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Abstract

We study games where voluntary contributions can be adjusted until a steady

state is found. In consent games contributions start at zero and can be in-

creased by consent, and in dissent games contributions start high and can be

decreased by dissent. Equilibrium analysis predicts free riding in consent games

but, in contrast, as much as socially efficient outcomes in dissent games. In our

experiment, inexperienced subjects contribute high in consent games and low

in dissent games, but behavior converges toward equilibrium predictions over

time and eventually experienced subjects contribute as predicted: low in con-

sent games and high in dissent games. Observed deviations from equilibrium

in consent games are best explained by level-k reasoning, and those in dissent

games are best explained by hierarchical reasoning formalized as nested logit

equilibrium.
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1 Introduction

There is longstanding interest in how the structure of a game affects the level of co-

operation, in particular voluntary contributions to public goods. An area of research

concerns dynamic games where the “stock” of cooperation is gradually accumulated

over a span of time, and actions are irreversible. For example, donations to fundrais-

ing drives build up over weeks, months or years, and donations cannot be withdrawn.

Countries that adopt the consent system of organ donation legislation, e.g. Germany,

have donor lists populated by people who opt in, and opting out thereafter requires

administrative costs. Admati and Perry (1991), Compte and Jehiel (2003), Fershtman

and Nitzan (1991), and Marx and Matthews (2000) studied the accumulation of con-

tributions to public goods and projects, while Gale (2001), Lockwood and Thomas

(2002), and Compte and Jehiel (2004) studied general accumulation games with pos-

itive spillovers. These studies typically find that, in the context of public goods, the

accumulation process involves delay and outcomes are socially inefficient.

On the flip side, there are situations where cooperation can be decumulated. A

major concern in fundraising is that donation pledges to projects—initiated at a cost

on this pretext—are reneged, as discussed by Budig et al. (1992) and Loftin (1999).

An alternative to the consent system of organ donation is that of dissent, e.g. used in

Austria, where one is a candidate donor by default unless he opts out. Legislators must

compare the efficacies of these rival systems prior to adoption or transition across

systems (Matesanz, 1998), e.g. the UK Department of Health recently considered this

issue (OTF, 2008). Further examples of analogous problems include the conservation

or exploitation of common pool resources (Bolle, 1986), and the use or abuse of group

reputation, e.g., eco-labeling (Hamilton and Zilberman, 2006).1 The decumulation

problem has not been systematically studied yet, and so we seek to take an initial step

towards filling this gap.

1Operating in accordance with the jointly optimal exploitation path of a common oil field by sym-

metric oil producers is an initial state from which attempts to get a larger share of oil is similar to

decreases in voluntary contributions. Members of renowned broker associations, restaurants with ac-

knowledged quality, or holders of eco-labels for green food or environmentally friendly production can

comply to the standard. Alas, irreversible decreases in group standards, and in turn common reputation,

can result from opportunism (e.g. by decreasing costs through bad practice).
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This paper presents a theoretical and experimental investigation of the decumu-

lation problem (“dissent game”) in contrast to the accumulation problem (“consent

game”). We focus on the context of public good contributions, where each contribu-

tion yields positive spillovers to all players, but the return to each player is less than

the private cost incurred. A game starts with each player having an endowment for

financing contributions, and with default pledges exogenously set to zero in consent

games and equal the endowment in dissent games. In each round, players simultane-

ously decide on whether to maintain their interim pledges, or to increase (decrease)

them in consent (dissent) games. Interim pledges are perfectly observable. A game

ends when players mutually acquiesce, i.e. pledges are no longer adjusted, or when

pledges can no longer be adjusted, i.e. when pledges hit the ceiling (floor) in consent

(dissent) games. Payoffs accrue from the returns from the final pledges standing at

the end of the game, plus the remaining endowment.

The “opt-in” consent game is a monotone game with positive spillovers (Gale,

2001). Here, players have an incentive to increase their contribution only if doing

so triggers off contributions by others. With budget constraints and discrete action

spaces, sequences of contribution increments are finite. In turn, no such sequence is

self-sustaining: the last mover in any sequence is best off deviating since his incre-

ment does not trigger off further increments.2 The “opt-out” dissent game has not

been analyzed until now.3 We show that for specific rates of return to public good

contributions, all but one of the equilibria are implausible in that they are both risk

dominated and Pareto dominated by a specific alternative equilibrium. This alter-

native is uniquely Pareto perfect, i.e. renegotiation proof in the sense of Farrell and

Maskin (1989), and also the unique limit point of logit equilibria.4 Thus, for a range

of rates of return to contributions, efficient contributions result without delay. For

rates beyond this range, contributions are inefficient but still positive.

2In the threshold public goods game of Marx and Matthews (2000), only aggregate contributions are

observable, and so the last player in the move sequence contributes to complete the project; inefficiency

results if completion does not require the full commitment of all players. Another variant with different

results is by Lockwood and Thomas (2002), who assumed continuous action spaces.
3The closest relative is a game by Romano and Yildirim (2005) with a fixed and finite time horizon,

which is outcome equivalent to two-round games and zero contributions result in all equilibria.
4This theoretical result for our dissent game is interesting in that Choi et al. (2008) have found logit

equilibrium to be a good explanation for their experimental data on monotone (consent) games.
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In theory, consent and dissent games yield very different outcomes. We test

the extent to which this bears out in the experimental laboratory, and then explain

how subjects deviate from equilibrium. Doing so can further our understanding of

behavior in real world scenarios with similar structures, and can guide the design

of mechanisms to be used in organizations, fundraisers, or public sector solutions.

Our experimental analysis involves three-player games where the quality of the pub-

lic good, i.e. the rate of return to contributions, α, is either low or high. In consent

games, zero contribution results regardless of α. In dissent games, social efficiency

is predicted for only one of the two αs considered. We further test treatments that

weaken the irreversibility constraint by allowing players to restart the dissent game at

a cost, when all players cast their votes to do so. Induction yields largely similar equi-

libria as those for the games with perfect irreversibility. To test learning effects, we

compare two information conditions, one where subjects get feedback on co-players’

votes on restarting the game, and the other where feedback is not provided.

We find that in the first half of the experiment, mean contributions start off high in

consent games and low in dissent games, but converge toward their respective equi-

librium predictions: contributions fall in consent games and rise in dissent games.

Behavior during the second half of the experiment is relatively stable, with coopera-

tion rates staying at low levels for consent games and at high levels for dissent games.

Weakening irreversibility in dissent games promotes more efficient contributions in

the treatment with feedback on restart votes. Contributions in dissent games should,

in theory, be high only for one of the α values, but we find that they are high regard-

less of α. To understand why, we estimate models of strategic choice that specify how

subjects deviate from the predictions.

Logit equilibrium, originally defined by McKelvey and Palfrey (1995, 1998),

cannot explain this behavior in dissent games—unlike their fit in threshold mono-

tone games as observed by Choi et al. (2008). We examine alternative explanations

such as lack of equilibration (level-k reasoning) and violations of IIA (hierarchical

reasoning) formalized as nested logit equilibrium (NLE).5 To the best of our knowl-

edge, examining these concepts in the context of dynamic games is novel. Level-k

5Nested logit equilibrium is based on the “nested logit model” of choice (McFadden, 1978), and is

defined as a strategy profile where all players play mutual nested logit responses.
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reasoning explains behavior in consent games best. In contrast, we find that subjects’

strategies in dissent games are best described by NLE, i.e. subjects have a tendency to

match their opponents’ pledges as opposed to playing purely payoff-monotonic logit

responses. Nested logit strategies explain particularly clearly why contributions are

largely independent of α. Bounded rationality, in the sense of level-k and NLE for the

consent and dissent games, respectively, diminishes over time and this explains the

observed convergence toward equilibrium.

Section 2 contains the theoretical analysis. Section 3 describes the experiment.

Section 4 reports the experimental results. Section 5 discusses the comparative ability

of strategic choice models to explain the data. Section 6 concludes.

2 The theory

2.1 Notation

The set of players is denoted as N = {1, . . . ,n}, typical players are i, j ∈ N. The play-

ers make contributions ai ∈ Ai to a public good, and the set of possible contribution

levels Ai⊂R is finite.6 Profiles of contributions are denoted as a∈ A :=×i∈N Ai, and

i’s payoff function is pi : A→ R. The payoffs are decreasing in the own contribution

and increasing in the opponents’ contributions. Thus, for all i 6= j,

ai > a′i ⇒ pi(ai,a−i) < pi(a′i,a−i), (1)

a j > a′j ⇒ pi(a j,a− j) > pi(a′j,a− j). (2)

These restrictions imply that the minimal contribution minAi is uniquely optimal in

response to all a−i, i.e. rational players make minimal contributions. A well-known

example satisfying Eqs. (1) and (2) is the linear public-goods game, i.e.

pi(a) = α∗ ∑
j∈N

a j−ai with α ∈ (0,1). (3)

6The finiteness assumption is satisfied if smallest contribution units and budget constraints exist.

