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The e�ects of punishment in dynamic public-good

games§

Özgür Gürerka, Bettina Rockenbacha, Irenaeus Wol�a

a University of Erfurt / CEREB, Nordhäuser Straÿe 63, 99089 Erfurt, Germany

Abstract:

Considerable experimental evidence shows that although costly peer-
punishment enhances cooperation in repeated public-good games, heavy
punishment in early rounds leads to average period payo�s below the non-
cooperative equilibrium benchmark. In an environment where past pay-
o�s determine present contribution capabilities, this could be devastating.
Groups could fall prey to a poverty trap or, to avoid this, abstain from pun-
ishment altogether. We show that neither is the case generally. By contin-
uously contributing larger fractions of their wealth, groups with punishment
possibilities exhibit increasing wealth increments, while increments fall when
punishment possibilities are absent. Nonetheless, single groups do succumb
to the above-mentioned hazards.

Keywords: Public good; Dynamic game; Punishment; Endowment endogene-
ity; Poverty-trap; Experiment
JEL: C73; C91; H41

1 Introduction

Cooperation in social-dilemma situations is a central aspect of life on every

scale of human interaction, be it for the purpose of hunting for commonly-

shared food, voting under democratic regimes, or preventing climate change

from making human life impossible on our planet. The critical issue in each

§We would like to thank the research group led by Urs Fischbacher as well as seminar
audiences at the University of Erfurt for their helpful comments. We gratefully acknowl-
edge the �nancial support by the DFG through research grant RO 3071.



of these situations is that, although it is socially bene�cial to spend one's

private resources on fostering the common goal, individual maximization of

resources calls for free-riding on others' cooperative e�orts (Robyn M. Dawes,

1980). Studying this issue is particularly important in light of the fact that

being involved in a social dilemma is not a once-in-a-life-time experience, but

occurs, in various disguises, on an everyday basis. Often today's contribu-

tion capabilities depend on past behavior. Financial or physical resources

may be low due to past excessive unilateral cooperation. Having taken the

costs of emission reduction in the heating system of one's house reduces the

�nancial capabilities in future social dilemmas. Being hurt after showing

civil courage lowers the future income possibilities during times of recovery.

Ceteris paribus, having been a free-rider in past situations provides a healthy

and �nancially well-equipped starting point for future actions. In the limit,

past providers may not be able to contribute in the future due to excessive

free-riding by others, while free-riders accumulate resources on their private

accounts.

Although there is a considerable literature on cooperation in social dilem-

mas (cf., e.g., the reviews in Ernst Fehr and Urs Fischbacher, 2003; or Simon

Gächter and Benedikt Herrmann, 2009), surprisingly little is known about its

dynamic aspects. In this paper, we experimentally study a linear public-good

game in which a subject's provision ability today depends on the subject's

and her group members' behavior in the past. Additionally, we allow for

the possibility of costly peer-to-peer punishment with a convex punishment

technology that is similar to that of Fehr and Gächter (2002) for low values

of assigned punishment points.1 The distinctive feature of our design is the

endogeneity of players' contribution capabilities. Instead of providing sub-

jects with (new) endowments in every round they play, they receive an initial

endowment on their wealth account and subsequently play with whatever is

currently on that account. Consequently, their payo� does not consist of the

1In introducing a convex punishment technology, we follow the example of studies
like Fehr and Gächter (2000); Laurent Denant-Boemont, David Masclet, and Charles
Noussair (2007); or Nikos Nikiforakis (2008). Convex punishment technologies have also
been used in other areas of economic research such as the law-and-economics literature,
e.g., Dhammika Dharmapala and Nuno Garoupa (2004).
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sum of period payo�s, but it is given by the �nal amount on their wealth

account.2

The structure of the game has a number of interesting implications. First

of all, it puts all the weight on the long run, which is another feature that

sets us apart from earlier studies of dynamic elements in the provision of

public goods. Notably, this leads to incentives for cooperation even in the

absence of a punishment mechanism if at least a fraction of the players is

motivated by social considerations. On the other hand, the introduction

of a punishment mechanism could have devastating e�ects if future contri-

bution capabilities are determined by present behavior, especially because

early punishment has been shown to be particularly strong in experimental

studies of peer-punishment mechanisms (cf., e.g., Fehr and Gächter, 2000;

Özgür Gürerk, Bernd Irlenbusch, and Bettina Rockenbach, 2006; or Mar-

tin Sefton, Robert Shupp and James Walker, 2007). Alternatively, potential

punishers, being aware of this hazard, might refrain from sanctioning other

group-members. As a consequence, play in the game with and without the

punishment mechanism might not di�er.

We �nd that players do punish, leading to an initial disadvantage of

groups with a punishment possibilities as compared to groups that do not

dispose of such possibilities. However, groups with punishment possibilities

are able to keep players' contributed fractions of their current wealth at

a constant level, whereas in the sanction-free environment, these fractions

exhibit the typical declining trend. Interestingly, we do not observe any

signi�cant di�erences in the absolute level of public-good contributions at

any point in time, which marks a stark contrast to earlier studies of public-

good provision.3 However, with punishment levels falling over time, wealth

levels in the groups having punishment opportunities are able to catch up

with those in the groups without. In contrast to the latter, average wealth

2An interesting related study is that of Edward Buckley and Rachel Croson (2006) who
analyse the e�ect of information about the group members' accumulated wealth levels
on contribution decisions as well as the e�ect of di�erent endowments. In their study,
neither di�erent endowments nor heterogeneity in accumulated wealth leads to di�erences
in subjects' contributions.

3Cf., e.g., Fehr and Gächter (2000); or Ernesto Reuben and Arno Riedl (2009) for a
game with heterogeneous endowments.
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levels in the former exhibit an increasing growth path, such that signi�cantly

higher wealth and, consequently, contribution levels seem to be a question of

an extension of the time horizon by a small number of rounds.

Having discussed the distinctive features of our study, their potential im-

plications, and our main results, let us review the related literature. There

is a substantial theoretic literature on repeated social-dilemma games with

earlier play in�uencing later distributions of di�erent (player) types in evo-

lutionary settings.4 However, to the best of our knowledge, experimental

studies focusing on dynamics in social dilemmas are surprisingly limited.

Noussair and Cindy Soo (2008) study public-good provision when the group's

past cooperation level in�uences each member's current marginal per-capita

return of provision. This resembles a situation in which players' abilities to

contribute to a public good is unrelated to the payo� stemming from it, but

the more cooperative the group has been in the past the higher is the re-

turn from future cooperation. In their setting, contribution levels generally

do not exhibit the usual falling trend except for a minority of the groups.

Abdolkarim Sadrieh and Harrie A. A. Verbon (2006) consider a situation in

which a group member's bene�t from the public good depends on the player's

current wealth. This setup is well-tailored to their focus on inequality and

situations prone to the accentuation of this inequality. Their �ndings are

surprising in that subjects' propensity to cooperate is not a�ected by the

degree of inequality induced. In contrast, in a control treatment that does

not involve a dynamic component, induced inequality has a positive e�ect

on cooperation. They conclude that subjects' fairness concerns seem to be

`crowded out' by the introduction of the dynamics. Finally, Gächter, Stefan

Grosse, and Rockenbach (2009) study dynamic public-good provision in a

setting in which the players' endowment in period t is determined by the

player's payo� in period t-1. In contrast to our study, however, �nal payo�s

are still given by the sum of all period payo�s. Unlike in the study of Nous-

4For examples of the evolutionary settings, cf. e.g. Peter J. Richerson and Robert
Boyd (2005) and the many references cited therein. For a game-theoretic treatment of a
di�erential-game dynamic public good, see Chaim Fershtman and Shmuel Nitzan (1991).
Anat R. Admati and Motty Perry (1991) analyse a two-player step-level public good with
alternating contribution stages.
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sair and Soo (2008), groups in the main treatment of the study by Gächter

et al. (2009) tend to do worse than those in any of their `non-dynamic' con-

trol treatments. In particular, this holds for groups in which the endowment

history was induced corresponding to the history of a randomly chosen `twin

group' in the main treatment. This latter �nding seems to be in line with

the earlier �ndings of Sadrieh and Verbon (2006) reported above.

In the remainder of this introduction, let us shortly present the structure

of our paper. We introduce the game-theoretic model underlying our exper-

imental setting in section 2. We will lay out the standard game-theoretic

solution to the game and point to a number of notable di�erences of our

dynamic setting to the usual static setting, where �dynamic� and �static� are

meant to refer to endogenous and exogenous endowment determination, re-

spectively. We will further discuss the e�ects social preferences would have

on our predictions. Finally, we will use two benchmark scenarios as our re-

search hypotheses to span the range of possible outcomes. In section 3, we

present the experimental procedure and design, followed by the presentation

of our results in section 4. Section 5, �nally, winds up with a discussion of

our �ndings and a pointer to the relevance of our benchmark scenarios.

2 Game-theoretic model

For our investigation, we implement two di�erent games, the dynPUN game

and the dynNOpun game. Both games are dynamic games consisting of T

rounds. In each round a public-good game is played. The games di�er from

a supergame with T repetitions of the stage games by two important aspects:

(i) contribution capabilities depend on earlier play, and (ii) no roundly payo�s

are paid. Instead, game payo�s are determined by the �nal-round wealth-

levels only.5

In the dynNOpun game, each round t, t = 1, ..., T , has exactly one stage

in which a standard public-good game with n players is played. In the �rst

5This is an important di�erence to the study by Gächter et al. (2009), who implement
(i) but not (ii). In their setup, roundly payo�s are paid as well as determining next-round
endowments.
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round, each player is endowed with an identical amount of E tokens. The

contribution capability, or current wealth, of a subsequent round t, Et
i , cor-

responds to player i's last round's wealth Ωt−1
i plus a `recovery surplus' of

m. In every round, each player i may contribute xti tokens from her current

wealth to a common project and keeps the remainder on a private account.

The total contributions are multiplied by nµ and divided evenly amongst the

players in the group, so that the public good exhibits a constant marginal

per-capita return of µ. Thus, player i's wealth Ωt
i at the end of round t is:

Ωt
i = Et

i − xti + µΣjx
t
j, t = 1, ..., T

with E1
i = E.

