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Lévy Subordinator Model of Default Dependency
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March 14, 2010; Revised: April 14, 2010

Abstract

This article presents a model of default dependency based on Lévy subordinator.
It is a tractable dynamical model, computationally structured similar to the one-factor
Gaussian copula model, providing easy calibration to individual hazard rate curves
and efficient pricing with Fast Fourier Transform techniques. The subordinator is an
alpha=1/2 stable Lévy process, maximally skewed to the right, with its distribution
function known in closed form as the Lévy distribution. The model provides a reason-
able fit to market data with just two parameters to assess dependency risk, a measure
of correlation and that of the likelihood of a catastrophe.

Correlation products are derivatives sensitive to default correlation among a collection of
credit names. Pricing of these involves either directly or indirectly modeling default depen-
dency among the credit names. Market standard among such models is still the Gaussian
copula model, a one-factor model that enables easy quotation of market prices. But, it is
well-known that the model is inadequate to price nonstandard products.

Major attraction of the Gaussian copula model is its simplicity and tractability. It can
easily be calibrated to individual hazard rate curves. It can be formulated in closed form
providing a semi-analytical framework for pricing. It can be priced efficiently by employing
Fast Fourier Transform techniques. As it turns out, there exists another model similar in
architecture that also enjoys these properties. Unlike the Gaussian copula model, it is a two-
parameter model, but is able to offer a reasonable explanation of the correlation smile. The
two parameters provide the two measures necessary to assess dependency risk, a measure of
correlation and that of the likelihood of a catastrophe. It is a dynamical model based on the
Lévy subordinator, an alpha=1/2 stable Lévy process maximally skewed to the right, whose
distribution function is expressible in closed form and is known as the Lévy distribution.
Though it is inevitable that, with a model of such few parameters, there is bound to exist
a residual correlation smile, the ability to capture the correlation smile will be helpful in
sensitivity analysis and stress testing.

Issues with the Gaussian copula model have been addressed before. Many authors have
presented models going beyond the Gaussian copula, and the following is obviously a limited
review of the literature. Brigo, Pallavicini and Torresetti [2010] provide an account of the
developments in this field. Hull and White [2006] introduce an implied copula model that can
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calibrate consistently across all CDO tranches for a given maturity. Brigo, Pallavicini and
Torresetti [2006] provide a fit across tranches as well as maturities in a generalized Poisson
cluster loss model. Balakrishna [2009] models the jump distribution in an intensity based
model. A doubly stochastic framework for intensity modeling is introduced in Duffie and
Garleanu [2001]. Joshi and Stacey [2005] consider an intensity based modeling of business
time as a gamma process. Chapovsky, Rennie and Tavares [2007] model default intensity
as a jump-diffusion process. Errais, Giesecke and Goldberg [2006] present a model based on
affine point processes.

An approach using Markov chains is presented in Di Graziano and Rogers [2005]. Puty-
atin, Prieul and Maslova [2005] use a Markovian approach with a Poissonian mixing distri-
bution. Bennani [2005] presents a Markov functional approach to instantaneous loss rate.
Sidenius, Piterbarg and Andersen [2005] consider a no-arbitrage approach to modeling fu-
ture loss distribution. Overbeck and Schmidt [2005] propose a threshold model based on
time-changed Wiener processes. Albanese, Chen, Dalessandro and Vidler [2006] present a
structural model based on spectral analysis. Baxter [2007] presents a structural framework
using Lévy processes. Albrecher, Ladoucette and Schoutens [2007] present a unified approach
to generic one-factor Lévy models. For an introduction to Lévy processes and their financial
applications, see, for instance, Applebaum [2005].