Notably, by avoiding the continuity assumption, our framework also includes cases where players

contribute by doing specific (discrete) favors or by giving specific (discrete) objects.
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In linear public-goods games, all players incur the same individual costs from con-

tributing to the public good, they benefit equally from it, and the marginal return to

each contribution is constant. Neither of these assumptions is made in the following

analysis, however. Note also that we treat cases where contributing is socially effi-

cient and cases where it is socially inefficient (α < 1/n and α > 1/n, respectively) in

a unified manner.

We consider two types of games where “pledges” of contributions can be ad-

justed for an endogenous number of rounds. In the consent game, the initial pledges

are (minAi)i∈N and the pledges may be increased, but not be decreased in the course

of the game. In the dissent game, the initial pledges are (maxAi)i∈N and the pledges

may be decreased, but not be increased in the course of the game. Players move si-

multaneously in each round, and the game ends when all pledges remain unchanged

for a round. To clarify the formal differences between the two extensive forms, let us

define their respective sets of possible histories explicitly, denoted as H+ in consent

games and as H− in dissent games.7

H+ =
{(

a1, . . . ,ak) ∈ Ak | k ∈ N0 and minA < a1 < · · ·< ak−1 ≤ ak
}

, (4)

H− =
{(

a1, . . . ,ak) ∈ Ak | k ∈ N0 and maxA > a1 > · · ·> ak−1 ≥ ak
}

. (5)

Now fix H ∈ {H+,H−}. The action set of i ∈ N after history h ∈ H is

Ai(h|H) =
{

ai ∈ Ai |
(
h,(ai,a−i)

)
∈ H for some a−i ∈ A−i

}
. (6)

The probability that i chooses ai ∈ Ai(h|H) is denoted as σi(h|H)(ai). Let πi(σ,h|H)

denote i’s expected payoff under σ in subgame h of game H.

Our analysis determines the limit points of logit equilibria (McKelvey and Pal-

frey, 1995, 1998) as the precision λ approaches infinity. We switch to considering

finite precision when the experimental outcomes are analyzed. To define logit equi-

libria, we require the notation πi(ai,σ|h) for the expected payoff when i plays the pure

action ai after history h and everything else develops according to σ.

Definition 2.1 (Logit equilibrium). A strategy profile σ is a logit equilibrium if all

7We write a≥ a′ iff ai ≥ a′i ∀i ∈ N, and a > a′ iff a≥ a′ and a′ � a.
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players play mutual logit responses in all subgames, i.e. if for some λ ∈ R+,

σi(h)(ai) = eλπi(ai,σ|h)/ ∑
a′i∈Ai(h|H)

eλπi(a′i,σ|h) ∀i ∈ N ∀h ∈ H ∀ai ∈ Ai(h|H). (7)

A strategy profile σ is a limiting logit equilibrium (LLE) if it is the limit of logit

equilibria as λ tends to infinity. All such limit points of logit equilibria are sequential

equilibria (McKelvey and Palfrey, 1998).

2.2 Analysis

We begin with the consent game (H = H+). There is a unique SPE (hence a unique

limiting logit equilibrium), and along the equilibrium path, the players stick to the

minimal contributions. The intuition is rather simple. In a consent game, increasing

one’s contribution above the minimal level is rationalizable only if one’s increment

triggers increments of other players’ contributions. Hence, a sequence of increments

may be self-sustaining under subgame perfection only if it is perpetual. This is possi-

ble only if either budgets are unlimited or increments may be infinitesimal, and in any

case only if players may keep increasing their contributions for an infinite number

rounds (the steady state of contributions is reached only approximately). In turn, it

is not possible in the kind of contribution games that we consider in this study (for a

more comprehensive discussion, see Lockwood and Thomas, 2002). Here, perpetual

sequences are impossible and hence contributions remain at their initial (minimal)

levels in equilibrium.

Proposition 1 (Consent games). In consent games, the SPE is unique. According to

it, all players stick to their standing pledges of contributions in all subgames.

All proofs are relegated to the appendix.

We now analyze the dissent game (H = H−). Under subgame perfection, all

individually rational outcomes can be sustained in SPEs. To see this, let A∗ denote

the set of individually rational outcomes,

A∗ = {a ∈ A | ∀i ∈ N : pi(a)≥ pi(minA)} , (8)

and consider the following strategy profile, which sustains any a∗ ∈ A∗ along the path

of play.
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1. all players i ∈ N play a∗i in the first round and stick to it in the second round

2. after any deviation from part 1, all players i ∈ N play minAi

Deviations from part 1 trigger part 2, and deviations from part 2 are not profitable

since all players move simultaneously. Hence, this strategy profile is an SPE. In

general, these SPEs are not admissible, however. For, it is weakly dominated to im-

mediately switch to minimal contributions minAi after the first deviation from part

1. As an example, consider public goods games with integer contribution levels

Ai = {0,1, . . . ,10} for all i ∈ N, and assume the players anticipate to coordinate on

(10, . . . ,10). Here, it is weakly dominated to immediately move down to (0, . . . ,0) if

one player deviated from (10, . . . ,10). For each player, it is weakly dominant to try

to coordinate on (9, . . . ,9) with the others, or on (8, . . . ,8), (7, . . . ,7), and so on.

In this spirit, one may argue that “reasonable” players coordinate on the next-

best steady state when the previous one has been passed.8 Such players would invari-

antly make the best they can, given the circumstances and the constraints of strategic

equilibrium, i.e. they coordinate on Pareto efficient Nash equilibria in all subgames.

Subgame perfect equilibria satisfying this property are called Pareto perfect (Farrell

and Maskin, 1989), and they seem to be rather plausible solution concepts for dis-

sent games. If restricted to pure strategy equilibria, the set of steady states sustained

under Pareto perfection can be backward induced as follows. First, a0 = minA is

a steady state by definition (of dissent games). Now, if A′ denotes the set of all

states that Pareto dominate a0, all states in minA′ must be steady states,9 for stick-

ing to any a′ ∈ minA′ is the unique Pareto efficient continuation equilibrium once a′

has been reached (any deviation triggers off a0, which is Pareto dominated). Define

A1 := minA′. Next, let A′′ denote all states that Pareto dominate all a′ ∈ A′ ∪{a0}.
Again, all states in minA′′ must be steady states, and so on. This backward induction

implies that the set of steady states can be defined implicitly as the (unique) set As⊆A

8Given a history h ∈ H, the state ω(h) is the profile of contributions pledged in the previous round

(or maxA in the first round). Given a strategy profile σ, a state ω ∈Ω is a steady state if for all h ∈ H

leading to ω, all players stick with probability 1 to the state contributions ωi.
9Using minA′ = {a′ ∈ A′ | @a′′ ∈ A′ : a′′ < a′}. Note that minA′ need not be unique, since < is a

partial ordering on A.
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such that for all a ∈ A,

a ∈ As ⇔ a Pareto dominates all a′ ∈ As : a′ < a. (9)

Let us now return to the intuition that “reasonable” players coordinate on the next-best

steady state in all subgames. If a denotes the players’ current pledges of contribution

(i.e. the state), then they would coordinate on one of the Pareto efficient steady states

left in reach, i.e. on the Pareto frontier of {a′ ∈ As|a ≤ a′}. In general, the next-best

steady state is not unique. Our next result establishes that it is unique in all two-player

games, and that if at least maxAs is unique, then maxAs is Pareto efficient in A. The

former may be of independent interest, in light of Prop. 2, and as discussed below

also interesting in relations to the three-player games we study.

Lemma 1. Define the set As ⊆ A such that condition (9) holds true for all a ∈ A.

1. If |N|= 2, then the uniqueness property applies, i.e.

∀a ∈ A : max
{

a′ ≤ a | a′ ∈ As} is a singleton. (10)

2. If maxAs is a singleton, then a∗ ∈maxAs is Pareto efficient in A.

Our next main result shows that if the uniqueness property applies, then all limit-

ing logit equilibria imply that the players act Pareto perfectly: they coordinate on the

next-best steady state in all subgames. Point 2 of Lemma 1 implies that the outcome

must then be on the Pareto frontier of the whole possibility set. Point 1 of Lemma 1

implies that this condition is satisfied in all two-player games.