In the dynPUN game, a second stage is added. After the �rst stage, which

is identical to that of the dynNOpun game, players are informed about all

players' contribution decisions and may then assign punishment points to the

other players in their group. By assigning ptij points to player j, player i can

reduce the round-t wealth of player j by ptij. Punishment is not only costly

for the punished, but also for the punisher. The assignment of ptij points

in�icts costs of c(ptij) on player i. The cost function is a convex function that

is positive for all positive values of ptij and monotonically increasing. We

set two further constraints on punishment: players cannot assign values of

ptij that would drive their own current account below zero, and they cannot

drive other players' current account at the end of the round below zero. If

they assign more points than necessary to eliminate another player's positive

earnings, they nevertheless have to bear the full costs of their choice.

The resulting function determining player i's current wealth Ωt
i at the end

of round t is:

Ωt
i = Et

i − xti + µΣjx
t
j − h(Σjp

t
ji)−Σjc(p

t
ij), t = 1, ..., T

with Σjc(p
t
ij) ≤ Et

i − xti + µΣjx
t
j

h(Σjp
t
ji) = min{Et

i − xti + µΣjx
t
j, Σjp

t
ji},

and E1
i = E.

6



The next round's contribution capabilities are given by Et
i = Ωt−1

i + m,

where m is a small increment meant to re�ect a player's natural regeneration

capabilities and Ω0
i ≡ E,∀i.

2.1 �Standard� game-theoretic solution

The standard game-theoretic subgame-perfect Nash-equilibria of both games

for rational sel�sh actors are obvious and equal to those of the correspond-

ing `static' supergames (i.e., for Et
i that are independent of the contribution

vector xt−1, and more often than not, invariant over time or even over play-

ers), following directly from the typical backward-induction argument. In

other words, in the subgame-perfect equilibrium, no player will make pos-

itive contributions, nor punish other players in case of the dynPUN game.

However, there is one notable di�erence between the games presented here

and their respective `static' counterparts: in our games, xti = 0, ∀i, t, is no
longer a dominant strategy. To illustrate the intuition behind this, con-

sider a simple example of three players with an initial endowment of E and

no between-round regeneration, such that the contribution capabilities in a

given round t′, t′ > 1, equal the wealth level at the end of the preceding

round (Ω0 = E,m = 0, µ = 0.5, and n = 3). Consider player i and suppose

that all other players j choose full contributions and no punishment, i.e.,

xtj = Et
j and p.j. = 0,∀j 6= i. No matter what the punishment technology

is, a rational sel�sh player i will always set p.i. = 0.6 A player i who always

sets xti = 0 would obtain ΩT
i = E + T (2E/2) = (1 + T )E. In contrast, if

she chooses xti = Et
i , t = 1, ..., T − 1, and xTi = 0, she obtains a payo� of

ΩT
i = 2(3/2)T−1E. It is easy to see that the second strategy will lead to

higher payo�s for large enough T 's. In our simple example, two rounds are

enough for the latter strategy to `break even', while for T = 3, it already

leads to a payo� of 4.5E instead of 4E. Of course, this is not to suggest

that the strategy presented would be the best-response to all other players

6We are abstracting from punishment technologies that convey a bene�t to the punisher,
rather than causing costs. In most societies, punishment technologies that do not follow
this assumption are ruled out, probably in order to avoid misadministration of punishment
driven by sel�sh motives to the largest possible extent.
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contributing fully for all parameter combinations. In our exemplary case, a

strategy starting to defect in the penultimate period would obtain the same

payo� as the one defecting only in the �nal period. For the parameters used

in our experiment, it would do even better. Note that, up to this point, we

have neglected the possibility of positive punishment decisions, as well as of

reactions to defecting behavior by the other players. The sole purpose of

our example was to point out that the dynamics provide incentives to coop-

eration even for players maximizing only their own material payo� in case

other players do not conform to the model assumptions of being rational and

sel�sh. The reason for the non-dominance of free-riding is that it conveys

players the power to increase others' later-round contribution capabilities

through their own contributions in early rounds.

2.2 Solution with social preferences

How does the solution of the game change if one assumes that subjects have

some kind of social preferences? For some guidance on what the answer

to this question would look like, we discuss some arguments based on one

of the most prominent and tractable social preference models, proposed by

Fehr and Klaus M. Schmidt (1999). They show that in a standard linear

public-good game, equilibria with positive contributions are possible if one

assumes the existence of inequality-averse players. In these equilibria, a

subset of �conditionally cooperative� players contribute a positive amount

to the public good while the remaining players refrain from contributing.

These equilibria exist as long as the contributors do not su�er too much

from disadvantageous inequality. If punishment is possible on a second stage,

there may be equilibria in which all players contribute positive amounts to

the public good. These equilibria require a su�cient number of �conditionally

cooperative enforcers� who highly dislike disadvantageous inequality. These

�enforcers� are not only willing to contribute to the public good but also ready

to credibly threaten purely money-maximizing players with punishment if the

latter do not contribute.

What does inequality-aversion imply for our dynamic game? Rather than

8



conducting a comprehensive analysis of the dynamic game with socially con-

cerned players, we provide an idea of the direction in which the existence of

inequality-averse players changes the `standard' predictions. Game payo�s

correspond to the wealth levels at the end of the �nal period. For a one-shot

four-player game with a marginal per-capita return as used in our treatments

and without punishment opportunities, Fehr and Schmidt (1999) show that

there is no equilibrium with positive contribution levels unless all players are

�conditionally cooperative�. They go on to point out that, under inequality-

aversion parameters as typically observed in economic experiments, the latter

is very unlikely to happen.7 In our dynNOpun game, omni-lateral free-riding

is the unique equilibrium in the �nal stage of the game if there is at least one

money-maximizing player and the money-maximizing players' �nal-period

contribution capability is not lower than the conditional-cooperators' one.

In this case, a backward-induction argument leads to the conclusion that

there cannot be positive contributions in any round. Hence, the standard

equilibrium from the `static case', in which no player ever contributes, also

exists in our game. Furthermore, following from the same reasoning as in

the one-shot game, there exists a second class of equilibria with completely

symmetric contributions amongst a group of conditional cooperators who

disregard potentially lower contribution levels by money-maximizing play-

ers. However, in our setting, this only applies for groups consisting only of

conditional cooperators.8

Still, for the dynNOpun game, there is yet another class of equilibrium

that may sound counter-intuitive at �rst sight. In these equilibria, money-

maximizing players start out contributing their full endowment, while con-

ditional cooperators abstain from contributing positive amounts in the �rst

round. In following rounds, money-maximizers keep contributing their cur-

rent wealth, while conditional cooperators mirror the formers' action from the

7The parameter distribution suggested by Fehr and Schmidt (1999) results in that the
chances for cooperation amount to 2.56% in a typical public-good game (n = 4, µ =
0.5). The parameter distribution estimated by Mariana Blanco, Dirk Engelmann, and
Hans-Theo Normann (2008) would lead to a similar conclusion.

8The condition for this class of equilibria to exist is obviously the same as spelt out by
Fehr and Schmidt (1999) for the one-shot game.
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respective preceding round. Only in the �nal periods do money-maximizing

players free-ride completely, while conditional cooperators choose their con-

tributions as to equalize payo�s with the money-maximizers.9

To understand the intuition behind this class of equilibria, consider again

the �nal stage of the game. If conditional cooperators have higher �nal-period

contribution-capabilities than money-maximizers, the former will contribute

part of their current wealth to close the `wealth gap', while the latter will

obviously free-ride. In the preceding section we have pointed out that in

dynNOpun, a payo�-maximizing player may have an incentive to contribute

positive amounts to the public good even in the absence of any inequality

concerns � given the assumption that other players will continue to contribute

after the money-maximizer's defection. In other words, it may be pro�table

for these players to make the pie bigger and free-ride only in the �nal rounds.

By mirroring the money-maximizers' contributions from the respective pre-

ceding round, conditional cooperators always choose the amount necessary to

equalize wealth levels if all money-maximizers free-rode in the corresponding

period. A thorough analysis of the proposed equilibrium is given in appendix

B. Interestingly enough, these equilibria require conditions that are rather

likely to be met, in stark contrast to those needed for cooperation in the one-

shot game analyzed by Fehr and Schmidt (1999).10 In other words, unlike in

the `static' game the existence of inequality concerns could often lead to a

high degree of cooperation.11

9In fact, this class of equilibria is more general than proposed here. Money-maximizers'
equilibrium strategy could prescribe to contribute any arbitrary fraction of their wealth, as
long as it is symmetric, and to stop contributing in period T−t′. The conditionally cooper-
ative players would mirror money-maximizers' contributions in the respective subsequent
period and refrain from contributing positive amounts in all periods t > T−t′+1. However,
the most e�cient of these equilibria is the one with full money-maximizer contributions
and t′ = 1. Hence, this equilibrium would be chosen by the same equilibrium re�nement
argument Fehr and Schmidt (1999) employ to choose the full-contribution equilibrium.

10For the parameters used in our experiment, the likelihood of the preconditions for
this equilibrium to be given amounts to roughly 35%, according to the type distribution
suggested by Fehr and Schmidt (1999).

11In the absence of common knowledge of other players' types, this class of equilibria may
vanish: sel�sh types could mimic the equilibrium strategy of the conditional cooperators,
pretending to be one of them. However, if reciprocation in the �nal round is rather
doubtful, incentives for contributions by other sel�sh types are diluted. However, theoretic
analyses of games using Fehr-Schmidt-type preferences usually assume common knowledge
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For a public-good game with punishment opportunities, Fehr and

Schmidt (1999) show that equilibria exist in which all players contribute

to the public good, given that at least some players have social preferences.