The article is organized as follows. Section 1 formulates one-factor models independent
of the factor dynamics. Section 2 realizes this framework with Lévy processes called subor-
dinators, and presents a specific model based on the Lévy subordinator. Section 3 discusses
large homogeneous pool approximation. Section 4 presents a semi-analytical framework to
compute expected loss for a finite number of names with Fast Fourier Transform techniques.
Section 5 discusses CDO pricing semi-analytically and via a Monte Carlo algorithm. Section
6 concludes with a brief summary. Table 1 presents the results of calibrating the model to
CDX.NA.IG and iTraxx Europe CDOs.

1 One-Factor Formulation

Consider a model wherein common economic variables determine default dependency. Fac-
tors governing default dependency can be considered to be functions of the sample paths
followed by the common variables. In a simplified version of the model, only one such
path-function would be relevant. Let Ft() be the cumulative distribution function of this
path-function at time t. Given a value for Ft(), defaults are considered to be independent of
each other such that, for the joint default probability Pij⋅⋅⋅(t) that names labeled {i, j, ⋅ ⋅ ⋅}
are in the defaulted state at time t, we may write

Pij⋅⋅⋅(t) =

∫ 1

0

dF [pi(F, t)pj(F, t) ⋅ ⋅ ⋅] , (1)

where pi(F, t) is the default probability that ith name is in the defaulted state at time t given
that Ft() has value F . This expression does not depend on the past history of the common
factor. To see that such a formulation is possible, at least in principle, note that, in a large
homogeneous collection of credit names (to be discussed in section 3), pi(F, t) itself can be
viewed upon as a path-function, and identified with the fraction of names in the defaulted

2



state at time t. Just as this suggests that a homogeneous collection should be describable
by a one-factor model, a heterogeneous collection is expected to be describable by not more
than the number of heterogeneous name types in the collection.

The above formulation of one-factor models, though appears rather simple and straight-
forward, has the attractive feature that the time-dependence of the common factor has
disappeared into the integration variable F . As we will see, this helps us define a model
independent of the dynamics governing the common factor. In fact, it lets us define a model
independent of the common factor itself since the F -variable, being uniformly distributed,
hides all the intricacies of the common factor. Though this still leads to a dynamical model
at the effective level, that is after the F -integration, a full specification of the model dynam-
ics, such as joint distribution of default times, would require specifying the common factor
and its dynamics, but for our purpose the above formulation is sufficient.

Consider F as an indicator of the state of the economy, say with increasing F corre-
sponding to less favorable economic conditions. This suggests that the conditional survival
probability qi(F, t) ≡ 1 − pi(F, t) decreases as a function of F for all t > 0. Let F = 1
correspond to the worst case scenario, that of total collapse with all the names defaulting,
so that qi(1, t) = 0. At the F = 0 end, the common variables could be considered to be
ineffective in causing defaults so that qi(0, t) would be firm-specific, say e−�i(t), where �i(t) is
a deterministic increasing function of t with �i(0) = 0. Further qi(F, t), in particular contri-
bution from the common factor, is expected to be a non-increasing function of t, starting at
one and ending up at zero as t runs from zero to infinity. These properties of qi(F, t) suggest
that we look for a stochastic process Φi(t) such that

qi(F, t) = e−�i(t)E
{

1Φi(t)≥F
}
, (2)

where 1{⋅⋅⋅} denotes the indicator function. Φi(t), i = 1, ⋅ ⋅ ⋅ , n are independent stochastic
processes taking values in [0, 1] with Φi(0) = 1 and Φi(∞) = 0, having only non-increasing
sample paths. For the individual credit name, its default probability Pi(t), or equivalently
its survival probability Qi(t) ≡ 1− Pi(t), can now be expressed as

Qi(t) =

∫ 1

0

dFqi(F, t) = e−�i(t)E

{∫ 1

0

dF1Φi(t)≥F

}
= e−�i(t)E {Φi(t)} . (3)

Satisfying this ensures that the model gets calibrated to individual hazard rate curves.
The above one-factor formulation covers some of the well-known one-factor models. For

instance, the standard one-factor Gaussian copula model is recovered with �i(t) = 0 and

Φi(t) = N

(
1
√
�

(√
1− �Zi −Ki(t)

