186 0.87 0.87
cy -58.7 -60.8 765.9 7715 947.5 739.1 0.96 0.97
o4 74.70 73.92 3514 3547 4368 3368 1.06 1.07
Cs -4.3 -4.7 705.7 709.7 870.8 680.3 0.98 0.99
[ 35.5 36.3 1156 1166 1423 1107 1.13 1.14
¢ -30.6 -32.1 1121 1129 1338 1093 1.01 1.01
g -310 274 56378 56696 67453 54869 .94 0.95
cy 92.6 92.6 256.7 258.2 311.7 253.0 0.89 0.89
ci0 -.16 -.35 1.77 1.79 2.34 1.64 0.84 0.85
ol .14E7 13E7 .61E11 .62E11 .82E1l .58E1! 1.00 1.01

e b e e e e e

TABLE 5

Model 5: mean estim. parameters, mean estim. variances, and M.S.E. ratios

par.  True Est. Inf. Hes. O.P. QML I/MSE HIMSE OP/MSE W|MSE OP>H
o -14.4 -14.5 8.17 8.18 8.39 8.14 0.96 0.96 0.99 0.96 63.3%
[ -6.1% -6.17 1.14 1.14 1.18 1.13 1.02 1.02 1.06 1.01  62.2%
c, 89.7 90.6 1407 1408 1434 1405 1.03 1.03 1.05 1.03 53(8)2
cy 116.6 117.0 495.2 495.9 510.5 492.0 0.96 0.96 0.99 0.95 61.7%
¢, 62.7 62.5 39.5 39.5 40.5 39.3 0.93 0.93 0.95 0.93 66.0%
s -1.58 -1.60 218 218 .230 214 0.97 0.97 1.02 095 66,

o? .14E7 14E7 .10E11 .10E11 .11El1l .10E-5 1.12 1.12 1.16 1.11 66.5%
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TABLE 6

For the number of parameters indicated on the left, the outer product estimate
of the variance is greater than the corresponding Hessian estimate
at least in the percentage of cases indicated on the left

Model 1 (7 parameters)

T-=42 T=84 T=210 T =504
1 param. 2 94% 2 param. 2 86% 2 param, 2 76% 1 param. 2 70%
4 param.>90% 5 param. 2 80% 6 param. 272% 4 param. 2 66%
7 param. 285% 7 param. 276% 7 param. 2 68% 7 param. 263%

Model 2 (5 parameters)

T=42 T=84 T=210 T=504
1 param. >287% I param.>82% 3 param. 271% 3 param. 264%
5 param.279% 5 param.271% 5 param. 265% 5 param.259%

Model 3 (8 parameters)

T=150 T =300 T=500 T=1000
2 param.2>93% 3 param.291% 1 param. > 88% 1 param.276%
5 param. 290% 5 param. 2 88% 6 param. 282% 5 param. 2 68%
8 param.>85% 8 param.2>83% 8 param.278% 8 param.261%

4.5. Wald statistic: a summary figure

Let us now combine all the parameters standard errors into a single random
variable, like the Wald statistic. Another way to provide a synthetic view of the
small sample behavior of the alternative covariance estimators is to combine all
the parameters errors into a single random variable, like the Wald statistic. Let
ty be the true vector of parameters; under the null hypothesis Hy: 6= 6, the
Wald test statistic (8 — 60)"1‘7"1(9 - 6) is asymptotically distributed as a x 2 where
k is the number of parameters. In each Monte Carlo replication & - 6, is the
same and what change are only the different estimates of ¥. Since is the inverse
of the estimated ¥ that enters the Wald statistic, we should expect a value of
the outer product based Wald systematically smaller than the corresponding
value computed with the Hessian. Therefore, if we display the c.d.f. of these
statistics, the curve related to the outer product matrix should be left-shifted
with respect to the Hessian.

As far as the distribution of the QML Wald statistic (misspecification con-
sistent) is concerned, we must recall how the covariance estimator ¥ is com-
puted in this case

¥ = (H')(OP)(H™) (16)

Heuristically, if the Hessian estimated covariance matrix (H™Y) is smaller
than the corresponding outer product estimate (OP™), the product of matrices
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resulting from (16) should be even smaller. Therefore its inverse should be
larger, and the distribution of the Wald test rightmost shifred (%).