In particular, they contend that �the `good' equilibrium� stipulating full con-

tributions by all players would be chosen by �a reasonable re�nement ar-

gument�.12 The prospects for such equilibria depend on the existence and

the number of conditionally cooperative enforcers, the magnitude of their

inequality preferences and the power of the punishment technology. In static

public-good games with relatively small groups as used in most experimental

studies (n = 4) and with a 1:3 punishment technology, the probability of a

cooperative equilibrium is about eight times as high as in the game without

punishment opportunities.13

Would we expect a similar e�ect for our treatments? The answer is no,

for a number of reasons. First, as has been pointed out above, the prospects

of a cooperative equilibrium in our dynNOpun game are not as low as in

the corresponding `static' game. Therefore, the increase in the probability

of a cooperative outcome resulting from the introduction of a punishment

mechanism will be far more moderate. Second, consider the �nal subgame.

In case of very large wealth di�erences, an enforcer may no longer have an

incentive or not be able to punish as much as would be required to equalize

�nal payo�s due to our convex punishment technology. In fact, as can be

easily shown, the optimal punishment choice of a player only depends on

the total number of players, the number of enforcers, and her aversion to

inequality, but not on the size of the inequality (unless this inequality is

small, in which case a corner solution may result). Hence, the enforceable

�nal-period contribution level is bounded from above. In contrast to the

games most often played in the laboratory, this upper bound will tend to be

of types (most notably, Fehr and Schmidt, 1999, themselves). Rather than by its accuracy,
this assumption has been justi�ed by its predictive power. In light of this fact, we follow
their example by making the assumption.

12Both p.842.
13For the preference distribution suggested by Fehr and Schmidt, the probability for

cooperation in a static public-good game amounts to about 20% (with n = 4, µ = 0.4,
and a cost-to-punishment ratio of 1:3).
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given by enforcer preferences rather than by players' wealth.14

On the other hand, for the class of positive-contribution equilibria in the

dynNOpun game described above, the `equivalent' for the dynPUN game

will display higher contribution levels, for two reasons: (i) payo�-maximizers

can be forced to contribute a certain level even in the �nal period, and (ii)

the threat of (partial) non-reciprocation in the �nal period leading payo�-

maximizers to contribute earlier on can partially be substituted for by the

threat of sanction assignment. Thereby, the conditional cooperators are able

to increase their own contributions in earlier periods beyond what is neces-

sary to equalize payo�s for the case of defecting money-maximizers, in turn

increasing the overall �nal wealth level.

In summary, in the presence of social preferences the introduction of pun-

ishment opportunities enhances both the prospects of a cooperative outcome

and the size of contributions in the `static' public-good games commonly

used in the literature. In contrast, in our dynamic version of the game, the

social-preference model proposed by Fehr and Schmidt (1999) would pre-

dict a substantial di�erence only in the achieved contribution levels, while

the predicted di�erence in the probability of an outcome with non-negligible

cooperation rates tends to be rather small.

2.3 Research hypotheses

We have seen in the preceding game-theoretic analysis that in the presence

of players motivated by social considerations, a dynamic public-good game

with endogenously evolving contribution capabilities provides incentives for

14For the parameters used in our game in conjunction with the parameters suggested
by Fehr and Schmidt (1999), the largest possible optimal number of assigned points is
15.4 per punishing player for 3 enforcers, and 5.8 points per enforcing player for two
such players. If there is a single enforcer, there will not be any point assignment, as
the marginal costs of punishment (equal to 1/3 at 0 punishment points) are higher than
the `enforcer's' marginal bene�t from punishment. Note, for comparison, that the average
�nal-round contribution-capability level amounts to over 2000 tokens. For the derivation of
the optimal choice of punishment points, the interested reader is referred to the calculations
of Fehr and Schmidt (1999), as a reproduction of their calculations would not provide any
new insights. The only di�erence between their case and ours is that the costs are no
longer linear, and thus, we do not (necessarily) obtain a corner solution.
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cooperation. In the `static' case, punishment leads to an increase in both

the level of contributions and the prospects of a cooperative outcome, while

in our game, only the former is expected. However, these are equilibrium

considerations that rely on a considerable number of assumptions. Notably,

they presume that there will not be any punishment actions, as the pun-

ishment threat is credible and su�cient to deter deviations from the pre-

scribed contribution levels. From the vast amount of experimental evidence

on public-good games with punishment we know that these conditions are

ful�lled hardly ever.15 While the threat of sanctions is generally �credible� in

the sense that subjects do assign punishment points, it is often not �credible

and su�cient� enough to induce high contributions early on in the experi-

ment. At the same time, the e�ciency costs of punishment are often so high

that the average period payo� is reduced below the no-contribution equi-

librium level in early rounds. In a game in which contribution capabilities

do not depend on earlier play, this characteristic often does not have an

enduring e�ect, as stable or growing contribution levels insure that �nal �

and often total � earnings surpass those from the comparable game without

sanctions.16 In a game with endogenously evolving contribution capabilities,

however, a �conditionally cooperative enforcer� has to strike a balance in the

following trade-o�: punishing a low-contributing player may induce higher

future cooperation levels, but at the same time, it destroys parts of the future

contribution capabilities of both the punisher and the punished player. This

tension provides the base for two extreme benchmark scenarios that we will

use as our research hypotheses.

The �rst scenario pictures that a group falls prey to a `poverty-trap' due

to excessive punishment. Punishers put too much weight on the cooperation-

enhancing e�ect of punishment, neglecting its costs. Heavy punishment in

early rounds - as often reported in static settings - will not only decrease

15For an overview, cf., e.g., Gächter and Herrmann (2009).
16Cf., e.g., Nikiforakis and Normann (2008). A notable exception is to be found in the

study by Gächter, Elke Renner, and Sefton (2008) for the groups playing over 10 rounds;
in their case, average earnings in the punishment treatment never reach those from the
punishment-free institution, and in all but two rounds, average earnings are below the
benchmark set by omnilateral defection.
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round-wise e�ciency but will have serious repercussions on subsequent con-

tribution capabilities and thus, achievable wealth levels in subsequent rounds.

In other words, even if punishment leads to higher contributed fractions of

current wealth (as it usually does), if it keeps wealth levels down, contribu-

tions will still be lower. Furthermore, even in the case of growing wealth

levels, punishment will not necessarily lead to higher contributions in the

long run; if the initial disadvantage is large enough, catching up with non-

punishing societies may take a very long time � potentially longer than our

experimental sessions.17 At the same time, catching up may be di�cult for

another reason: enforcers will need to uphold the punishment threat, unless

groups entirely consist of conditional cooperators. With rising wealth and

envisioned relative contributions that are at least stable, assigned points will

need to be higher to do their job. Simultaneously, our convex punishment

technology makes higher penalties disproportionately more expensive. How-

ever, relatively ine�cient punishment will not be able to uphold contributions

the same way more e�cient cost-to-e�ect ratios do, which may in turn induce

contributions to fall again even in the presence of an initially successful pun-

ishment mechanism (see e.g., the results of Nikiforakis and Normann, 2008,

on di�erent cost-to-e�ect ratios).

H 1. Groups in dynPUN fall prey to a poverty trap, i.e., punishment actions

diminish future contribution capabilities such that contributions remain be-

low those in the dynNOpun treatment, while relative contributions (measured

against players' current wealth) may or may not be higher. Consequently,

payo�s will be lower in the treatment with punishment opportunities.

If, on the other hand, players foresee the detrimental e�ects harsh punish-

ment in early periods may have, they may refrain from contribution enforce-

ment, which may render the punishing mechanism ine�ective. Alternatively,

17Cf. Gächter et al. (2008); given we only have subjects play over 20 rounds, their
di�erent results for large numbers of repetitions may not apply. At the same time, the
number of rounds used in the present study is substantially higher than in other studies
for which a bene�cial e�ect of punishment has been documented, such as most treatments
in Nikiforakis and Normann (2008; note that their 1:2 punishment technology only leads
to a non-signi�cant increase in cumulative earnings).
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punishment may not even be needed, given the increased incentives for coop-

eration provided by a combination of social preferences and dynamic incen-

tives. In this case, punishment opportunities would not lead to a cooperation-

enhancing e�ect, either, but this time as a consequence of groups without

punishment performing too well. Taking together the expected e�ects of dy-

namics fostering aggregate payo�s in a non-punishing world and of impeding

the positive e�ects of punishment in a world where the latter is an option, we

propose the following competing hypothesis on contribution and punishment

behavior:

H 2. Players in dynPUN abstain from contribution enforcement in order to

save the group's resources. In consequence, the cooperation-enhancing e�ect

of punishment vanishes. Therefore, contributions in absolute and relative

terms are non-distinguishable between the treatments, as are payo�s.

An important feature of our study is that the game structure inherently

leads to asymmetric wealth levels, unless all players cooperate to exactly

the same degree. A widely-received feature of public-good studies with het-

erogeneous endowments is that �rich participants typically contribute less in

relative terms than poor participants do.�18 For our study, we expect this

to hold in heterogeneous but not in homogeneous groups: in case there are

(partial) free-riders as well as full-contributors, the assertion will hold true au-

tomatically, and if players have the often-assumed types � pure cooperators,

defectors, and punishers � it will also be a self-ful�lling prophecy. In con-

trast, in groups exclusively composed of either free-riders or full-contributors,

we will not be able to make a statement of that kind. A comparison across

groups, on the other hand, will most likely yield mixed results, given the �rich�

will be a mixture of free-riders from mixed groups and full-contributors in

more homogeneous groups. In other words, we expect to be forced to qualify

the above assertion as a consequence of the endogeneity of subjects' (rela-

tive) wealth levels.19 This is an important di�erence to the setting of Sadrieh

18M. Vittoria Levati, Matthias Sutter, and Eline van der Heijden (2007, p. 812). For
a study on heterogeneous punishment technologies, see Nikiforakis, Normann, and Brian
Wallace (forthcoming).

19Todd L. Cherry, Stephan Kroll, and Jason F. Shogren (2005) examine a di�erent kind
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and Verbon (2006) who induce wealth heterogeneity exogenously. While they

�nd that �[a]pparently, the poor do not blame the rich for their own poverty,�

this cannot be expected in our game.20 In our setting, �the poor� cannot but

blame �the rich� for their low level of wealth, as the latter are richer than the

former because of the previous decisions taken.