))
, (4)

where N() is the cumulative normal distribution function, Zi is a standard normal random
variable associated with the ith credit name, � is the correlation parameter and Ki(t) =
N−1(Pi(t)). This follows after writing F = N(−Y ) where Y is a normally distributed.
The copula results from a straightforward extension of expression (1) to joint distribution
of default times. However, the model lacks dynamics as is evident from above and has no
support for firm-specific risk. It is not the natural choice from the point of view of the
present formulation of one-factor models.
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In our case, it is more convenient to work with Λi(t) ≡ − ln Φi(t), a non-decreasing
stochastic process taking values in [0,∞] with Λi(0) = 0 and Λi(∞) = ∞. The conditional
survival probability qi(F, t) then reads

qi(F, t) = e−�i(t)E
{

1Λi(t)≤− lnF

}
. (5)

For the individual survival probability Qi(t), this gives

Qi(t) = e−�i(t)E
{
e−Λi(t)

}
. (6)

We may also express the joint survival probability QΩ(t) for a list of names in Ω as

QΩ(t) = e−
∑
i∈Ω �i(t)E

{
e−Maxi∈ΩΛi(t)

}
, (7)

where Maxi∈Ω picks up the largest Λi(t) in the list Ω. This follows from the fact that Λi(t)s
are independent stochastic processes. This result is not needed for our discussion to follow,
but it is interesting to note that it defines the model with no reference to the common factor
that has been integrated away.

Though a specification of factor dynamics is not needed for our purpose, we may note
here that if “barrier” F or its underlying variable evolves as some stochastic process with
non-decreasing sample paths, the model could be formulated as a first passage model with
the barrier crossing of the non-increasing Φi(t) triggering default of the ith credit name,
conditional on surviving firm-specific risk factors. The stochastic process for the underlying
variable would provide a specification of the model dynamics, allowing extension of expression
(1) to joint distribution of default times. This is reminiscent of a barrier diffusion model,
but the relationship, if any, is not clear yet, though the first passage time distribution of a
Brownian motion is known to follow the Lévy distribution and, as we will see next, the same
distribution turns out to be relevant here as well.

2 Lévy Subordinator Model

The above formulation of one-factor models left us with individual stochastic processes that
are a priori expected to be quite complicated. Fortunately, as we will see below, they can
be realized neatly with a class of Lévy processes with non-decreasing sample paths known
as subordinators. Of these, a stable process called the Lévy subordinator1 turns out to be
the appropriate one to choose.

Let Xi(t), i = 1, ⋅ ⋅ ⋅ , n be n independent subordinators for a collection of n credit names.
For a parsimonious model, let us assume that they are identically distributed. Let �(u) be
their Laplace exponent given by

E
{
e−uXi(t)

}
= e−t�(u). (8)

Given such subordinators, let us set

�i(t) = (1− ��(1))�i(t), Λi(t) = Xi(��i(t)). (9)

1In the literature, one sometimes finds the term “Lévy subordinator” used for all subordinators. As in
Applebaum [2005], it is used here just for the � = 1/2, � = 1 stable process. Similarly, the term “Lévy
distribution” is used here just for the distribution of that process.
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This introduces �, a measure of correlation, as one of the parameters of the model. �i(t) is
derived from the individual survival probability Qi(t) as

�i(t) ≡ − lnQi(t). (10)

Now, individual hazard rate curves are automatically calibrated to, since

Qi(t) = e−�i(t)E
{
e−Λi(t)

}
= e−(1−��(1))�i(t)E

{
e−Xi(��i(t))

}
= e−�i(t). (11)

As for the conditional survival probability, we get

qi(F, t) = e−(1−��(1))�i(t)E
{

1Xi(��i(t))≤− lnF

}
= e−(1−��(1))�i(t)g(− lnF, ��i(t)), (12)

where g(x, t) = E
{

1Xi(t)≤x
}

is the cumulative distribution function of Xi(t). Note that,
due to the introduction of �, an overall scale for �(1) can be conveniently chosen. Allowing
F → 0 in the above result and ensuring qi(F, t) ≤ 1 requires ��(1) ≤ 1 so that �i(t) remains
non-negative as is expected of the firm-specific contribution.