Proposition 2 (Dissent games). If the uniqueness property applies, i.e. Eq. (10), then

As is the set of steady states in all limiting logit equilibria, and the outcome along the

equilibrium path is a∗ ∈maxAs.

Thus, there are two crucial ingredients required for efficiency in dissent games:

the uniqueness property and limiting logit equilibrium. If the uniqueness property

applies, then limiting logit equilibrium refines subgame perfection to the effect that

the outcome is unique, renegotiation proof (in the sense of Pareto perfection), and

Pareto efficient. In such cases, dissent games induce socially efficient contributions.
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Table 1: A three-level public goods game

y1 y2 y3

x1 5,5 2,6 −1,7

x2 6,2 3,3 0,4

x3 7,−1 4,0 1,1

The requirements are rather demanding in the formal sense for a game with such a

simple structure—players do not move down because opponents would follow suit.

On the one hand, trembling-hand perfection does not suffice, i.e. we require equi-

librium refinement beyond perfection. As an illustration, Table 1 depicts the payoffs

of a game with two players and three levels of contributions each. Player 1 chooses

from (x1,x2,x3), of which x1 induces the highest contribution, and player 2 chooses

from (y1,y2,y3), of which y1 induces the highest contribution. The last possible state

that Pareto dominates the minimal contributions (x3,y3) is (x2,y2), and the only state

that Pareto dominates (x2,y2) is (x1,y1). These three states are the only steady states

in limiting logit equilibria, and (x1,y1) results along the equilibrium path. However,

both players moving toward (x2,y2) in the first round and sticking to it is part of a

perfect equilibrium.10 The difference to logit equilibrium is that implausible trem-

bles may be infinitely more likely than plausible ones—where plausibility is taken

in terms of expected payoffs—while limiting logit equilibria (and proper equilibria,

for that matter) restrict the relative tremble probabilities. Implicitly, our experiment

investigates whether subjects conform to these restrictions.

On the other hand, the uniqueness property cannot be considered a mild assump-

tion. To illustrate this, Table 2 depicts a linear public goods game, Eq. (3), with

three players and two levels of contributions per player (high: a1 = a2 = a3 = 1, and

low: a1 = a2 = a3 = 0). If α < 1/3, then the public good is socially not desirable. If

α∈ (1/3,1/2), then the uniqueness property applies, since (1,1,1) is the unique state

10To see that it this is perfect, assume player 2 plays y3 with probability ε and y1 with ε2 whenever

either of these options is available. If player 1 deviates to x1 in the first round, then the probability that

the state (x1,y1) results increases by ε2, and the probability that the state (x3,y3) results increases by

ε—the net effect is negative as ε tends to zero.
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Table 2: A three-player, two-level public-goods game

a3 = 1

a2 = 1 a2 = 1

a1 = 1

 3α−1
3α−1
3α−1

  2α−1
2α

2α−1


a1 = 0

 2α

2α−1
2α−1

  α

α

α−1



a3 = 0

a2 = 1 a2 = 0

a1 = 1

 2α−1
2α−1

2α

  α−1
α

α


a1 = 0

 α

α−1
α

  0
0
0



that Pareto dominates zero contributions. The uniqueness property does not apply if

the public good’s quality α is good, however. For α ∈ (1/2,1), the minimal states

that Pareto dominate (0,0,0) are (1,1,0), (1,0,1), and (0,1,1). In turn, (1,1,1) does

not Pareto dominate these states, i.e. (1,1,1) is not a steady state.

In this case, a coordination issue arises: Which state (i.e. which equilibrium)

would the players coordinate on? Besides the three pure equilibria, there are several

mixed ones. In the symmetric equilibrium, all players randomize and move down

to zero contributions with probability σ = 4α−2
3α−1 in the first round. If α = 0.6, for

example, each player moves down with probability 1/2, and the expected payoffs

are (1/3,1/3,1/3). This symmetric equilibrium is not Pareto dominated by the other

equilibria, and hence it is Pareto perfect although it is not Pareto efficient overall.

This exemplifies that Pareto perfection does not generally imply Pareto efficiency, and

thereby underlines the strength of Prop. 2, and even more strikingly, it emphasizes the

technical relevance of the uniqueness property. For, if the uniqueness property does

not apply, then Pareto perfection is not socially efficient in dissent games, and hence

dissent games may exhibit significant inefficiency (although expected contributions

remain positive, contrary to consent games). Surprisingly, this applies if α is too

high. In this sense, a public good can be “too good”.

Our experiment tests the empirical relevance of the uniqueness property. Further-

more, the zero contribution state (0,0,0) results with probability 3σ2(1−σ)+ σ3 =

0.5 in the mixed equilibrium, and in this case the donors end up in a state where

they would renegotiate ex post if possible. Our experiment will also allow for such

renegotiation by conducting treatments where “restarts” are possible.
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3 Experimental design

3.1 The treatments

In all treatments, games of three players are considered. The possible levels of contri-

butions (in “Euros”) to the public good are Ai = {0,1, . . . ,10} for all i ∈N, the payoff

function is linear, see Eq. (3), and the return factors are either α = 0.4 or α = 0.6.

Both upward (H+) and downward (H−) games are considered. Combined, this 2×2

set of treatments will be referred to as the four basic treatments in the following. In

the two additional renegotiation treatments, the players played dissent games with

either α = 0.4 or α = 0.6, and when all pledges remained unchanged for a round,

they were asked if the game should be restarted (for a fee of 1 Euro each, deducted

from the final outcome). The game is restarted if and only if all players vote in favor

of doing so. In one treatment, we provided subjects with feedback on the votes of

others in the group, but in the other, there was no such feedback. We expected the

treatment with feedback on votes to enhance learning. Such feedback could be in-

formative and instructive as it allows demonstrations of the desire to cooperate, e.g.

when a subject votes for a restart after decreasing his contribution to zero (to remove

the disincentive for free riders to not vote for a restart if, instead, he maintained a

positive contribution)—even if the restart was unsuccessful.

The equilibrium predictions are as follows. In the consent games, the players

make zero contributions along the path of play (Prop. 1). In the dissent games with

α = 0.4, the uniqueness property applies, and thus players make Pareto efficient con-

tributions in equilibrium (Prop. 2). The backward induction generating the set of

steady states, see Eq. (9), implies that a ∈ A is a steady state if and only if a is sym-

metric.

As(α = 0.4) = {a ∈ A | a1 = a2 = a3} (11)

If α = 0.6, it is sufficient that two players contribute symmetrically, i.e. all states

where one player contributes nothing and the other two make symmetric contributions

are steady states. By definition of As, the only other steady state is (ai,a j,ak) =

(1,5,6) for i 6= j 6= k. That is, the set of steady states is

As = {a ∈ A | ∃i, j,k : ai = 0∧a j = ak or (ai,a j,ak) = (1,5,6)} (12)

12



This set of steady states is sustained also in the unique limiting logit equilibrium.

The initial state (10,10,10) is therefore not stable, and in the symmetric equilibrium,

all players randomize over reducing their contributions. The experiment will inform

us to which degree the formal relevance of the uniqueness property translates into

practical relevance. The possibility of ex-post renegotiation is theoretically relevant

only in case α = 0.6, where the event that all players reduce their contributions has

positive probability in limiting logit equilibria.

3.2 Experimental procedure

The experiment was conducted in a purpose-built experimental economics labora-

tory in Germany, where total of 204 subjects participated. The experiment was pro-

grammed and conducted with the software z-Tree (Fischbacher, 2007). There were

two main treatments, consent (U) and dissent (D), as described in section 2. We la-

bel the treatment with the restart option without feedback about co-participant’s votes

(DR) and the one with feedback (DRF). There were twelve subjects in each of the

17 sessions, who played U , D, DR, or DRF . Each session was (virtually) partitioned

into two independent sub-sessions of six subjects each. Thus, we had a total of eight

independent observations for U , ten for D, eight for DR, and eight for DRF . This

design enhances the perceptions of anonymity between subjects, given large session

sizes, while yielding more independent observations.

Each session comprised 12 stages (games). In each game, subjects were ran-

domly re-matched into groups of three to implement the one-shot game. This allows

for experience, and eliminates reputation or supergame effects. In each session (treat-

ment), the quality of the public good, i.e. the return rate to contributions α, was either

0.4 or 0.6 in either the first or second half of the experiment (i.e. games 1-6 or 7-12,

respectively). This within-subject design allows us to test the robustness of behavior

in each treatment when subjects are exposed to different return rates.