A second �nding from a number of studies of a linear public-good tech-

nology employing heterogeneous wealth or endowment levels is that aver-

age contributions are lower than under homogeneous ones (see e.g., Lisa R.

Anderson, Jennifer M. Mellor, and Je�rey Milyo, 2007; Cherry, Kroll, and

Shogren, 2005, or the literature surveyed in Kenneth S. Chan et al., 1999).21

For our study, we do not expect clear evidence in this regard because of the

reasons outlined above: homogeneity will be high both in very wealthy and

very poor �societies�, while it will take on intermediate values in those groups

in between.

3 Experimental design and procedure

In our experiment, we implemented the games described in section II, with

the following parameter values: n = 4 subjects interacted within a �xed

group over T = 20 rounds. The initial endowment was de�ned by Ω0 = 18,

and m = 2, such that E1
i = 20, ∀i. The public good's marginal per-capita

return was set to µ = 0.4, and punishment costs were calculated according

to the following formula:

c(pij) =
1

3
pij +

p3
ij

2000
. (1)

This formula was chosen such as to preserve the standard cost-to-punishment

ratio of 1:3 for low values of punishment points, but to re�ect the increas-

of endogenous wealth asymmetry, having subjects earn their endowments for a one-shot
public-good game to test whether the origin of endowments leads to di�erences in behavior.

20Sadrieh and Verbon (2006, p. 1219).
21For other public-good technologies, di�erent results obtain, as in the case of Sadrieh

and Verbon (2006). For a more detailed review, cf. Chan et al. (1999), or Levati et al.
(2007).
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ing di�culties real-life punishers would be expected to be faced with when

setting out to destroy larger amounts of wealth. After observing others' con-

tributions, subjects in the dynPUN treatment were asked to indicate the

players they wanted to assign points to or to indicate that they did not want

to assign points to any other player before being allowed to punish those

players indicated. This was done for two reasons: (i) to avoid a punishment-

related experimenter-demand e�ect as much as possible, and (ii) to ensure

consistency with our econometric procedure of separating the decisions on

whether to punish and on how many points to assign.

Our experiment was programmed in z-Tree (Fischbacher, 2007) and run at

the Laboratory for Experimental Economics (eLab) at University of Erfurt.

We ran 4 sessions, 2 for each of our treatments. A total of 72 subjects

were recruited using ORSEE (Ben Greiner, 2004). In each session, subjects

were welcomed and asked to draw lots, in order to assign each of them to a

cabin. Once all subjects were seated, the instructions were handed to them

in written form before being read aloud by the experimenter. After this,

subjects were given the opportunity to go over the instructions again and

ask any questions they might have. Questions were answered individually.

At the beginning of the experiment, each subject was assigned an identi-

�cation letter (R, S, T, or U) that was kept constant over the course of the

experiment. Assignment to groups was random and groups did not change

during the entire session. In each session, there were either 4 or 5 matching

groups, so that we obtained 9 independent observations for each treatment.

Subjects were paid according to their individual performance according

to the following formula:

Payment in Euros = (Number of experimental tokens accumulated)2/7

This translated into possible payments between 0 and 40 Euros. The sessions

lasted approximately three quarters of an hour, average payments being 8.30

Euros. Payments were settled individually to ensure players' anonymity.

Also, no other information was given to the subjects that would enable them

to connect the players in the game with the respective subjects in the session.
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4 Results

As a �rst indicator for the performance in the two treatments, we focus on

the average wealth levels. Figure 1a shows that they increase monotonically

in both treatments. While wealth levels are (weakly) signi�cantly lower in

dynPUN in the �rst (second) quarter of the experiment, they are not statis-

tically di�erent afterwards (p-values by quarters are 0.0142, 0.0939, 0.2581,

and 0.7304).22

Result 1. In an environment where contribution capabilities are determined

by past contribution levels, groups under a peer-punishment mechanism su�er

an initial disadvantage in terms of their wealth level, compared to groups in a

treatment without punishment opportunities. This di�erence is made up for

by the second half of the experiment.

Figure 1: a) Average wealth levels from both treatments (left), and b) and
average growth rates of wealth (right).

22Treatment comparisons are always made by means of two-sided Mann-Whitney U
tests.
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In other words, groups in the dynPUN treatment manage to overcome an

initial disadvantage, but they do not surpass the groups from the dynNOpun

treatment. In relation to the potentially achievable wealth level, our subjects

only obtain 1.14% (0.48%) in dynPUN (dynNOpun). Figure 1b, displaying

average wealth-level growth rates, illustrates the history leading to these low

percentages. Out of the theoretically possible benchmark of 60% growth,

average growth rates do not reach even half. Having said that, we notice

two very distinct growth paths in our treatments. While the average growth

rate is signi�cantly higher in dynNOpun in the �rst quarter (p = 0.0315),

it declines almost monotonically from 26% to 6%. The growth rate in the

dynPUN treatment keeps rising from a mere 5% to just over 20% in round

18, before the end-game e�ect kicks in for the �nal two rounds. However, the

di�erence in growth rates in favor of the dynPUN treatment after period 11

does not reach statistical signi�cance before the end of the experiment.23

To obtain a better understanding of how these (non-)di�erences in wealth

levels and growth rates come about, let us turn to subjects' contribution de-

cisions. Surprisingly, and contrary to the �ndings from previous research on

peer-punishment in public-good games, we do not �nd signi�cant treatment

di�erences in terms of contributions in any of the 20 rounds.24

Result 2. In an environment where contribution capabilities are determined

by past contribution levels, a peer-punishment mechanism does not increase

contribution levels beyond those in a punishment-free environment.

However, if we look at what subjects contribute as a part of their cur-

rent capability, which we will refer to as relative contribution, we observe

the well-known pattern of initially similar but diverging contribution paths.

We illustrate this pattern in Figure 2. In dynNOpun, average relative con-

tributions start out at 43%, falling over time in what is almost a monotonic

fashion to 17% in round 18, while they slightly increase from 37% to 41% dur-

ing the same time period in dynPUN.25 The treatment di�erence in relative

23p-values for quarters 2-4 are p6−10 = 0.9314, p11−15 = 0.5457, and p16−18 =
0.2973(p16−20 = 0.3401).

24Apart from the �nal round (p = 0.1217), p-values are always above 0.25.
25A spearman correlation test between the average relative contribution and time over
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contributions is not signi�cant but for the �nal quarter (p16−20 = 0.0503),

even though the dynPUN average already surpasses the one in dynPUN as

early as in the third period.

Result 3. Contributed fractions of current wealth do not fall over time in

the presence of a peer-punishment mechanism, while they exhibit the typical

declining trend in its absence. The di�erence in relative contributions is

signi�cant at the end of the experiment.

Figure 2: Treatment averages over contribution levels relative to current
capabilities.

Still, the question remains of why this advantage does not translate into

higher contributions within the time frame set by our design. Naturally, the

answer has to be in the resources destroyed by punishment.

In Figure 3a, we depict the average fraction of public-good surplus de-

stroyed by punishment actions (i.e., the sum of the punishers' costs and

punished players' losses). As can be seen from the �gure, more than half of

a group's surplus is eaten up by punishment actions especially in the �rst

half of the experiment. Overall, an average of 62% of the groups' growth

the whole experiment has a p-value of 0.0612.
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is lost. The fact that this problem is even more pronounced in the be-

ginning of the experiment can account for the humble performance of the

average dynPUN group and its di�culty to outperform the average group in

the dynNOpun treatment: as stated before, it leads to a signi�cantly worse

early-round performance of groups in dynPUN. This creates a disadvantage

that is aggravated by the power-function character of our payo� function as

`production capacities' are determined by past performance.

Result 4. On average, the use of punishment destroys 62% of a group's gains

from cooperation, thereby explaining the uncommonly low level of contribu-

tions when compared to the punishment-free environment.

Figure 3: a) Average fraction of public-good surplus destroyed by punish-
ment actions; b) Average fraction of punished players' surplus destroyed,
(i.e., conditional on the players being punished).

Another question concerns the impact such punishment has on the indi-

vidual player, most importantly, how strongly received punishment a�ects

a punished player's wealth. We depict this in Figure 3b, showing that on
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Table 1: Punishment statistics from the four punishment treatments from
Nikiforakis and Normann (2008), and from our dynPUN treatment. The
ratio of 1:2.8 given for our treatment refers to the average e�ective ratio in
our experiment.

Nikiforakis and Normann (2008) Our data
Technology 1:1 1:2 1:3 1:4 ∗1 : 2.8∗

Fraction of wealth
destroyed

0.0935 0.1141 0.1154 0.0653 0.0919

PunRcvd/(wealth after the
public-good stage)

0.0391 0.0714 0.0807 0.0482 0.0636

...cond. on receiving
punishment

0.1204 0.1880 0.2257 0.3271 0.1304

Number of punishment
assignments

0.4500 0.5208 0.4458 0.2708 0.7194

...cond. on this number
being positive

1.3118 1.5122 1.4850 1.2490 1.4362

punExp/(wealth after the
public-good stage)

0.0543 0.0427 0.0346 0.0171 0.0254

...cond. on punmt expenses
being positive

0.1444 0.1216 0.0982 0.0677 0.0474

average, punished players are left with more than their wealth at the begin-

ning of the round. Only in two rounds out of twenty do these players lose

(slightly) more due to reduction points than what they have gained from the

public good before the punishment stage. What does not happen, on aver-

age, is that punished players' wealth is brought to shrink. One reading of

this �nding is that punishers take care not to waste too many resources for

future group production. To obtain a clearer picture of whether punishment

is meted out in a more cautionary way than usual, we compare our data to

data from a `static' experiment comparing di�erent linear punishment tech-

nologies that was conducted by Nikiforakis and Normann (2008). Knowing

that the �gures calculated from these two di�erent data sets can at best give

us an indication of the main trends, we compare them in table 1.