A subclass of subordinators are stable processes having index of stability � ∈ (0, 1)
and skew parameter � = 1. Their distributions are not known in closed form except for
the � = 1/2 stable process known as the Lévy subordinator. The cumulative distribution
function of the Lévy subordinator is the Lévy distribution (�(u) =

√
u+ �u)

g(x, t) = 2N
(
−t/

√
2(x− �t)

)
, (13)

where N() is the cumulative normal distribution function. This includes a non-negative drift
component �t introducing � as the second of our model parameters, so that the distribution
has support only to the right of �t. With the Lévy subordinator chosen for Xi(t), the above
distribution gives us for the conditional survival probability

qi(F, t) = 2e−(1−�(1+�))�i(t)N
(
−��i(t)/

√
−2(lnF + ���i(t))

)
. (14)

Consistency requirement ��(1) ≤ 1 here reads �(1 + �) ≤ 1.
Result (14) defines our two-parameter Lévy subordinator model. Though, in general, the

two parameters could be different for different names, and time-dependent as well, they are
considered uniform and constant for ease of calibration. Positive drift forces qi(F, t) to zero
above F = e−���i(t). This F -threshold is name-dependent, but, in the large homogeneous
pool approximation discussed below, it implies a finite probability of all the names in the
pool defaulting, � measuring the likelihood of such a catastrophe.

3 Large Homogeneous Pool

Large homogeneous pool approximation can be a useful tool since it admits an explicit
expression for the loss distribution. For a homogeneous collection of n credit names, the
joint default probability of k or less number of names in the defaulted state at time t is

P{k}(t) =
k∑
j=0

(
n

j

)∫ 1

0

dF [pt(F )]j [1− pt(F )]n−j , (15)
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where pi(F, t) has been written as pt(F ). For a large homogeneous pool of names, that is as
n→∞, it is well-known that the above simplifies to

Gt(�) ≡ P{�n}(t) =

∫ 1

0

dF1pt(F )≤� , (16)

where � = k/n is the fraction of names in the defaulted state at time t. This indicates that
Gt(�) can be obtained by summing up the region of F over which pt(F ) ≤ �.

We have considered pt(F ) to be an increasing function of F . Hence, Gt(�) can be obtained
by solving pt(F ) = � for F = Gt(�). When �(1 +�) ≤ 1 as is required for consistency, there
is a �min(t) below which Gt(�) = 0,

�min(t) = 1− e−(1−�(1+�))�(t). (17)

This increases with t starting from zero at t = 0. For � above �min(t), Gt(�) is

Gt(�) = exp

{
−���(t)− 1

2
(��(t))2

[
N−1

(
1

2
(1− �)e(1−�(1+�))�(t)

)]−2
}
, � ≥ �min(t).

(18)
Note that Gt(�)→ e−���(t) as � → 1 so that there is a probability mass at � = 1 as observed
earlier, suggesting a finite probability 1− e−���(t) of a total collapse.

The expected loss per tranche size for a tranche with attachment point a and detachment
point b can be computed as

L(t)[a,b] = 1− 1

�b − �a

∫ �b

�a

d�Gt(�), (19)

where �a = a/(1− R), �b = b/(1− R) and R is the recovery rate (this known result follows

from the usual expressions). Note that
∫ 1

0
d�Gt(�) = e−�(t) as expected. The above shows

that the expected loss becomes 100% of the tranche size once �min(t) crosses �b, if b is small
enough for this to occur within the life-time of the trade. This leads to overpricing of the
equity tranches. Finite n and heterogeneity is expected to offer better pricing by smoothening
out the small � behavior.