At the start of each game, each subject received an endowment of 10 Euros,

and the individual pledge of each subject was set at the default of 0 (10) Euros in

the U (D, DR, or DRF) treatment. In each round, subjects could increase (decrease)

their contributions in the U (D, DR, or DRF) treatment, if they were not already
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contributing everything (nothing). After each round, subjects received feedback about

the current contributions of each co-player in the group, which is especially important

for dissent games with α = 0.6, where there are multiple equilibria and coordination is

a concern. The game continued as long as at least one subject had adjusted the pledge

in the stage, and stopped when all players in the group simultaneously acquiesced for

one stage. At the end of the game, all subjects were informed of their earnings.

At the beginning of the experiment, subjects were randomly seated. They were

then required to read the experimental instructions, provided on printed sheets, and

to answer a short control questionnaire for us to check their understanding. We used

neutral language throughout. Subjects in doubt were verbally advised by the experi-

mental assistants before being allowed to begin. Computer terminals were partitioned,

so that subjects were unable to communicate, gesture, or to look at other computer

screens. Decisions were thus made in privacy. At the end of the experiment, subjects

were informed of their payments, and asked to privately choose a code name and

password. This was used to anonymously collect their payments from a third party

one week after the experiment. Each subject received participation fee of 6 Euros and

the earnings from one randomly chosen “winning stage”. The average payment per

subject was 19 Euros for approximately 1.5 hours per session.11

4 Experimental results

4.1 Aggregate behavior across treatments and time

This first part of our analysis compares, across treatments, the cooperation levels and

trends over time. We analyze behavior overall, and when subjects are inexperienced

(block 1, games 1–6) or experienced (block 2, games 7–12). Figure 1 presents the

mean contributions over time for each treatment. Table 3a summarizes the mean con-

tributions over all games, the first game and the final game, in each block, followed

by Table 3b showing the univariate test results of pairwise comparisons of mean con-

11The monetary incentives provided are substantial by local standards. The average payment is, for

example, 50% more than the wage of a research assistant in this university.
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tributions between treatments for all rounds in each block.12

Table 3c presents the results of ordered logit regressions that test the marginal

effects of treatment differences on contributions, while controlling for experience and

α. The treatment variables are α (= 0.4 or = 0.6), D (= 1 for all dissent games, or

= 0 if otherwise), and R (= 1 for DR, and = 0 if otherwise), RF (= 1 for DRF or

= 0 if otherwise). We also include the time variable G (= 1 to 12 corresponding to

the respective game number), and interactions of treatment variables D, R, and RF by

G. We have chosen discrete (ordinal) regression, because there are only 11 discrete

contribution levels per subject, and proportional odds modeling (McCullagh, 1980)

in particular, because the specific contribution levels have cardinal interpretability.

Inexperienced play In block 1, the univariate tests reported in Table 3b show that,

for both αs, overall mean contributions are not significantly different across treat-

ments. At the outset of the experiment, i.e. in game 1, mean contributions are signifi-

cantly higher in consent games than in dissent games (see Table 3c: the coefficient of

D is significantly negative in Block 1), and the DRF treatment is initially even worse

than in the D treatment. This difference vanishes by game 6 when α = 0.4 (all dif-

ferences are insignificant), and contributions in game 6 are significantly higher in the

downward treatments when α = 0.6 (except DR where the difference is insignificant).

Univariate tests comparing round-specific contributions concur. Similar to the decay

observed in most public good experiments, contributions in the consent treatments de-

crease over time (see that G is significantly negative overall). In stark contrast, those

of the dissent treatments increase over time (D×G is significantly positive in Block

1), and the increase is accelerated in the DRF treatments (RF ×G is significantly

positive, too).

Experienced play In block 2, mean contributions are stable over time—the time

interaction variables are insignificant in all cases. According to our Bayes Information

Criterion (BIC) measures, these interactions should be excluded in the regression

12We used Mann-Whitney U tests, and define an independent observation as the average of each

session. Inter-treatment comparisons of mean contributions in games 1, 6, 7 and 12 are reported in

Table 10 of the supplementary material.
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Table 3: Mean contributions over time

(a) Mean contributions overall and in first and final rounds of each block

α = 0.4 α = 0.6

Inexperienced Overall Game 1 Game 6 Overall Game 1 Game 6

U 3.36 3.88 2.75 4.01 4.92 3.38

D 1.86 0.93 2.60 5.93 3.13 7.43

DR 1.83 0.58 2.83 4.36 2.04 5.75

DRF 3.24 1.17 4.08 4.48 1.33 7.79

α = 0.4 α = 0.6

Experienced Overall Game 7 Game 12 Overall Game 7 Game 12

U 1.91 2.63 1.54 4.65 5.13 3.79

D 6.31 6.77 6.77 6.38 5.97 6.47

DR 4.50 4.83 5.08 5.63 5.67 6.00

DRF 6.44 6.58 5.50 7.21 4.92 7.29

(b) Nonparametric tests of mean contributions and p-values (in parentheses) for α = 0.4 (in cells below

diagonal) and α = 0.6 (in cells above diagonal)

Block 1 U D DR DRF Block 2 U D DR DRF

U – −1.599
(0.1099)

0
(1)

−1.155
(0.2482)

U – −0.735
(0.4624)

−1.155
(0.2482)

−1.155
(0.2482)

D 1.470
(0.1416)

– −0.735
(0.4624)

−0.735
(0.4624)

D −2.449
(0.0143)

– 0.245
(0.8065)

0.245
(0.8065)

DR 1.732
(0.0833)

0
(1)

– −0.289
(0.7728)

DR −1.597
(0.1102)

0.980
(0.3272)

– −1.443
(0.1489)

DRF 0
(1)

−1.470
(0.1416)

−1.443
(0.1489)

– DRF −2.309
(0.0209)

−0.490
(0.6242)

−1.016
(0.3094)

–

(c) Ordered logit regression (proportional odds) of final contributions

α D R RF G D×G R×G RF×G

Blocks 1+2

4.157
(0.368)

∗∗ −0.952
(0.201)

∗∗ −0.229
(0.216)

−0.356
(0.218)

−0.046
(0.019)

∗ 0.246
(0.028)

∗∗ −0.050
(0.030)

0.082
(0.031)

∗∗

Block 1

6.058
(0.532)

∗∗ −1.508
(0.312)

∗∗ −0.141
(0.333)

−0.842
(0.344)

∗ −0.099
(0.057)

0.411
(0.082)

∗∗ −0.105
(0.086)

0.234
(0.088)

∗∗

Block 2

2.457
(0.516)

∗∗ 1.231
(0.140)

∗∗ −0.633
(0.144)

∗∗ 0.275
(0.149)

0.044
(0.030)

Note: Two-tail p-values at the 5% (1%) level are denoted by * (**). The 10 intercepts per

regression model are reported in the supplementary material (Table 8).
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Figure 1: Mean contributions over time
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model for block 2 (see also Table 8 in the supplementary material). Table 3c shows

that α has less impact on experienced than inexperienced behavior (α is 2.457 in

block 2 compared to 6.058 in block 1), and that contributions are significantly higher

in the dissent treatments than in U (see that D is positive and significant). There is no

significant difference between D and DRF in Block 2 (i.e. RF is insignificant), both

eliciting higher contributions than U . Overall contributions are significantly higher in

all dissent games than in consent games when α = 0.4 (e.g. 19% for U versus 63%

for D) and they are rather similar when α = 0.6. Once again, these results concur with

the univariate inter-treatment comparisons. When α = 0.6, the mean is 64% for D,

and the mean contributions go as high as 80% and 85%, as observed in DRF games
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10 and 11 when α = 0.4 and 0.6 respectively. Even when the low return rate of 0.4

makes the public good less attractive, in some dissent treatments mean contributions

are more than two or three times that found in U , e.g. 63% in D versus 19% in U .

Restart treatment Overall, restarts were rarely observed. No restarts occurred in

DR, and yet, the treatment of “restarts without information” affected behavior nega-

tively as subjects gained experience (R = −0.633 in block 2 is significant, see Table

3c). A mere eight games were restarted in DRF , twice in block 1 and six times in

block 2 (i.e. primarily when subjects are experienced). Restarts had a dramatic ef-

fect on contributions: the mean contributions of 0 in the first try of games preceding

restarts increased to 60% and 78% in the second try for α = 0.4 and 0.6, respectively.

Contributions were low at the initial game of the experiment but increased as subjects

gain experience. This shows that subjects learn faster when restarts are possible, de-

pending on whether the votes on restarting are disclosed. While contribution levels

suffer in the short run from the possibility of restarts, the quick increase in contribu-

tions and eventual stability more than compensates in the long run.13

4.2 Behavior within games

We now scrutinize interim pledges, i.e. behavior within games. Figure 2 shows the

mean deviation of pledges from the default pledge of 0 in consent treatments and from

10 in dissent treatments in round 1 of each game. Mean deviations appear to decrease

over time, and more so in block 1 and in the dissent treatments. This decreasing

effect more or less stabilizes in block 2, but there remains a low tendency for subjects

to deviate from the default pledges.