From Table 1 we see most indicators are rather similar between the two
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experiments, despite the di�erences in the experimental setup. A notable

di�erence is that punishment expenses and points received conditional on

punishment meted out/received tend to be on the lower end of the distribu-

tion in our experiment, but more strikingly, that the number of punishment

actions is substantially higher. In light of the fact that this number is not

di�erent when conditioned on punishment being e�ected, in our experiment,

more players seem to take a share in sanctioning misbehavior. In other

words, while those who punish tend to assign less points than under the lin-

ear technologies employed in Nikiforakis and Normann (2008), more players

are engaged, leading to a similar impact on punished players' wealth levels.

Result 5. Compared to data from `static' environments with comparable cost-

to-sanction ratios, subjects in our punishment environment seem to punish

more often but more moderately.

To understand how such frequent but moderate punishment impacts on

contribution behavior, we conduct a number of Wilcoxon tests. The most

striking result is that the likelihood of an increase in (relative) contributions

after a player experiences sanctions is not signi�cantly di�erent from the

case when the player is not punished (p = 0.2031 for contributions, p =

0.1641 for relative contributions).26 Furthermore, the size of the change in

contributions from one period to the next conditional on being punished is not

signi�cantly higher, either (p = 0.1386). Only the size of relative contribution

changes is signi�cantly larger after experienced punishment (p = 0.0152).27

26The result for relative contributions is particularly intriguing for the following reason:
given sanctions are directed predominantly from high- to low-contributors, we would ex-
pect an increased fraction of positive reactions after punishment even for a player choosing
her contributions randomly from any symmetric distribution over the range of possible con-
tribution choices. Only players who always contribute a constant fraction of their wealth
(which we do not observe) or players responding negatively to received punishment would
not increase their relative contributions. On the other hand, players not being punished
tend to be those with higher contributions. An increase in their relative contribution level
would be expected to be less likely.

27This, however, can be due to two di�erent reasons: (i) subjects may think in terms
of relative contributions, thus increasing their relative contributions after being subject to
sanctions. (ii) They focus on the absolute contribution level (as well), with a tendency to
keep it constant; in this case, punishment need not in�uence contribution behavior but
leads to an increase in relative contributions merely by reducing contribution capabilities.
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To further explore this positive e�ect of punishment on relative contributions

and �nd out how other factors pertaining to social comparisons in�uence

contribution decisions, we conduct the regression analysis reported in Table

2.28 We contrast the results from this regression analysis to those from a

similar analysis conducted on the data from our dynNOpun treatment in

order to �nd out how the introduction of a punishment mechanism changes

the data-generating process.

In the �rst model reported in table 2, we regress a player's period-to-

period change in relative contributions on a number of lagged variables,

namely the deviation of her relative contribution from the other group mem-

bers' average contribution to test whether players condition their behavior

on others' decisions; her contribution capability's deviation from the others'

average capability to account for players' �historical� relative wealth levels

within their society; and the deviation of the player's surplus from the pub-

lic good from the others' average surplus; furthermore, a dummy variable

indicating whether the player had been sanctioned in the preceding round,

as well as the fraction of the player's current (i.e., interim) wealth destroyed

by others' assignments. All mentioned deviations are normalized using the

average (except for the comparisons of relative contributions), and split into

two positive variables to allow for di�erential e�ects of above- and below-

average values. Finally, we include the variation coe�cient of players' cur-

rent contribution capabilities to control for heterogeneity within the group,

the logarithm of the average capability to account for the current group level

of prosperity, and the period to allow for potential time trends. In the sec-

ond model, we use the same framework on the data from our dynNOpun

treatment, naturally excluding all variables pertaining to punishment.

A �nding that is common to both data sets is that negative deviations

from the average surplus from the public good lead to signi�cantly lower con-

tributions in the following round. What this means is that high-contributors

show particularly negative reactions to wealthy free-riders, that is, to free-

riders with a history of defecting. At the same time, having a history of

28Only data from periods 1 to 19 is included, to keep our data as clean as possible from
endgame e�ects. Signi�cance levels are indicated as follows: ∗∗∗0.001,∗∗ 0.01,∗ 0.05.
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Table 2: Results from a linear GLS regression of period-to-period changes
in relative contributions, with individual random-e�ects and errors clustered
by groups.28

Variable dynPUN dynNOpun

Positive deviation from the average relative
contribution in t− 1

-0.1731
(0.1104)

-0.1809∗

(0.0846)

Negative deviation from the average relative
contribution in t− 1

-0.0037
(0.0765)

0.2157
(0.1497)

Positive deviation from the average capability
in t− 1, normalized

‡
-0.0172
(0.0151)

-0.0182
(0.0279)

Negative deviation from the average capability
in t− 1, normalized

‡
0.0807
(0.0747)

0.1835∗∗∗

(0.0452)

Positive deviation from the average surplus
from the public good in t− 1, normalized

‡
0.0087
(0.0075)

0.0036
(0.0068)

Negative deviation from the average surplus
from the public good in t− 1, normalized

‡
-0.0604∗∗∗

(0.0162)
-0.0699∗

(0.0313)

Dummy: having been punished in t− 1 0.0011
(0.0131)

Received punishment as a fraction of the cur-
rent wealth level in t− 1

0.2009∗∗

(0.0612)

Variation coe�cient of the group's current
contribution capabilities

-0.0023
(0.0221)

-0.0862∗∗∗

(0.0228)

Period -0.0013 0.0021
(0.0011) (0.0019)

Logarithm of the group's average contribution
capability

0.0094∗

(0.0039)
-0.0056
(0.0071)

Constant -0.0206 0.0071
(0.0171) (0.0240)

‡
Deviations are normalized by division by the average contribution capability and

average surplus, respectively.

being a high-contributor in dynNOpun, � as evidenced by a comparatively

low lagged contribution capability � tends to lead to higher contributed frac-

tions of wealth, similar to the results of Sadrieh and Verbon (2006). However,

this e�ect is being compensated by another e�ect found in this treatment,
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namely that having contributed a higher fraction of one's wealth than the

other group members in the preceding period leads to a signi�cant reduc-

tion of relative contributions. In other words, in this treatment players are

eager to adjust contribution levels downwards when they learn that their

relative contribution had been comparatively high � unless they are uncon-

ditional high-contributors, in which case relative contributions will tend to

remain constant. With punishment being possible in dynPUN, contribution

capabilities do not perform as an indicator for past contribution behavior

in the same way as they do in dynNOpun. This may be a possible reason

for why we do not see comparable e�ects in the regression on our dynPUN

data, as not being able to separate between high-contributor types and spo-

radic high-contributors will drive up the variance of observed behavior (as

can be seen from the higher standard errors of the respective dynPUN coef-

�cients, compared to those from the dynNOpun treatment). In terms of the

level of prosperity within our small societies as measured by the logarithm

of the group's average current contribution capability, we �nd a signi�cant

contribution-fostering e�ect only in dynPUN. This e�ect seems to be owed

to the fact that in the better-performing groups in this treatment, play-

ers' relative contribution levels exhibit a converging tendency. Given this

convergence is towards higher contribution levels, and in light of the fact

that it happens while the corresponding groups accumulate growing prosper-

ity levels, growing capabilities will be associated with positive contribution

changes. In light of this fact, the signi�cance of the reported e�ect is not

surprising. On the other hand, taking a look at individual group data we see

that in the non-punishment groups, the attempts to induce a high level of

group cooperation on the part of unconditional high-contributors by setting

a good example are successful only to the degree that relative contribution

levels in the respective groups tend to remain constant rather than decline

as they do in other groups.29 At the same time, long-term contributors tend

to lower their contributions towards the end of the experiment, having seen

their hopes of reciprocation dashed.

29For an overview of the data, cf. the panel �gures C.1 and C.2 included in appendix
C.
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In contrast, an increase in the gap between poor and rich leads to less

cooperative behavior only in the treatment without punishment opportu-

nities. An additional regression reported in appendix C that incorporates

an interaction term between the period and heterogeneity of contribution

capabilities suggests an explanation for the non-e�ect in dynPUN. In the

beginning, a higher level of endogeneity has a signi�cant positive in�uence

on contributions, as it means that there is a fraction of players willing to

keep investing in the public good even though others have not met the same

cooperation standards straight away. In these groups, as was pointed out

before, players with lower cooperation levels tend to increase their contribu-

tions. In essence, this means that in general, players tend to increase their

contributions in groups with high initial degrees of heterogeneity. Over time,

however, this trend is reverted: in the second half, heterogeneity leads to a

decrease in the contribution level. This seems to suggest that groups have

separated themselves: in some groups, contribution levels have converged,

leading to a low degree of heterogeneity, in others, early-investors' patience

is exhausted. In summary, the presence of the punishment mechanism seems

to prolong the early-investors' patience, as the interaction term's coe�cient

is not signi�cant in the corresponding analysis on the dynNOpun data and

the term for wealth heterogeneity remains clearly below zero.30 This reading

would suggest that the punishment opportunities provide an avenue to vent

one's anger as has been documented, e.g., by Dominique J.-F. de Quervain

et al. (2004). At the same time, the detrimental e�ect of heterogeneity in

dynNOpun is in line with the results of earlier studies of endowment hetero-

geneity such as Anderson et. al (2007) or Cherry et al. (2005).

Finally, in terms of punishment our regression analysis (cf. Table 2) is

able to give a more complete picture than the Wilcoxon tests reported above.

While the analysis con�rms that the dichotomous variable of `having been

punished' does not have an e�ect on relative contributions, we are able to

say more about the e�ect of di�erent degrees of severity of punishment.31 By

30More precisely, the term almost doubles, at the same time becoming insigni�cant; the
remaining coe�cients of this regression analysis are similar in size and signi�cance level
to those for the reported regressions, not conveying any new meaningful information.

31In an unreported regression, we substitute three dummies corresponding to the poten-
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controlling for players' contribution capability, we see that punishment does

more than simply to increase relative contributions through its capability-

decreasing nature. Furthermore, the size of the e�ect suggests that, for strong

free-riders in otherwise high-contributing groups, punishment may lead to an

increase in contributions even in absolute terms.

5 Discussion and Implications

In our paper, we set out to extend the existing body of research on behav-

ior in social-dilemma situations in an important direction. In a public-good

game we introduce dynamics by letting a player's contribution capabilities

depend on that player's and her group's past behavior. This was done to

re�ect a feature of many everyday dilemmas, namely that tomorrow's con-

tribution capabilities may depend on today's decisions. In this environment,

we examine the e�ects of a punishment technology to explore whether pun-

ishment has the same contribution-enhancing e�ect as in the static setting

even though the preconditions seem to be worse.