4 Finite n with FFT

Large homogeneous pool approximation yields fast results, but at the expense of accuracy.
As is well-known, many of the factor models can be efficiently computed for finite n by
employing Fast Fourier Transform (FFT) techniques. This is true with the present model
as well. To obtain the loss distribution for finite n, consider the loss variable at time t
conditional on F ,

ℒ(F, t) =
n∑
i=1

Li�i(F, t), (20)

where �i(F, t) is the conditional default indicator at time t and Li = (1−Ri)wi, Ri being the
recovery rate and wi the fraction of the total pool notional associated with the ith name. Li
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is assumed to be deterministic and time-independent. Default indicators being independent
conditional on F , the above has the characteristic

E
{
eiuℒ(F,t)

}
=

n∏
m=1

[
qm(F, t) + pm(F, t)eiuLm

]
, (21)

where i =
√
−1. This characteristic is the Fourier transform of the density function of the

loss distribution (conditional on F unless mentioned otherwise). Hence, the loss distribution
can be obtained by inverting it using FFT techniques. The result can be used to compute
the expected loss per tranche size for a tranche with attachment point a and detachment
point b according to

L(F, t)[a,b] = 1− 1

b− a

∫ b

a

dxHt(F, x), (22)

where Ht(F, ⋅) is the cumulative loss distribution function.
FFT requires discretization of u. Discretization is straightforward if Li’s are uniform

at L across the collection (L = (1 − R)/n if Ris are uniform). Inversion then yields the
loss distribution at loss-points j = 0, ⋅ ⋅ ⋅ , n in units of L. This gives the default probability
density P[j](F, t), the sum of products of various combinations of j of the pi(F, t)s and n− j
of the qi(F, t)s. Consider it extended up to j = N − 1 ≥ n by padding with zeros where N
is a power of 2, as is usually done for an efficient FFT. In this case, (21) reads

N−1∑
j=0

P[j](F, t)e
i!jk =

n∏
m=1

[
qm(F, t) + pm(F, t)ei!k

]
, k = 0, ⋅ ⋅ ⋅ , N − 1, (23)

where ! = 2�/N . This can easily be computed and inverted using FFT techniques to obtain
P[j](F, t), j = 0, ⋅ ⋅ ⋅ , n, and hence its cumulative counterpart Gt(F, �) (that corresponds to
Ht(F, jL)) where � = j/n is the fraction of names in the defaulted state. Expected loss per
tranche size is then

L(F, t)[a,b] = 1− 1

�b − �a

∫ �b

�a

d�Gt(F, �), (24)

where �a = a/(nL), �b = b/(nL), and Gt(F, �) is flat in-between successive �−points. Inte-
gration of L(F, t)[a,b] over F gives L(t)[a,b], the unconditional expected loss per tranche size.
This integration is deferred to the end of computations for efficiency reasons.

5 CDO Pricing

The analytical results for the expected loss can be used to price the CDO tranches. The
default leg of a tranche per tranche size can be priced as

DL[a,b] =

∫ 1

0

dF

{∫ T

0

D(t)dL(F, t)[a,b]

}
, (25)

where T is the maturity and D(t) is the discount factor for the time period (0, t). Similarly
the premium leg per tranche size per unit spread can be priced as

PL[a,b] =

∫ 1

0

dF

{
N�∑
i=1

�i(ti)D(ti)
[
1− L(F, ti)[a,b]

]}
, (26)
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where �i(ti) is the accrual factor for the period (ti−1, ti), tN� = T and N� is the number of
periods. To this premium leg, we need to add a contribution from accrued interest payments
made upon default,

PL′[a,b] =

∫ 1

0

dF

{
N�∑
i=1

∫ ti

ti−1

�i(t)D(t)dL(F, t)[a,b]

}
, (27)

where �i(t) is the accrual factor for the partial period covering (ti−1, t). Given the leg values,
fair spread can be obtained by dividing the default leg by the premium leg, after taking care
of any upfront payments.