To systematically understand the structure of interim actions, in particular how

subjects respond to the moves of co-players, we estimate the subjects’ contribution

“strategies” as functions of the following independent variables: let c be the lesser of

the opponents’ standing pledges, c be the greater of their pledges, α, and D, R, RF ,

13When restarts were possible, some subjects were observed to drop their contributions down to zero

following “mistakes” of their co-players, who can understand the cooperative motives of this behavior

only when the votes were disclosed.
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Figure 2: Mean adjustments in round 1 across games
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and G be as previously defined. As before, we use the proportional odds model of

ordered logit regression.14

We discuss the strategy estimates for U and D treatments as well as block 1 and

block 2 separately. The estimate for the pooled datasets, i.e. after pooling either U

and D or blocks 1 and 2, are reported in the supplementary material (Table 9). Let us

begin with block 1 in dissent games. The estimated strategy is15

cD,1
i =̂ Ic +0.090

(0.016)
· c∗+0.255

(0.019)
· c∗+4.321

(0.358)
·α∗−0.322

(0.083)
·R∗−0.039

(0.086)
·RF +0.242

(0.021)
·G∗

with Ic as a shortcut of the 10 intercepts in proportional odds models (for 0|1, 1|2,

. . . , 9|10 in our case), which are reported in Table 9, and =̂ as a shortcut of the

proportional-odds logit link. We will discuss this strategy in relation to the estimate

for block 2, which follows.

cD,2
i =̂ Ic +0.256

(0.018)
· c∗+0.207

(0.022)
· c∗+0.092

(0.428)
·α−0.347

(0.096)
·R∗−0.584

(0.111)
·RF∗+0.074

(0.024)
·G∗

14Due to the irreversibilities that limit behavior within games, however, we have to control for

classification variability in the regression model. Initially, the subjects’ choices may fall in all possible

classes 0,1, . . . ,10, but later in the game, if the standing pledge is c, the choices are restricted to either

0,1, . . . ,c or c,c + 1, . . . ,10 (in dissent or consent games, respectively). This source of variability is a

mere technical issue that can be resolved straightforwardly however (see also Farewell, 1982).
15In parentheses, we report the standard errors of the estimates. Parameters that are significant at

the 1% level are marked by an asterisk (∗).
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Result 4.1 (Dissent games). In dissent games, the greater of the opponents’ pledges

(c) and time (G) positively affect contributions, while restart possibilities do so neg-

atively. As subjects gain experience, the effect of public good quality (α) becomes

insignificant, the effect of time (G) becomes almost insignificant, and the lesser of the

opponents’ pledges c gains in significance.

The observation that G becomes almost insignificant suggests that behavior sta-

bilizes in block 2, and the fact that the lesser of the opponents’ pledges (c) is more

relevant in block 2 suggests that subjects start reasoning more strategically (e.g. in

the predicted equilibrium for α = 0.4, only c is relevant). Note also that contribution

strategies are independent of α in dissent games. The negative significance of RF in

block 2 relates to the fact that subjects learn that it would pay off to race down to zero

(after “mistakes”) in DRF treatments.

The strategy estimates for blocks 1 and 2 in consent games are

cU,1
i =̂ Ic +0.081

(0.042)
· c+0.153

(0.031)
· c∗+0.418

(0.545)
·α−0.029

(0.032)
·G, (13)

cU,2
i =̂ Ic +0.725

(0.049)
· c∗+0.033

(0.038)
· c+3.242

(0.662)
·α∗+0.002

(0.032)
·G. (14)

Result 4.2 (Consent games). In consent games, inexperienced subjects follow the

leading contributor (c), while experienced subjects follow the trailing contributor (c)

amongst the opponents and react to the public good quality α.

That is, experienced subjects are immune to opponents that try to “lead by exam-

ple.” They react to increases of the lesser of their opponents’ pledges, which suggest

that experienced subjects try to avoid being the bad example rather than following

or being the good one. In contrast to to dissent games, α becomes significant for

experienced subjects, and time G is insignificant.

5 Strategic choice analysis

Section 4 showed that behavior significantly deviated from equilibrium at the start

of the experiment, but tends to approach the equilibrium predictions over time. This

indicates that judgmental biases disappear with experience. We further investigate the
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nature of bias and its effect over time by modeling strategic choice in an econometri-

cally precise manner.

5.1 Candidate models of strategic choice

An intuitive and commonly used explanation for deviations of behavior from equi-

librium is that subjects do not strictly maximize expected payoffs or utilities. The

conventional choice-theoretic approach to describing this bias is random utility max-

imization in the form of logit response, Eq. (7), with precision λ < ∞. Our model-

ing approach adopts the logit equilibrium, following McKelvey and Palfrey (1995,

1998), i.e. mutual logit response. Choi et al. (2008) have shown that logit equilibrium

reflects strategic choice in their monotone games fairly well. Since logit equilibria

are not scale invariant, we linearly normalize the payoffs of all games so that the

minimal payoff is one and the maximal payoff is ten in each case. This allows us to

compare utilities across treatments. Alternatively, one can adjust the precision param-

eter λ between games. In addition to finite precision λ, we consider potential biases

due to nonequilibrium play and violation of independence from irrelevant alternatives

(IIA).16

Many studies have been investigating deviations from (logit) equilibrium by re-

laxing the assumption that subjects have equilibrium beliefs. The best known class of

such models is level-k reasoning following Stahl and Wilson (1994, 1995), and more

generally the cognitive hierarchy approach of Camerer et al. (2004). The idea is that

level-0 players act non-strategically, e.g. by randomizing uniformly, level-1 players

believe that their opponents are level 0 (and logit respond to this belief), level-2 play-

ers assume that their opponents logit respond to level 0, et cetera. In our econometric

analysis, we consider the possibility that the subject pool is a mixture of up to three

of such level-k types (each with precision λk) and up to two logit equilibrium types.

For example, let K = {0,1,2,e1,e2} denote the set of types in the population, let

λ = (λk)k∈K and ρ = (ρk)k∈K denote the types’ precisions and population shares, re-

16The supplementary material (Appendix C) contains an extended analysis of deviations from logit

equilibrium including interdependent preferences, subjective and heterogeneous precisions λ (follow-

ing Weizsäcker, 2003, and more generally Rogers et al., 2009), and limited look-ahead (or depth of

reasoning) related to Kübler and Weizsäcker (2004). These biases are found to be less relevant.
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spectively, and let os,t denote the tth observation of subject s ∈ S. Thus, if σ(os,t |k,λ)

denotes the probability of os,t for type k ∈ K under the precision parameters λ, then

the overall log-likelihood is

LL(o | λ,ρ) = ln∏
s∈S

∑
k∈K

ρk ·∏
t

σ(os,t |k,λ). (15)

Finally, we consider the possibility that choices are not independent from irrel-

evant alternatives (IIA). To see why subjects may violate IIA in contribution games,

consider a dissent game with standing pledges (8,6,6). Arguably, player 1 first de-

cides whether to stay above the opponents’ pledges (c = 7,8), to match them (c = 6),

or to undercut their pledges (c≤ 5), and only secondly he chooses the pledge from the

chosen category. Such choices violate IIA. For example, the probability of choosing

c = 6 in relation to that of choosing c = 5 is not independent of how many choices

there are in the lowest category c ≤ 5 in this case. We utilize the concept of mutual

nested logit responses, i.e. nested logit equilibrium (NLE), to model this two-level

choice hierarchy in the context of strategic equilibrium.17 Daly and Zachary (1978)

and McFadden (1978) have shown that nested logit response is compatible with ran-

dom utility maximization. The existence of NLEs in normal form games is thus

implied by Theorem 1 of McKelvey and Palfrey (1995); the existence of agent NLEs

in contribution games under complete information follows immediately.18

To formally describe how NLE extends logit equilibrium, Def. 2.1, recall the

notation Ai(h|H) for i’s action set after h ∈ H and πi(ai,σ|h) for i’s expected payoff

from action ai as it was introduced prior to Eq. (7). For all i ∈ N and h ∈ H, let{
A(r)

i (h|H)
}5

r=1 denote a partition of Ai(h,H) into five possibly empty nests (e.g. as

described in Footnote 17).