Our dynamics give rise to three critical issues: (i) punishment in early

rounds may have a lasting detrimental e�ect on contribution

capabilities (H1), (ii) potential punishers anticipating this may abstain from

sanctioning, making the punishment institution pointless (H2), and (iii) with

growing wealth levels and a convex punishment technology, the institution

may lose its contribution-enforcing power over time, leading to stagnating

contributions in later periods (H1). Summarizing our results, we �nd that

punishment, being particularly strong in early rounds does have a detrimen-

tal e�ect on contribution capabilities (Result 4), as subjects do not abstain

from sanctioning. To the contrary, compared to a study of peer-punishment

mechanisms comprising similar cost-to-sanction rates as the punishment tech-

nology employed in our experiment, the average number of punishers is sur-

tial numbers of other group members assigning punishment points to the respective player
for the dichotomous variable of �having been punished�. The results do not di�er from
those reported above, in particular, none of the coe�cients corresponding to the number
of punishers turns out to be signi�cantly di�erent from zero.
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prisingly high (Result 5). On the other hand, the average number of points

assigned per punishment action is relatively low. In light of the convexity of

our punishment cost function, splitting the burden of sanctioning costs is a

very sensible thing to do, as it saves resources on the punishers' side without

changing the threat potential with respect to free-riders. At the same time,

the loss in contribution capabilities is o�set by the punishment mechanism's

ability to keep the contributed fraction of players' current wealth levels con-

stant (Result 3). As a result, we do not �nd any di�erence in the contribu-

tion levels across treatments during the course of our experiment (Result 2).

Corresponding to the combined e�ect of a divergence in relative contribution

levels and the diminishing trend of surplus destroyed due to punishment in

the dynPUN groups, we observe increasing growth rates in the punishment

environment, contrasting with falling rates in dynNOpun. At the end of our

experiment, wealth levels in dynPUN have caught up with those in the treat-

ment without punishment opportunities. In fact, they are already higher,

even though this di�erence is not large enough to yield a statistically signif-

icant di�erence (Result 1). Nonetheless, with non-distinguishable wealth

levels, substantially higher relative contributions and decreasing fractions of

public-good surplus destroyed through punishment, it seems merely a ques-

tion of time when the di�erence in contributions and, subsequently, wealth

levels is strong enough to be statistically discernible.

Having seen the e�ects of a punishment mechanism on the aggregate level,

we set out to �nd out more about the mechanisms at work on the individual

level, apart from the straightforward e�ect of lowering individuals' contri-

bution capabilities. In terms of direct e�ects, a regression analysis reveals

that punished players' reactions are independent of the number of sanction-

ing players, only depending on their total size. Furthermore, it shows that

the increase in relative contributions is more than just a consequence of re-

duced capabilities coupled with a �xed level of contributions. In other words,

punishment does have a contribution-enhancing e�ect that goes beyond pure

embellishment.

Looking at the punishers themselves, the assignment of sanctions seems

to have a second positive e�ect. It seems to prolong high-contributors' pa-
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tience with their peers, giving them more time to reciprocate. While in the

dynNOpun treatment, such patience seems to be limited to a rather small

number of unconditional high-contributors, players with a punishment pos-

sibility are not as eager to correct their cooperation levels downwards when

learning that their contribution level was above the group average. Being

given the chance to sanction low-contributors, they have another way to dis-

play their anger than to reduce their contributions straight away. This leads

to the reported higher relative contributions and �nds its expression in the

fact that a higher variance in wealth levels does not automatically lead to

lower contribution levels, thereby qualifying the earlier results of studies like

Anderson et al. (2007) or Cherry et al. (2005).

We have embarked on this inquiry into the e�ects of a punishment mech-

anism in a dynamic public-good game in which players' contribution capa-

bilities are endogenously determined by their behavior in preceding rounds

by spanning a range of possible outcomes. On the one extreme, our bench-

mark scenario H1 postulated the level of punishment would be so high that

endowments could shrink over time and contributions would be lower than

in the treatment without punishment in spite of signi�cantly higher rela-

tive contribution levels. On the other, scenario H2 postulated we would not

observe punishment, as potential punishers would be too concerned about

maintaining future contribution capabilities.

Our main results lie in between, suggesting a bene�cial e�ect of punish-

ment if the time horizon is long enough. Does this mean our scenarios were

completely unjusti�ed? The answer is no. While we do not observe any

group in which wealth levels actually decrease � abstracting from the occa-

sional period � there was one group in dynPUN in which all individual relative

contributions are well above the median (and average) relative contribution

from the dynNOpun treatment for most of the time � and yet, this group's

wealth levels stay as low as in the second-worst performing dynNOpun group.

On the other extreme, we have a group in which punishment was virtually

never used before the kicking in of the end-game e�ect in round 19.32 This

32As a matter of fact, there was a single assignment of 1 punishment point in period
16. In the �nal two periods, there where 2 (4) assignments, destroying 34 (50) out of 1216

30



group's performance corresponds to the median group from the treatment

without punishment opportunities.

Summing up, we observe that punishment enhances cooperation even in a

dynamic setting, and even for a convex technology that makes the destruction

of a given wealth fraction more and more costly, the more wealth levels

grow over the course of our experiment. In this sense, our results are a

reassuring sign of robustness for public-good studies on punishment. At the

same time, they underline the fact that peer-punishment will not be a suitable

solution of social dilemmas for all groups: in a dynamic setting, its double-

edged character clearly asserts itself: in some instances, the enhancement of

cooperation comes at too high a price, leading the respective society to end

up worse than it might have in the absence of sanctioning opportunities.
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A Instructions to the experiment

General information

• This experiment consists of 20 rounds with 2 stages each.

• At the beginning of the experiment, you will be assigned to one of the

groups of four participants each. During the whole experiment, you

will interact only with the members of your group. However, at no

time, you will be informed about the identities of your group.

• You will be assigned an identity letter: R, S, T, or U that will be

kept constant during the whole experiment.

• At the beginning of the experiment, 18 experimental tokens, (your

starting endowment), will be assigned to your experimental (wealth)

account. Additionally, in each round you will receive a round endow-

ment of 2 tokens. Hence, your wealth account in the very �rst

round consists of the starting endowment of 18 tokens and the round

endowment of 2 tokens, i.e., 20 tokens in total. In each of the follow-

ing rounds, your wealth account will be equal to your wealth account

that you reach at the end of the previous round plus the actual round

endowment of 2 tokens.

Course of Action

Stage 1: Contributing to the Project. In stage 1 of each round, you

have to decide how many tokens from your wealth account you are going to

contribute to the project. The remaining tokens will be kept by you. You

can only contribute integer number of tokens. The earnings from the project

are calculated according to the same formula for each group member. Please

note: Each group member receives the same earnings from the project, i.e.,

each group member bene�ts from all contributions to the project.

Your wealth after Stage 1

Your wealth after Stage 1 consists of two parts:
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Thus, your wealth account after Stage 1 amounts to:
Your wealth at the beginning of Stage 1 � your contribution to the project

+ 1.6 ∗ sum of the contributions of all group members / 4

• tokens you have kept = your wealth at the beginning � your contribu-

tion to the project

• earnings from the project = 1.6 ∗ sum of the contributions of all group

members / number of group members
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Some examples for the calculation of your wealth after Stage 1

Your wealth account 20 32 63 15

Your contribution to the
project

7 17 52 3

Sum of the contributions of
other group members

25 21 18 37

Your earnings from the project
51.2 / 4
= 12.8

60.8 / 4
= 15.2

112 / 4
= 28.0

64 / 4
= 16.0

You kept from your wealth
account

20 � 7
= 13.0

32 � 17
= 15.0

63 � 52
= 11.0

15 � 3
= 12.0

Your wealth at the end of
Stage 1

25.8 30.2 39.0 28.0

Stage 2: Possibility of reduction. In stage 2 you will be informed (sorted

by identity letters) how much each group member contributed to the project

and how much her current wealth is. You have to decide whether you assign

tokens to other group members. You can assign tokens to each of your group

members. Each negative token you assign to a group member reduces her

wealth payo� by 1 token. If you assign no tokens to a group member her

wealth won't change. Your costs for the assignment of tokens depend on the

number of tokens you assign, as depicted in the following table:

You can also assign tokens greater than depicted in the table, i.e., 76, 77,

etc. You can calculate your assignment costs for tokens greater than 75 by

entering the desired token number on Stage 2 in the respective cell on the

computer screen and press the button �calculate my costs�.

Limitations: You can only assign tokens, if you are able to pay the assign-

ment costs from your wealth account. You cannot reduce the earnings of

other group members not more than to zero. If you assign tokens more than

it would be su�cient to reduce the earnings of the target group member to

zero, you nevertheless have to pay for the whole reduction. The earnings of

the target member are reduced only to zero though. If you assign tokens to

others and receive some tokens from other group members simultaneously,

under certain circumstances your wealth account may get negative. You may,

however, balance this negative account over the rounds.
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Tokens
you

assign to
a group
member

Your as-
signment
costs

Tokens
you

assign to
a group
member

Your as-
signment
costs

Tokens
you

assign to
a group
member

Your as-
signment
costs

1 0.33 26 17.45 51 83.33
2 0.67 27 18.84 52 87.64
3 1.01 28 20.31 53 92.11
4 1.37 29 21.86 54 96.73
5 1.73 30 23.50 55 101.52
6 2.11 31 25.23 56 106.47
7 2.50 32 27.05 57 111.60
8 2.92 33 28.97 58 116.89
9 3.36 34 30.99 59 122.36
10 3.83 35 33.10 60 128.00
11 4.33 36 35.33 61 133.82
12 4.86 37 37.66 62 139.83
13 5.43 38 40.10 63 146.02
14 6.04 39 42.66 64 152.41
15 6.69 40 45.33 65 158.98
16 7.38 41 48.13 66 165.75
17 8.12 42 51.04 67 172.71
18 8.92 43 54.09 68 179.88
19 9.76 44 57.26 69 187.25
20 10.67 45 60.56 70 194.83
21 11.63 46 64.00 71 202.62
22 12.66 47 67.58 72 210.62
23 13.75 48 71.30 73 218.84
24 14.91 49 75.16 74 227.28
25 16.15 50 79.17 75 235.94
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Please note: The costs for the assignment of tokens to di�erent group

members are calculated separately. For example: If you assign 25 tokens to

each of the three members, your costs amount to 3 x 16.15 = 48.45 and not

235.94, which gives the costs of assignment if you assign 75 tokens to one

single group member.