It is found to be efficient to perform the numerical integration over F after the expressions
within the curly brackets are computed over a sufficiently fine time-grid. The super senior
tranche can be priced like an ordinary tranche along with an additional premium leg of
notional that is a fraction R of the total notional of the underlying credit default swaps
outstanding, or, if recovery rates are nonuniform, sum of fractions Ri of the individual
notionals of the underlying credit default swaps outstanding.

Though the model can be handled semi-analytically as detailed above, a Monte Carlo
algorithm could be a useful tool to price more exotic products. It can also be useful for pricing
standard tranches as it is found to be efficient, accurate, easily implementable and does not
involve discretization of time. Note that the following is not to be viewed as simulating
model dynamics, rather just as a method of computing the above integrals. If desired, but
at the expense of efficiency, it can be generalized to simulate model dynamics by simulating
the stochastic process with non-decreasing sample paths chosen for the variable underlying
F . The algorithm reads as follows.

1. Draw a uniformly distributed random number F and n independent uniformly dis-
tributed random numbers ui, i = 1, ⋅ ⋅ ⋅ , n.

2. For each credit name i, first determine whether it defaults before the time horizon T
by checking if qi(F, T ) < ui where qi(F, .) is given in equation (14). If so, solve the equation
qi(F, ti) = ui for �i(ti). Determine default time ti of credit name i by a table look up into its
hazard rate curve.

3. Given the default times before the time horizon, price the instrument. For the next
scenario, go to step 1.

4. Average all the prices thus obtained to get a price for the instrument.
To improve efficiency, quasi random sequences such as Sobol sequences can be used to

generate each of the independent uniform random numbers.
Given a scenario of default times, it is straightforward to price the CDOs. One proceeds

processing the defaults one by one, starting from the first up to maturity, picking up payments
by the default leg, switching to the next tranche whenever a tranche gets wiped out, at
the same time computing the premium legs per unit spread for all the surviving tranches.
Whenever a default leg pays out the loss amount, the notional of that tranche gets reduced by
the same amount, and the notional of the super senior tranche gets reduced by the recovery
amount (when the super senior is the only survivor, it gets treated like a default swap). The
leg values can be added across tranches to obtain those for the index default swap. Fair
spreads can be computated given the leg values at the end of the simulation.
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6 Conclusions

The article has presented a one-factor model of default dependency to capture the correlation
smile. It is driven by the Lévy subordinator, an alpha=1/2 stable process maximally skewed
to the right whose distribution function is known in closed form as the Lévy distribution.
The attractive feature of the model is its tractability, at par with that of the Gaussian copula
model. It gets automatically calibrated to individual hazard rate curves. It can be used for
pricing both semi-analytically by employing Fast Fourier Transform techniques and via a
Monte Carlo algorithm. As can be seen from Table 1, despite having only two parameters at
its disposal, it is able to capture the correlation smile reasonably well. Market quotes are as
on October 2, 2006 (source: Brigo, Pallavicini and Torresetti [2006]), and it remains to see
how the model performs during distressed market conditions (when parameter � is expected
to play a significant role). Calibration is done for a homogeneous collection, with constant
interest rates and recovery rates, and with hazard rates flat in-between maturities. Relaxing
these assumptions could improve the fit.

We modeled the individual process Λi(t) as a time-changed Lévy subordinator. A natural
extension of the Lévy subordinator is the inverse Gaussian subordinator, but it does not
appear to improve the fit. Other model variations are possible, for instance, Λi(t) could be
the time-integral of a nonnegative stochastic process, perhaps mean-reverting, that in some
sense could be interpreted as stochastic default intensity. Such variations result in individual
survival probabilities that are not as easily calibrated to. Though it is simpler and to some
extent equivalent when the intensity process is a stable process, the model presented here
is the simplest and still results in a reasonable fit to market data. An issue with the model
is its inability to sufficiently account for the super senior tranche spread, resulting in some
price discrepancies for the lower tranches. There is some improvement upon using a lower
recovery rate, and recovery rate modeling such as random recovery considered within the
context of the Gaussian copula model could be helpful.