These effects are evidenced in figure 1. This figure is related to model 6 (11
coefficients), where the explanatory variables exhibit a very large fourth order
moment. We note, of course, that the distance among the curves is larger for
short sample periods and becomes negligible when the sample period becomes
very long. In fact, consistency of the estimators for the asymptotic covariance
matrices ensure that, increasing the sample period lenght, the cumulative dis-
triburion of the four Wald statistics collapse over the y7 c.d.f.. It is clear that
in this movement toward the y? curve, the four sampling distribution maintain
their relative positions.

The curves related to the Hessian and expected Hessian (estimated informa-
tion) are practically undistinguishable. Only in the shortest sample case the
inequality between these two covariance estimators is observable: the Hessian
curve is slightly left-shifted with respect to the other, and therefore slightly
closer to the theoretical y? curve. It is clear, however, that the inequalities
with respect to the outer product and the White estimators are much more
relevant in practical applications.

4.6. Powers of the Wald tests

As far as the size of the test is concerned, little can be said about superiority
of the covariance estimators, being only clear that the outer product Walds
tend to be too conservative, while the others are prone to overreject the null
hypotesis. We see from figure 1 that the y? provides in many cases a bad
approximation to the sampling distribution of the Wald statistics (of the QML
misspecification consistent Wald, in particular). Therefore to evaluate the pow-
ers of the Wald tests based on different covariance estimators, we need to use
critical values that are size-corrected by Monte Carlo. For the first experiment
we use model 6 with a sample period of 200 observations.

The size corrected 59 and 1% critical values are the 0.95 and 0.99 quantiles
of the empirical sampling distributions under the null hypothesis. The 11 coef-
ficients of the model, under the null, have the same values already used to
produce the results of figure 1. A sequence of alternatives is generated by
multiplying all coefficients (none of which is zero) by a sequence of factors
1.005, 1.010, 1.015, etc.

The size-corrected powers are displayed in table 7. Results related to the
estimated information are not displayed, as they are nearly identical to those

(Y Parks and Savin (1990) show in their experiments on a simple linear regression
model that the inequality between Hessian and outer products usually holds on the
diagonal terms of the covariance matrices, but not on the whole matrices. Therefore
our interpretation on the inequality involving the QML matrix is a very rough one and
would deserve further investigation.
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obtained from the Hessian matrix. At 5% the powers of the Hessian and outer
product are quite similar and outperform the QML Wald test. At 1% the
Hessian outperforms the outer product Wald test. The power of the QML
Wald test is very low in both cases, suggesting that the leptokurtic design of the
explanatory variables is very critical also for the size-corrected power of this

= . . .
' ‘ ' ' Q = . test, and not only for the discrepancy between the sampling and the asymptotic
o | distribution.
« * In table 8 we display the size-corrected powers of the Wald test for mode] 7.
Je : . .
2 |« @ The model has one coefficent and the only regressor is the constant term. For
- :E a sample period of 100 observations the sampling distribution of the Wald
pd o statistics are all rather close to the asymptotic x; distribution. At 5% the
o ox B ] o5 . .
- Z power of all tests is nearly the same for local alternatives. When nonlocal
—_ . - . - -
i ° alternatives are considered, the outer product version of the test exhibits more
o 58“ than the others the nonmonotonic behaviour discussed by Nelson and Savin
1= ht (1988). We have not encountered this behavior in model 6, even trying larger
o3 j departures from coefficients than those displayed in table 7.
8 R : At 1% the nonmonotonic behavior is more evident for all versions of the
A 17 Sy test. The QML Wald test outperforms only slightly the Hessian, while the
) = latter outperforms the outer product version of the test.
L L | | ° . . ) ) ' > It seems very hard to derive some general conclusion, however from these
(=) . . . . . . . .
- b 3 S 3 i ~ pu 2 = ] B 2 few cases it is possible to identify on average a mild superiority of the Hessian
2
Z Wald test over the others.
- !
v T T T L Q Q § ;
. % © TABLE 7
5 X =
. x — Model 6: size-corrected powers of the Wald test H,: 8= 6,
L - x 1g ls :
x
- x 8 T=200 at 5% at 1%
. : 2
3
[A *'» :l o H :0= Hessian Out. Pred. QML Hessian Our. Prod. QML
o o s FER ] Jwn =
° + x - - 8
%, . : T 8,% 1.005 0.06 0.06 0.05 0.02 0.01 0.01
5, ‘. x| E 8,%1.010 0.13 0.13 0.05 0.03 0.02 0.01
L . ‘e ilo & 8,% 1.015 0.25 0.26 0.05 0.08 0.06 0.01
° ‘. ik = g 6, % 1.020 0.46 0.45 0.06 0.20 0.16 0.01
°e Yo X 1 2 8, % 1.025 0.70 0.69 0.07 0.39 0.33 0.01
e o b 8, % 1.030 0.89 0.87 0.09 0.65 0.55 0.01
A ® o N\ 5 2 8, % 1.040 0.99 0.99 0.14 0.97 0.93 0.02
2 °o NG '8 kgl E 6,% 1.050 1.00 1.00 0.25 0.99 0.99 0.03
- % = = 6, % 1.060 1.00 1.00 0.46 1.00 1.00 0.05
s p & — 8,% 1.075 1.00 1.00 0.86 1.00 1.00 0.14
. ) , l w 8,% 1.100 1.00 1.00 1.00 1.00 1.00 0.58
= S S = =] = = < [
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TABLE 8
Model 7: size-corrected powers of the Wald test Hyo =0