Your wealth at the end of the round

Your wealth at the end of the round consists of the following parts:

• your wealth account after Stage 1

• minus your costs of assignment for the tokens you assigned

• minus the reductions caused by the tokens assigned by other group

members to you

Hence, in total:

Your wealth after Stage 2 (Your wealth at the end of the round) =
Your wealth account after Stage 1

� minus your costs of assignment for the tokens you assigned
� minus reductions caused by the tokens assigned by other group members

to you

Information

At the end of each round you will be informed about

• the wealth accounts of all members of your group

• the contributions of all your group members,

• the wealth accounts of all group members after Stage 1

• the tokens each group member received from other members (but you

will not know who assigned these tokens) and

• the wealth accounts of all group members after Stage 2
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After the feedback, the next round begins.

At the end of the experiment your wealth account will be transformed

into Euros according to the following formula: Your earnings in Euro = (Your

wealth in tokens)2/7

Hence, your cash earnings will lie between 0,00 Euros and 40,00 Euros.

You have now a couple of minutes of time to go over again the instructions.

If you should have some questions, please do not hesitate to inform us by

raising your hand. In this case we will come in to your cabin to clarify the

question. Please note that any kind of communication with other participants

is prohibited.

We wish you success!
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B Proof of existence of the equilibrium pro-

posed for the dynNOpun game (intended

for online publication only)

Consider a group of n players, interacting over T rounds in the dynNOpun

game as presented in the main part of the paper. In this appendix, we set

out to show that under relatively mild conditions, there is a class of equi-

libria with positive contribution levels if there are ν conditional cooperators,

with ν = min{j ∈ N|j > (1 − µ)/µ}, and k money-maximizing players,

k = n − ν, where conditional cooperators and money-maximizers are de-

�ned as in Fehr and Schmidt (1999). In fact, these equilibria may exist even

for k/(n − 1) > µ/2, in which case Fehr and Schmidt (1999) have shown

that in the standard non-repeated linear public-good game, no equilibrium

with positive contributions exists despite the presence of players with social

preferences.

In these equilibria, all money-maximizers choose a symmetric contribu-

tion xtmm, up to an arbitrary round T − t′, and zero-contributions ever after.

On the equilibrium path, the ν conditional cooperators always mirror the

money-maximizers' behavior from the respective preceding round. The equi-

librium yielding the highest � and symmetric � payo�s for all players is given

by t′ = 1 and xtmm = Et
mm, ∀t ≤ T − t′, where Et

mm is the money-maximizers'

round-t contribution capability. By a similar re�nement argument as em-

ployed by Fehr and Schmidt (1999), we shall focus our attention on this

particular equilibrium in the following.

Before we formulate our main proposition, we will introduce lemma 1

that will be helpful in our proof of the proposition.

Lemma 1. If a conditionally cooperative player i is the single wealthiest

player in her group, she will choose to equalize payo�s with the next-wealthiest

player (independent of whether this is a single player or a group), provided

her coe�cient for disadvantageous inequality, βi, ful�lls

βi <
n− 1

n− 3
(1− µ). (2)
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Proof. It does not pay for the conditional cooperator to contribute less than

necessary to equalize payo�s with the next-wealthiest player, as any token

contributed to the public good makes her lose (1 − µ) in monetary terms,

but gains her βi/(n− 1) utility units for each player who is less wealthy than

herself. Given she is the wealthiest person in the group, her total gains are

βi units for each token contributed. By de�nition, a player is a conditional

cooperator if and only if β+µ > 1 holds.33 To contribute more than would be

necessary to equalize payo�s with a group of n′ next-wealthiest players, with

1 ≤ n′ ≤ n−1, her additional monetary loss from contributing an additional

token, (1 − µ), plus her utility loss from disadvantageous inequality vis-à-

vis the n′ formerly next-wealthiest players, n′αi/(n − 1), would have to be

less than her utility gains from advantageous inequality with respect to the

remaining players in the group, (n−1−n′)βi

n−1
. We require that this is not the

case. Clearly, this requirement is strongest for n′ = 1. Simple calculus shows

that this requirement holds as long as

(1− µ)(n− 1) > (n− 2)βi − αi. (3)

However, given the model by Fehr and Schmidt (1999) speci�es βi ≤ αi, it is

obvious that inequality (2) is su�cient for (3) to hold.

Note that in our experiment, n = 4 and µ = 0.4. Thus, inequality (2)

reads as βi < 1.8. By construction of the model of Fehr and Schmidt (1999),

βi ≤ 1. Therefore, the requirement (2) obviously will be met for any player

conforming to the model.

Proposition 1. Let a group of n members consist of ν conditional co-

operators and k money-maximizing players, where ν = min{j ∈ N|j >

(1 − µ)/µ} and k = n − ν. Then, the following conditions are su�cient

(yet not necessary) for positive-contribution equilibria to exist:

(I) k ≥ (n− 1)µ/(1− µ),

(II) µ ≥ 1/(n− 1), and

33Cf. Fehr and Schmidt (1999).
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(III) βi <
n−1
n−3

(1− µ) for all ν conditional cooperators.

In these equilibria, a conditionally cooperative player does not contribute if

there is a player wealthier than herself, nor if all players have the same

wealth levels. If there are players who are less wealthy than the conditional

cooperator, she chooses her contributions such as to equalize wealth levels

with the wealthiest money-maximizing player if that player did not contribute

a positive amount, or with the next-wealthiest conditional cooperator having

a di�erent wealth level than herself, whoever of the two is wealthier.

The k money-maximizers always contribute fully to the public good in

periods 1 to T − 1, as long as all ν conditional cooperators stick to their

equilibrium strategy. Otherwise, the money maximizers stop contributing.

This gives rise to the following behavior on the equilibrium path: all k

money-maximizers always contribute fully to the public good in periods 1

to T − 1, while the conditionally cooperative players always contribute the

amount necessary to equalize wealth levels in case the money-maximizing

players failed to contribute in the current round. This amount is exactly the

amount contributed by the money-maximizing player in the preceding round.

In other words, if all k money-maximizers are endowed with a given wealth

level Et
k and all conditional cooperators had a level of Et

ν on their accounts

in any given round t, t ≤ T − 1, then the former (latter) would contribute

xtk = Et
k (x

t
ν = Et

ν−Et
k = Et−1

k ; note that Et
ν > Et

k must hold for the latter to

contribute a positive amount, which is ful�lled in the proposed equilibrium).

In the �nal round, money maximizers do not contribute, and conditional

cooperators contribute as to equalize payo�s over all players.

Proof. First of all, consider a money-maximizing player j. Obviously, in

the �nal round this player does not have an incentive to deviate from her

equilibrium strategy, as the �nal round is equivalent to a one-shot linear

public-good game and in this class of games, free-riding is a dominant strat-

egy. Next, we show that a money-maximizing player j does not have an

incentive to deviate from her equilibrium strategy in round T − 1. Given

their equilibrium strategy, all ν conditionally cooperative players will choose

to contribute in round T any amount contributed by the least-contributing
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money-maximizer in round T − 1, as this leads to an equalization of payo�s

with the latter. At the same time, all money-maximizing players other than

j will choose to contribute everything on their current account. If j chooses

to deviate, she will therefore determine conditional cooperators' choices in

round T . Therefore, contributing in T − 1 will pay o� if and only if the gain

from reducing her contribution by a single token, (1−µ), is smaller than the

gains from conditional cooperators' subsequent matching contributions, νµ.

This condition is equivalent to ν > (1−µ)/µ, which is true by the de�nition

of ν in proposition 1. In fact, this argument holds for any round t, given the

least-contributing money-maximizer's contributions are always matched by

conditional cooperators in t+ 1.

Now, consider a conditionally cooperating player i. To answer the ques-

tion of whether she has an incentive to deviate from the equilibrium strategy,

we start with an analysis of the �nal round. In round T , the proposed equi-

librium strategy leads to an equal distribution of wealth. If condition (III)

holds, we know by lemma 1 that no conditional cooperator has an incentive

unilaterally to provide less than the prescribed level, as she will maximize her

utility by contributing as much as necessary to equalize payo�s with respect

to the second-wealthiest individual. On the other hand, a conditional cooper-

ator does not have an incentive unilaterally to provide more than prescribed

by the equilibrium strategy, given this would leave the cooperator worse o�

both in monetary terms and in terms of (disadvantageous) inequality.

What the preceding paragraphs have shown is that (i) money-maximizers

do not have an incentive to deviate from the strategy prescribed by proposi-

tion 1 throughout the game, and (ii) conditional cooperators do not have an

incentive to deviate from their prescribed strategy in round T . What remains

to be shown is that the latter do not have an incentive to deviate in earlier

rounds. First of all, consider a single conditional cooperator providing q to-

kens less than prescribed in round T−1. While this deviation will not change

the behavior of money-maximizing players given their round-T contributions

will be zero irrespective of what other players do, it will lead to defection

also on the part of the remaining players. In this situation, by lemma 1 the

deviating player's best response will be to provide q tokens in the �nal round.
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By doing so, the �nal situation will be the same as the situation before the

�nal round under equilibrium play. The di�erence between this situation and

the equilibrium outcome is that conditional cooperators are better o� than

money-maximizers in monetary terms, namely by the latters' round-(T − 1)

contributions. This leads to a utility gain compared to the equilibrium of

(1 − νµ)x∗,T−1
κ − k

n−1
βix
∗,T−1
κ , where x∗,T−1

κ is a money-maximizer's equilib-

rium contribution in T − 1. For the strategy pro�le proposed in proposition

1 to be an equilibrium, this term must not be positive, which is equivalent

to requiring

k

(n− 1)
≥ (1− νµ)

βi
, (4)

for all ν conditional cooperators. The lowest-possible βi is βi = 1 − µ, by

de�nition of a conditional cooperator. Substituting this into inequality (4),

we obtain

k ≥ (n− 1)
1− νµ
1− µ

.