Though the model has been developed with an application to CDOs in mind, it could
be useful in other disciplines that involve modeling a dependent set of events. The model
provides two measures to assess dependency risk, that of correlation and that of the likelihood
of a catastrophe. Simplicity and tractability with its large homogeneous pool approximation,
an efficient semi-analytical framework and a Monte Carlo algorithm makes the model an
attractive choice.
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Table 1: Best fits to the five tranches of CDX.NA.IG and iTraxx Europe CDOs for each
maturity∗, obtained for a homogeneous collection using semi-analytical pricing with FFT.
Hazard rate is taken to be flat in-between maturities. Interest rate is constant at 5.0% and
3.5% respectively, and recovery rate at 40%. Equity tranche is quoted as an upfront fee
in percent (plus 500bp per year running) and the other tranches are quoted as spreads per
year in bp (with bid-ask spreads in brackets). The three rows under each maturity present
respectively the quotes, results and delta hedge ratios.

CDX.NA.IG7
0-3% 3-7% 7-10% 10-15% 15-30% 30-100% 0-100% �, �

3y 9.75(2.0) 7.9(1.6) 1.20(0.2) 0.50(0.1) 0.20(0.1) 24.0(0.5)
10.15 7.45 1.51 0.54 0.28 0.12 24.1 0.38,0.0
34.28 0.80 0.14 0.06 0.00 0.00 1.0

5y 30.50(1.0) 102.0(6.1) 22.50(1.4) 10.25(0.6) 5.00(0.3) 40.0(0.5)
32.00 102.3 22.04 10.51 4.80 1.32 40.0 0.62,0.06
24.67 5.91 1.13 0.49 0.19 0.01 1.0

7y 45.63(2.0) 240.0(48.0) 53.00(10.6) 23.00(4.6) 7.20(1.4) 49.0(0.5)
47.05 257.6 55.42 22.99 7.74 1.19 49.0 0.68,0.03
16.23 10.62 2.51 0.97 0.25 0.04 1.0

10y 55.00(1.0) 535.0(21.4) 123.00(7.4) 59.00(3.5) 15.50(0.9) 61.0(0.5)
56.72 530.0 139.50 52.38 16.41 2.60 61.0 0.63,0.06
8.29 13.11 5.42 1.96 0.56 0.04 1.0

iTraxx Europe 6
0-3% 3-6% 6-9% 9-12% 12-22% 22-100% 0-100% �, �

3y 3.50(1.5) 5.5(4.0) 2.25(3.0) 18.0(0.5)
4.08 6.1 1.54 0.61 0.28 0.13 18.1 0.45,0.0

34.53 0.81 0.19 0.10 0.01 0.00 1.0
5y 19.75(0.25) 75.0(1.0) 22.25(1.0) 10.50(1.0) 4.00(0.5) 1.50(0.5) 30.0(0.5)

20.55 77.4 21.19 10.31 4.60 0.85 30.0 0.76,0.03
27.00 5.53 1.46 0.68 0.27 0.02 1.0

7y 37.12(0.25) 189.0(2.0) 54.25(1.5) 26.75(1.5) 9.00(1.0) 2.85(0.5) 40.0(0.5)
38.70 204.7 53.12 24.11 9.73 1.32 40.0 0.73,0.03
19.67 10.48 2.88 1.25 0.47 0.05 1.0

10y 49.75(0.25) 474.0(4.0) 125.50(3.0) 56.50(2.0) 19.50(1.0) 3.95(0.5) 51.0(0.5)
53.95 470.1 136.48 56.10 20.18 2.15 51.0 0.68,0.03
10.36 14.88 6.15 2.48 0.82 0.07 1.0

∗Market quotes as on October 2, 2006. Source: Brigo, Pallavicini and Torresetti [2006].
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