T=100 at 5% t 1%

H,:c/o= Hessian Out. Prod. QML Hessian t. Prod. oML
0.01 0.05 0.05 0.05 .008 .008 .008
0.05 0.06 0.06 0.06 .003 .003 .003
0.10 0.08 0.07 0.07 .003 .003 005
0.20 0.23 0.22 0.24 .033 023 1036
0.30 0.52 0.50 0.52 0.15 0.11 0.16
0.50 0.95 0.95 0.95 0.70 0.61 0.72
0.80 1.00 1.00 1.00 0.99 0.93 0.99
1.00 1.00 0.98 1.00 0.99 2.79 0.99
1.20 1.00 0.88 1.00 0.90 2.54 0.95
1.30 0.99 0.77 0.99 0.76 .40 0.90

5. CONCLUSION

The aim of the present paper was to investigate the smsample behavior of
the alternative covariance matrix estimators of the TobML estimates. We
find that on average the Hessian and the estimated infnation matrix give
almost identical results, differences being observed only fvery short samples.

Variances estimated from the outer product matrix aremost systematically
arger (sometimes three or four times) than variances comted with the Hes-
sian or with the estimated information. Therefore thilifference in small
samples is not necessarily an indicator of misspecification, it would be argued
oy the information matrix test (White, 1982). The finitample MSE of the
naximum likelihood estimates are usually intermediate beeen these group of
:stimators.

The systematic inequality clearly observed in the expenents has the same
ign as for other type of models already analysed in theerature. Our paper
:onfirms that, for a great variety of models used in ecometric applications,
‘he choice of the covariance estimator is not neutral and hotheses testing may
se strongly affected by such a choice.
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RIASSUNTO

Quando i coefficienti di un modello Tobit si stimano con la massima verosimiglianza,
la loro matrice di covarianza & normalmente associata al metodo numerico impiegato per
la massimizzazione della verosimiglianza. Gli stimatori usati nella pratica sono derivati
da: (1) la matrice hessiana, (2} la matrice dei prodotti esterni delle derivate prime della
funzione di verosimiglianza, (3) il valore atteso dell’hessiano, (4) una combinazione di
1 e 2 (Ja matrice di covarianza robusta di White). Differenze significarive tra queste
stime indicano di norma una possibile errata specificazione del modello. I risultati del
nostro studio Monte Carlo sembrano contraddire quest’ultima affermazione, che rimane
valida solo per campioni di notevoli dimensioni. Persino quando il modello & correttamente
specificato si possono trovare delle differenze notevoli e sistematiche. La scelta di uno
stimatore piuttosto che un aliro non & neutrale e pud quindi influire in maniera significativa
sui risultati dei tests delle ipotesi.

SUMMARY

When the coefficients of a Tobit model are estimated by maximum likelihood their
covariance matrix is typically, even if not necessarily, associated with the algorithm
employed to maximize the likelihood. Covariance estimators used in practice are de-
rived by: (1) the Hessian (observed information), (2) the matrix of outer products of
the first derivatives of the log-likelihood (OPG version), (3) the expected Hessian
(estimated information), (4) a mixture of 1 and 2 (White's QML covariance matrix).
Significant differences among these estimates are usually interpreted as an indication of
misspecification. From our Monte Carlo study this seems not to be true, unless the
sample size is really very large. Even in absence of misspecification, large differences
are encountered in small samples, and the sign of the differences is almost systematic.
This suggests that the choice of the covariance estimator is not neutral and the results
of hypotheses testing may be strongly affected by such a choice.