This requirement will obviously be ful�lled for the parameter values used in

our experiment, given it corresponds to condition (I) from the proposition

under the smallest-possible value of ν, (1− µ)/µ.

The next question to be answered is whether a conditional cooperator

has an incentive to `under-provide' relative to her prescribed strategy in

an earlier round. In this case, she would deter further contributions from

both money-maximizers and conditional cooperators, herself only closing the

resulting wealth gap vis-à-vis the other cooperators. The resulting payo�s

correspond to the equilibrium current wealth levels of that round in case the

conditional cooperator had not deviated. In other words, by contributing

less than prescribed, a conditional cooperator can �x the payo� vector at

the equilibrium current wealth level of a given round. We know from the

above that the conditional cooperator prefers the equilibrium outcome to

the current wealth levels before the �nal round. What we have to show

is that she also prefers the equilibrium outcome to the equilibrium current
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wealth levels at the end of any round t, t < T . We do this by showing that

she, in fact, always prefers equilibrium current wealth levels in t+ 1 to those

in t, t < T − 1 (recall that we have already shown this for t = T − 1).

Denote by Et
m (Et

c) the equilibrium contribution capabilities of a money-

maximizing (conditionally cooperative) player, and by Et
m and Et

c the cor-

responding capability vectors. Note that, in equilibrium, Et
c = Et

m + Et−1
m

must hold. Given their prescribed strategies in rounds t < T − 1, all money-

maximizers will choose xtm = Et
m, while the conditional cooperators will

choose xtc = xt−1
m = Et−1

m . The resulting end-of-round wealth levels will be

Et+1
m = µkEt

m + µνEt−1
m and Et+1

c = Et+1
m +Et

m. All we have to show now is

that a conditional cooperator i's utility from a payo� vector Et = (Et
m,E

t
c),

Ui(E
t) is smaller than her utility from the payo� vector Et+1. This is equiv-

alent to requiring

Ui(E
t+1) = Et+1

m + Et
m − k

n−1
βiE

t
m > Et

m + Et−1
m − k

n−1
βiE

t−1
m = Ui(E

t)

⇔ Et+1
m − Et−1

m − k
n−1

βi(E
t
m − Et−1

m ) > 0,

which by Et+1
m = µkEt

m +µνEt−1
m and, consequently, Et

m = µkEt−1
m +µνEt−2

m

leads to

(µk)2Et−1
m +µ2kνEt−2

m +µνEt−1
m −Et−1

m −
k

n− 1
βi(µkE

t−1
m +µνEt−2

m −Et−1
m ) > 0.

(5)

Reorganizing (5) yields

k(µ− βi
n− 1

)
(
µkEt−1

m +µνEt−2
m

)
+ (µν − 1)Et−1

m +
k

n− 1
βiE

t−1
m > 0. (6)

In the following, we show why inequality (6) will always be ful�lled under the

conditions speci�ed in the proposition. Consider �rst the sum of the second

and third terms on the left-hand side of the inequality. By de�nition of ν,
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µν − 1 ≥ −µ, and therefore,

(µν − 1)Et−1
m +

k

n− 1
βiE

t−1
m ≥ Et−1

m

( kβi
n− 1

− µ
)
. (7)

Under condition (I) from the proposition, it can be easily seen that the

right-hand side of (7) will be larger or equal to zero even for the smallest-

possible βi a conditional cooperator can have, i.e. βi = 1 − µ. Let us

now turn to the �rst term in (6). Obviously, this term will be positive

if µ − βi/(n − 1) > 0 for all possible values of βi. In constructing their

model, Fehr and Schmidt (1999) introduced the restriction that βi ≤ 1.

Substituting the maximum-possible value for βi, we directly obtain condition

(II) from the proposition. In other words, under the conditions speci�ed in

proposition 1, the sum on the left-hand side of inequality (6) will always

be positive. Thus, a conditional cooperator will never have an incentive

to deviate contributing less than under the equilibrium strategy, thereby

inducing a payo� vector that equals the equilibrium wealth-level vector of

any earlier round t, t < T . Note that in our derivations, we have used a

number of conservative approximations. Therefore, the true parameter space

for which the equilibrium exists, will be larger than our conditions suggest.

What remains to be shown is that no conditionally cooperating player has

an incentive to contribute more than speci�ed by the equilibrium strategy

prescribed by proposition 1. We have already done so for the �nal period.

Consider period T − 1. If a conditionally cooperating player contributes

more than prescribed in our proposition, this will not have any e�ect on

money-maximizers' behaviour, given the latter will not contribute any posi-

tive amounts in the �nal round independent of her choice. If the player con-

tributes to her full capacity, she is equally well o� as any money-maximizer.

In the �nal period, the remaining conditional cooperators will equalize wealth

levels, such that no inequality will arise. Furthermore, the resulting wealth

levels will be as high as in the equilibrium, such that the conditional cooper-

ator will be equally well o�, given the only change is the point in time when

reciprocation happens. To see this, note that nothing out of the returns from

the `over-contributed' amount is used for contributions, as contributions are
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determined by the wealth di�erence between money-maximizers and condi-

tional cooperators. This di�erence, however, is not a�ected by the deviating

player's contribution. While this means that the strategy prescribed by our

proposition is (at best) a weak best-response, this does not a�ect the ex-

istence of the proposed equilibrium. If, on the other hand, the deviating

cooperator chooses less than her full capability, there are two possibilities.

If there are still more than one conditional cooperators left, they stop to

contribute by lemma 1, as the next-wealthy player will be one of their peers.

If only one conditional cooperator is left, she will choose to equalize wealth

levels with the deviating cooperator, evidently being next-wealthy player.

However, this will diminish her �nal-period contribution. Consequently, the

�nal payo� allocation would leave the deviating player worse o� in monetary

terms, at the same time inducing inequality. Clearly, following the equilib-

rium strategy gives the player a higher utility.

Finally, consider any period T−t′, t′ ≥ 2. If a conditional cooperator con-

tributes more than speci�ed in proposition 1, an argument that is analogous

to the one presented in the preceding paragraph shows that the conditional

cooperator cannot induce a payo� vector that leaves him better o� than the

wealth-level vector that would result in equilibrium after period T − t′ + 1.

However, in our discussion of the case of `under-provision' on the part of

a conditional cooperator, we have seen two things: given all other players

follow their equilibrium strategy, a conditional cooperator can always induce

a payo� vector that is equal to the equilibrium wealth-level vector after any

arbitrary period; and the cooperator will never do so, as doing so would never

leave him better o� under the conditions speci�ed in the proposition. There-

fore, a conditional cooperator cannot possibly reach a higher utility level

than in equilibrium by contributing more than speci�ed in the equilibrium

strategy. Evidently, this holds for all rounds t, t ∈ {1, ..., T}.

Remark: The threat of money-maximizing players stopping to con-

tribute in response to over-contributions by conditional cooperators is not

as incredible as it may seem at �rst sight. The number of conditional coop-

erators in our equilibrium, ν, has been speci�ed to be minimal with respect to
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the number of cooperators necessary to make contributions in a given period

t, t < T, pay o� for money-maximizing players. If one of these cooperators

contributes fully in period t, the cooperator will no longer match the money-

maximizers' contributions in t+1. Given ν is `minimal' in the sense speci�ed

above, the money-maximizer would be better o� free-riding in t. Therefore,

for the equilibrium to exist, conditional cooperators must not destroy the

money-maximizers' incentives for cooperation stemming from the formers'

reciprocity by `over-contributing' early on.
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C Additional regression results, overview �g-

ures for individual groups (intended for on-

line publication only)
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Figure C.1: Overview of the data from individual groups in the dynPUN
treatment.
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Figure C.2: Overview of the data from individual groups in the dynNOpun
treatment. The third column is, of course, super�uous. We included it for
easier comparison with the data from dynPUN.
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Table C.1: Regression for the models from Table 2, extended by an interaction
term for period and the endowment variation coe�cient.

†

Variable dynPUN dynNOpun

Positive deviation from the average relative
contribution in t− 1

-0.1732
(0.1199)

-0.1679.
(0.0934)

Negative deviation from the average relative
contribution in t− 1

-0.0071
(0.0901)

0.2415
(0.1743)

Positive deviation from the average capability
in t− 1, normalized

‡
-0.0101
(0.0179)

-0.0251
(0.0372)

Negative deviation from the average capability
in t− 1, normalized

‡
0.0863
(0.0747)

0.1798∗∗∗

(0.0454)

Positive deviation from the average surplus
from the public good in t− 1, normalized

‡
0.0094
(0.0081)

0.0030
(0.0063)

Negative deviation from the average surplus
from the public good in t− 1, normalized

‡
-0.0580∗∗∗

(0.0172)
-0.0710∗

(0.0309)

Dummy: having been punished in t− 1 0.0008
(0.0123)

Received punishment as a fraction of the cur-
rent wealth level in t− 1

0.1933∗∗

(0.0660)
Variation coe�cient of the group's current
contribution capabilities

0.1388∗

(0.0662)
-0.1584
(0.1163)

Period -0.0009 0.0014
(0.0016) (0.0016)

Period ∗ Variation coe�cient of the group's
current contribution capabilities

-0.0151∗

(0.0063)
0.0062
(0.0092)

Logarithm of the group's average contribution
capability

0.0095∗

(0.0046)
-0.0081
(0.0110)

Constant -0.0438∗ 0.0259
(0.0224) (0.0371)

†
Signi�cance levels are indicated as follows: ∗∗∗ 0.001, ∗∗ 0.01, ∗ 0.05, . 0.1.

‡
Deviations are normalized by division by the average contribution capability and average surplus, respectively.
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