Definition 5.1 (Nested logit equilibrium, NLE). A strategy profile σ is an NLE if all

players play mutual nested logit responses in all subgames, i.e. if λ∈R+ and κ∈ [0,1]
17In our model, there are five nests each depending on how a given action relates to the opponents’

current pledges. The first nest contains all options below opponents’ pledges, the second one is to

match the lower pledge, the third one is to pick an action between their current pledges, the fourth one

is to match the higher pledge, and the fifth one is to pick a pledge above both opponents’ pledges.
18The concept of nested logit response has been employed successfully in modeling economic

choice (Anderson and De Palma, 1992; Whitten and Palmer, 1996; Train et al., 1987; Lee, 1999; Shaw

and Ozog, 1999). We are not aware of previous applications of NLE to dynamic games, however.
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exists such that for all i ∈ N, all histories h ∈H, all nests r = 1, . . . ,5 and all ai ∈ A(r)
i ,

σi(h)(ai) =
exp{λπi(ai)}

∑a′i∈A(r)
i

exp{λπi(a′i)}
· exp{κJi(r)}

∑
5
r′=1 exp{κJi(r′)}

(16)

where Ji(r′) = ln∑
a′i∈A(r′)

i
exp{λπi(a′i)}, (17)

using Ai := Ai(h|H) as well as πi(ai) := πi(ai,σ|h).

The choice probability is a product of two factors each having the multinomial

logit form. The first one represents the probability of choosing ai conditional on

having chosen nest r, and the second one represents the probability of choosing nest

r. The value of Ji(r) is the “inclusive value” of nest r, and in our model (where utilities

are rescaled by λ), the term Ji(r)/λ is the expected utility from the choice among the

actions in nest r.

Given this, we may illustrate precisely how NLEs allow for violations of IIA.

Consider the symmetric state (c,c,c) in the dissent game. For simplicity assume

i believes that his opponents stick with probability 1 to c (in this round) and that

(0,0,0) will result inevitably if i chooses to deviate from c in this round (the actual

backward induction is more complex, of course). Thus, there are two nests, picking

either ai = c or ai ∈ {0,1, . . . ,c− 1}, and within each nest all actions are outcome

equivalent. Denote the respective utilities as πc and π0. Rearranging Eq. (17), we

may thus write the probability of choosing ai = c as

σi(c) =
exp{κ ·λπc}

exp{κ ·λπc}+ exp{κ lnc+κ ·λπ0}
. (18)

The standard logit probability results if κ = 1, and in this case the quotient of the

probability of sticking to the standing pledge (c) in relation to the probability of any

other action is independent of how many actions there are in the second nest (i.e.

IIA results for κ = 1). However, this implies that the absolute probability of sticking

to the standing pledge c depends on its value. If c is small, then the probability of

sticking to c is large, and if c is large, then the probability of sticking to it is small—

simply because there are more ways in which i can deviate. The assumption that IIA

is satisfied in this case seems implausible. Why should the salience of sticking to c

in this context depend on whether the state is (2,2,2) or (10,10,10)? The probability
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of sticking to c is independent of the state in the limiting case κ→ 0, assuming λ

is adapted such that κ · λ = const. Then, the relative probabilities of the nests are

independent of the number of actions per nest—i.e. there obtains IIA at the level of

nest choice. Intermediate values of κ allow us balance these two choice regimes.

5.2 Modeling results

Let us first test the relevance of these potential sources of biases from logit equi-

librium. The Bayes Information Criterion (BIC, Schwarz, 1978) measures for these

models are reported in Table 4.19 Logit equilibrium, by itself, does better than the

naive model (zero precision, i.e. λ = 0), but it is not the best fitting model. Overall,

the most substantial bias is the deviation from IIA. Significant improvements in BIC

are achieved by NLE, with the overall margin being more than 1000 points on the

log-likelihood scale. That is, the data are e1000 more likely to occur under the nested

logit model than under any other model. In comparison, a mere 10 log-likelihood

points per parameter are highly significant in likelihood-ratio tests, and nested logit

actually is parsimoniously parameterized in relation to the other models.

Result 5.1 (Overall fit). The primary source of deviations from logit equilibrium is

that subjects’ choices are not independent from irrelevant alternatives.

A closer look at the data provided in Table 4 shows that NLE fits best for dissent

games, but does worst amongst all the models for consent games, which are better

explained by level-k. This implies that in dissent games, pledges are primarily cho-

sen hierarchically, in relation to the pledges of co-players, while in consent games,

expected payoffs rather than relative pledges are more relevant. The following result

is based on the the goodness-of-fits reported in Table 4.

Result 5.2 (Specific fit). In dissent games, subjects mainly exhibit violations of IIA

19The maximum likelihood estimates including standard errors (obtained from the information ma-

trix) are reported in the supplementary material (Table 7). The likelihoods had been maximized jointly

over all parameters (using the Nelder-Mead algorithm), in order to avoid inefficiency of the estimates

as discussed by Amemiya (1978) for nested logit models and by Arcidiacono and Jones (2003) for

finite mixture models.
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Table 4: BICs of the various models, where BIC =−LL+(#Pars)/2∗ ln(#Obs)

Blocks 1+2 Block 1 Block 2

Model #Pars All U D DR DRF All U D DR DRF All U D DR DRF

Logit equilibrium
LE 1 16057 3302 4294 4522 3950 8572 1772 2332 2253 2225 7467 1510 1965 2277 1727

Logit equilibrium in finite mixture with level-k
LE + Lev 0 2 15831 3252 4212 4456 3934 8477 1749 2299 2242 2208 7365 1504 1932 2223 1728

LE + Lev 0–1 4 15709 3119 4220 4469 3944 8369 1636 2307 2258 2220 7072 1498 1834 2134 1650

LE + Lev 0–2 6 15718 3127 4228 4477 3952 8386 1644 2314 2266 2228 6998 1418 1842 2143 1660

LE + Lev 0–3 8 15493 3068 4223 4420 3870 8249 1656 2299 2211 2170 6910 1351 1850 2142 1656

LE × 2 + Lev 0 4 15345 3195 4055 4316 3823 8300 1737 2235 2193 2180 7282 1496 1923 2212 1695

LE × 2 + Lev 0–1 6 15290 3138 4063 4326 3829 8236 1667 2243 2204 2188 6986 1416 1841 2140 1655

LE × 2 + Lev 0–2 8 15277 3113 4071 4338 3842 8234 1657 2252 2214 2198 6950 1375 1849 2149 1665

Nested logit equilibrium
NLE + Lev 0 3 13921 3985 3313 3636 3021 7620 1840 1966 1990 1863 6136 1971 1357 1661 1185

Benchmark concepts
Naive model (λ = 0) 0 18050 5437 4180 4469 3963 9541 2815 2275 2242 2209 8509 2622 1905 2228 1755

Prop. odds logit regr. 17 12111 3917 3130 2961 2286 6898 2032 1903 1653 1480 5159 1903 1259 1326 834

Note: The BIC of the best performing model per subset of the data (i.e. per column) is set in boldface type.
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(as in nested logit reasoning). In consent games, subjects mainly exhibit level-k rea-

soning.

This explains why we did not observe the predicted effect of the return rate α

in dissent games. If subjects reason hierarchically, by first deciding how to position

themselves in relation to co-players and then what pledge to make, the tendency that

subjects match each others’ pledges regardless of α naturally follows. The absence

of this effect in consent games explains the lack of “leadership by example” and the

socially inefficient outcomes observed.

Next, look at the goodness-of-fit of the various models in the overall perspective.

The two relevant benchmark concepts we consider are the naive prediction of uniform

randomization in all states, and the highly parameterized proportional odds model of

ordered logit response (see Section 4). The former can be considered to represent

the lower bound of how a model should score in any case, and the latter represents a

suitable upper bound.

Result 5.3 (Relative fit). In terms of the BIC, the three-parameter nested logit equi-

librium covers 70% of the range spanned up by the naive prediction of uniform ran-

domization (BIC = 18050) and the 17-parameter regression model (BIC = 12111).

The best alternative model covers 46% of this range.

Finally, let us analyze the choice-theoretic implications of experience in con-

tribution games. We do so by comparing the parameter estimates of the best-fitting

models (the NLE models) between block 1 and block 2 of the experiment. Table 5a

shows that in NLE models, the share of level-0 subjects decreases from 10.8% to

3.4% between block 1 and block 2, while the the precisions remain largely constant.

Result 5.4 (Experience effects). The main implication of experience is that the esti-

mated share of level-0 types decreases. In NLE models, which fit dissent games best,

the precision does not increase. But, in level-k models, which fit consent games best,

the precision increases (besides the decline of level-0 types).

That is, the main reason underlying the efficiency increase in block 2 is that more

subjects reason strategically with experience.
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Table 5: Parameter estimates (standard errors) of the best-fitting models

(a) NLE models (1−ρ is the share of level-0 players)

Blocks 1+2 Block 1 Block 2

λ κ ρ λ κ ρ λ κ ρ

3.635
(0.002)

0.243
(0.001)

0.976
(0.009)

4.249
(1e−4)

0.374
(7e−05)

0.892
(0.009)

3.683
(4e−05)

0.228
(1e−05)

0.966
(0.015)

(b) Finite mixture with level-k types

Logit Eq. Level 1 Level 2 Level 3

ρ0 ρE λE ρ1 λ1 ρ2 λ2 ρ3 λ3

Block 1

.470 0.370
(0.060)

2.514
(0.085)

0.159
(0.031)

4.702
(0.214)

Block 2

.149 0.321
(0.022)

4.948
(1.084)

0.073
(0.022)

5.283
(0.313)

0.062
(0.024)

8.435
(0.700)

0.392
(0.038)

2.175
(0.123)

6 Conclusion

With this paper, we formally introduced the dissent mechanism for eliciting volun-

tary contributions. A Folk Theorem applies under subgame perfection, and given

the multitude of equilibria that are robust to trembling hand perfection, sharp pre-

dictions seemed out of reach. We showed, however, that for a range of return rates

the unique Pareto perfect equilibrium (Farrell and Maskin, 1989) risk dominates and

Pareto dominates all other equilibria; and that this solution is the unique limit point of

logit equilibria. We then tested both consent and dissent mechanisms experimentally.

The efficacy of the dissent mechanism was demonstrated by the high contributions

elicited, outperforming the traditional consent mechanism.

Schelling (1960) proposed that dynamic structures allow cooperation to be mu-

tually reinforced. In his words, “if the contribution is divided into consecutive small

contributions, each can try the other’s good faith for a small price” (p. 45). Indeed,

there is experimental evidence of high cooperation rates in dynamic games when there

are project completion bonuses (Duffy et al., 2007), when leaders have the power to
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exclude members from future games (Güth et al., 2007), and when the quality of the

public good is known only to the leader (Potters et al., 2007). In contrast to these

studies, our setup is devoid of completion benefits, exclusionary power, and quality

uncertainty, and it allows more gradualism with smoother endowments and an en-

dogenous time horizon.20 The data indicates that at outset of the experiment, subjects

raised their pledges in response to having pledged less than the leading opponent. but

such behavior diminished with experience.

In contrast, contributions in dissent games increased over time and the endgame

effect was not observed. Mean contributions were as high as 85%, even in the final

games of the experiment. Unlike in static games where “dissent” makes no differ-

ence (Dufwenberg et al., 2006),21 the gradualism and observability allowed in dy-

namic games safeguard players against being suckered, and cooperation is sustained

in the absence of “negative leadership” from free riders. Subjects indeed lowered

their pledges in response to others having pledged less. As decrements occurred less

frequently across games, pledges were maintained at higher levels within games.

The bounded rationality of subjects in consent games, best described as level-

0 types in relation to level-k types, diminished over time. Random play in dissent

games, as captured in relation to NLE, also diminished over time. Consistent with

the equilibrium prediction for the consent (dissent) game, cooperation decreased (in-

creased) as more and more subjects reasoned strategically. This conclusion is drawn

from an extensive evaluation of various a priori plausible models of strategic choice.

Applying the concept of NLE to dynamic games constitutes another novel contri-

bution of this paper. We expect that NLE will prove useful in explaining behavior in

other experimental games where a confluence of hierarchical reasoning and imprecise

response is to be modeled.

As has been modeled and evidential in our study, “time is of the essence” in

contribution games. While prescribing the ways by which the dissent mechanism

20Duffy et al. did not find a “leadership” effect in that cooperation was insensitive to whether or not

others’ contributions were observable. A reviewer of their paper suggested that the coarse endowments

in their game might explain this result. Our setup had smoother endowments.
21Dufwenberg et al. (2006) compared one-shot simultaneous move games where players were either

asked to “give” or to “take” from the public good—essentially varying the valence of the task while

leaving the move structure and in turn the free riding equilibrium unperturbed.
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should be practically implemented in specific contexts extends beyond the scope of

this paper, our experimental treatments and results give reason and affords guidance

for efforts in this respect.
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A Relegated proofs and definitions

Proof of Proposition 1 Fix a subgame-perfect equilibrium σ. We claim that for all

histories h ∈ H+ and all i ∈ N,

σi(h)(ai) =

{
1, if ai = minAi(h|H+),

0, otherwise.
(19)

This claim is obviously satisfied for all histories h leading to the state ω(h) = maxA

(recall the definition of “states” in Footnote 8) . The following shows that, for all

a ∈ A, the claim holds for all h : ω(h) = a if it holds for all h : ω(h) > a. Assume the

contrary and find i ∈ N such that σi(h)(a′i) > 0 for some h : ω(h) = a and a′i > ai. Let

η ∈ ∆(A) denote the probability distribution on the set of action profiles, according to

σ in the present round after history h. Let η′ ∈ ∆(A) denote the alternative probability

distribution on the action space if i deviates unilaterally toward not increasing his

contribution, i.e. as described in Eq. (19). Note that the actions played in the present

round equate with the eventual contributions of all players (in case all i′ ∈ N stick

with minAi′(h|H+) this follows from the definition of the game, and otherwise a state

ω′ > ω is reached where it holds by the induction assumption). By Eq. (1), player i’s

expected payoff is greater under η′ than under η, and hence the unilateral deviation is

profitable.

To conclude, we show that since the claim holds for all histories h : ω(h) = maxA

and since it holds for all h : ω(h) = a if it holds for all h : ω(h) > a, for all a ∈ A, it
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must hold for all h ∈ H+. Define Ω0 = maxA, and iteratively, for all t > 0,

Ω
t = max

(
A\∪t ′<tΩ

t ′
)

using maxΩ
′ =
{

ω ∈Ω
′ | @ω

′ ∈Ω
′ : ω

′ > ω
}

. (20)

After round t of the induction, the claim is established for all histories h : ω(h) ∈
∪t ′≤tΩ

t ′ . Since the set A is finite, there exists T < ∞ such that ∪t≤T Ωt = A.

Proof of Lemma 1

1. We show that if a′ 6= a′′ ∈ As such that neither a′ > a′′ nor a′ <′′, then a′′′ =

(min{a′i,a′′i })i∈N ∈ As, which implies the lemma. Define i ∈ N such that a′i >

a′′i ; hence a′j < a′′j for j 6= i. By Eq. (1), this implies pi(a′′′) > pi(a′) and

p j(a′′′) > p j(a′′). Since a′ Pareto dominates all steady states a∈As : a < a′, this

implies that i is better off in a′′′ than in all steady steady states a ∈ As : a < a′,

which includes all a ∈ As : a < a′′′. Similarly, since a′′ Pareto dominates all

a ∈ As : a < a′′, j is better off in a′′′ than in all a ∈ As : a < a′′′. By construction

of As, this implies a′′′ ∈ As, and this implies a contradiction to the assumption

a′,a′′ ∈ As. For, neither a′ nor a′′ Pareto dominate a′′′, although a′ > a′′′ and

a′′ > a′′′ holds by construction.

2. Assume that a∗ is not Pareto efficient, i.e. that there exists a ∈ A that Pareto

dominates a∗. By Lemma 1, maxAs is unique, and hence all a′ ∈ As : a′ 6= a∗

satisfy a′ < a∗. By Eq. (9), this implies that a∗ Pareto dominates all a′ ∈ As :

a′ 6= a∗, and hence a Pareto dominates all a′ ∈ As. By definition of As, Eq. (9),

this implies a ∈ As, and thus contradicts either uniqueness of maxAs or that

a∗ = maxAs.

Proof of Proposition 2 We are going to show that for all h, if h induces the state

ω(h) = a, then the final contributions are equal to

O(a) = max{a′ ≤ a | a′ ∈ As}, (21)

with probability 1. By assumption Eq. (10), O(a) is well-defined. This claim is

trivially satisfied for all h : ω(h) = minA. The following shows that, for all a ∈ A, it
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holds for all h : ω(h) = a if it holds for all h : ω(h) < a. The proof is completed by an

induction very similar to the one described in the proof of Prop. 1.

Taking a ∈ A as given, define a∗ = O(a). First assume a = a∗. We show that

for all i ∈ N, action ai weakly dominates all a′i < ai in response to a′−i ≤ a−i. To

see this, pick any a′i < ai and a′−i ≤ ai of opponents’ actions. On the one hand, if

a′−i = a−i, then ai is strictly more profitable than any a′i < ai. This follows by the

assumption that a Pareto dominates all steady states a′′ ∈ As : a′′ < a, and hence it is

also more profitable than the expected payoff from any probability distribution over

steady states a′′ ≤ a with support on steady states strictly below a. On the other

hand, consider the case a′−i < a−i. Assume that some a′i < ai is a better response to

a′−i than ai. Let o = O(ai,a′−i) and o′ = O(a′i,a
′
−i) denote the respective outcomes

under σ, noting that these outcomes are deterministic and unique due to the induction

assumption. Since ai is not a best response to a′−i, it follows that pi(o) < pi(o′). By

uniqueness of steady states as assumed in Eq. (10), this can be satisfied only if either

o′ > o or o > o′, and by the Pareto relation between alternative steady states, see Eq.

(9), pi(o) < pi(o′) can be satisfied only if o′ > o. Since (ai,a′−i) > (a′i,a
′
−i), however,

this contradicts o = O(ai,a′−i) and o′ = O(a′i,a
′
−i) based on O(·) as defined above. In

turn, ai weakly dominates all a′i < ai. By the definition of limiting logit equilibria,

Eq. (7) for λ→ ∞, this implies that all players i ∈ N stick to ai after history h with

probability 1.

Second assume a 6= a∗, which by definition implies a∗ < a. Similar to the previ-

ous case, it can be shown that players do not move beyond a∗, i.e. with probability 1

all i ∈ N contribute a′i ≥ a∗i in all limiting logit equilibria. Also, since a /∈ As has to

be satisfied, there ∃i ∈ N : pi(a) < pi(a∗). By Eq. (2), this requires ai > a∗i , and this

in turn implies that a cannot be a steady state in a limiting logit equilibrium. Assume

the opposite, i.e. that all i′ ∈ N stick with ai′ after history h with positive probability.

Hence, if i deviates unilaterally after h, by shifting the probability weight he puts on

ai toward a∗i , then a∗ results with probability 1 and he is better off.
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Voluntary Contributions by Consent or Dissent
Supplementary material

Jonathan H.W. Tan Yves Breitmoser Friedel Bolle

B Experimental instructions

Note: In the instructions, we referred to each “game” as a “stage” of the experiment.

Square brackets denote alternative text that was applied in the D treatments.

Stage 1 Instructions You are participating in an experiment on decision-making.

The experiment is divided into 12 stages. In each stage, the computer will randomly

assign you into 4 groups of 3 co-participants per group. Participants will be re-

assigned into new groups for each stage. You will be paid based on your earnings in

one winning stage, randomly chosen by the computer.

Task: Each stage consists of rounds. In each stage you will have 10 Euros, from

which you can either keep or invest. At the start of each stage, each participant’s

investment is automatically set at 0 [10] Euros. In each subsequent round, you decide

whether to increase [decrease] or maintain (but not decrease [increase]) your invest-

ment. To do so, click on a box stating your chosen investment. A stage ends if all

co-participants in that group maintain their investments in the same round. The final

investments at the end of the stage determine your earnings. For each Euro invested,

each co-participant in your group (including you) receives X Euros. X is a factor that

stays constant within a stage, but varies across stages. You will be informed of the

factor for each stage on the computer screen. Generally, you earn

10−your investment+X (total group investment) (22)
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After everyone in the group has decided, you will be informed of the current

investment of each co-participant, and if the stage continues or ends then. At the end

of each stage, you will be informed of the final investment of each co-participant, and

how much you have earned.

Example: Take for example a factor of X = 0.5. If your final investment is 5

Euros, co-participant A’s final investment is 4 Euros, and co-participant B’s final

investment is 6 Euros, then the total group investment is 15 Euros. The final earnings

for the stage is 12.5 Euros for you, 13.5 Euros for co-participant A, and 11.5 Euros

for co-participant B.

Please fill in the questionnaire and call for the experimenter before you begin.

Feel free to raise your hand for assistance at any point of the experiment.

C Extended model comparison

This section extends the analysis of strategic choice in three directions.

First, we consider the possibility that utility systematically differs from pecuniary

payoffs. Formally we consider altruism (spite) in the Cobb-Douglas utility function

ui(π) = π
1−µ
i ·∏

j 6=i
π

µ/(n−1)
j (23)

with n as the number of players.22 We chose Cobb-Douglas altruism, rather than

linear altruism, because it provides a simple non-strategic explanation for our obser-

vation that player’s pledges are positively correlated with their opponents’ pledges (c,

c), e.g. Eqs. (13)–(14). Note also that, in contrast to the existing literature on inter-

dependent preferences, e.g. Levine (1998), Fehr and Schmidt (1999), and Charness

and Rabin (2002), we discuss joint modeling of random utility and interdependent

preferences, which allows us to evaluate their complementary relevance.

Second, Weizsäcker (2003) and more generally Rogers et al. (2009) argued that

subjects tend to deviate from logit equilibrium because they are not homogenous.

That is, different subjects have different precisions λ in maximizing utility and they
22Note that we also considered a utility function expression inequity aversion, but the overall fit was

worse, so further discussion can be skipped.
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also have different perceptions in how precise their opponents are. In choice theory,

the former is known as mixed logit modeling (McFadden and Train, 2000), but follow-

ing Rogers et al. (2009), we refer to it heterogenous logit equilibrium (HLE). Similar

to Weizsäcker (2003), we assume that individual precisions are gamma-distributed.

Here, a player with specific λ plays the logit equilibrium corresponding with that pre-

cision, i.e. players assume that the opponents are exactly as precise as they are them-

selves.23 In this sense, the players are both heterogenous and subjective in the sense

of Rogers et al. (2009). If we drop heterogeneity but maintain subjectivity, which

we do alternatively, we obtain a variant of subjective logit equilibria (SLE) where all

subjects have precision λ1 and assign precision λ2 to their opponents. Weizsäcker

(2003) and Rogers et al. (2009) discuss many further variations of heterogeneity and

subjectivity, but for our basic comparison of judgmental biases, we shall skip them.

Third, an alternative approach to model failure of equilibration in dynamic games

is known from chess: the “assumption” that players do not backward induce the whole

game, but consider only the moves up to T rounds into the future and evaluate the

various resulting situations according to some evaluation rule. The relevance of this

bias is largely unexplored in experimental analyses, the most closely related analysis

considers limited depth of reasoning in cascade formation (Kübler and Weizsäcker,

2004), but the approach is well-established in computer science. We examine choice-

theoretic models of limited look-ahead for (up to) T = 4 steps and two simple evalua-

tion rules. The considered evaluation rules are that players assume everybody would

randomize uniformly starting T rounds into the future (LLA I) or that everybody sticks

with their then standing pledges T rounds into the future (LLA II). With respect to the

T rounds that are analyzed by the players in these models, we allow that the precision

parameter λ varies with the number of rounds t ≤ T they look into the future.24

23This consensus hypothesis is also known as ’false’ consensus effect (e.g. Ross et al., 1977), as

subjects have been found to “overestimate the degree to which they are like others” (Dawes, 1989, p.

1).
24Hence, there are four precision parameters (λ1,λ2,λ3,λ4). The current round is played with pre-

cision λ4 by all players, the next one with λ3, and so on.
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Table 6: BICs for the extended model comparison, where BIC =−LL+(#Pars)/2∗ ln(#Obs)

Blocks 1+2 Block 1 Block 2

Model #Pars All U D DR DRF All U D DR DRF All U D DR DRF

Logit equilibrium
LE 1 16057 3302 4294 4522 3950 8572 1772 2332 2253 2225 7467 1510 1965 2277 1727

LE + Altr 2 15990 3209 4301 4537 3965 8552 1741 2337 2263 2233 7420 1453 1970 2283 1737

Subjective logit equilibrium
SLE 2 15938 3189 4271 4518 3982 8526 1738 2322 2255 2233 7419 1456 1956 2272 1756

SLE + Altr 3 15935 3186 4273 4522 3987 8524 1695 2353 2272 2237 7399 1431 1965 2282 1754

Heterogenous logit equilibrium
HLE 2 15542 3134 4191 4383 3856 8213 1695 2269 2183 2088 6688 1387 1748 2024 1550

Limited Look-Ahead
LLA I 4 15967 3946 3999 4293 3773 8463 2040 2199 2139 2130 7344 1917 1735 2138 1598

LLA II 4 15957 3306 4265 4499 3928 8516 1790 2310 2251 2209 7273 1555 1868 2220 1673

Logit equilibrium in finite mixture with level-k
LE + Lev 0 2 15831 3252 4212 4456 3934 8477 1749 2299 2242 2208 7365 1504 1932 2223 1728

LE + Lev 0–1 4 15709 3119 4220 4469 3944 8369 1636 2307 2258 2220 7072 1498 1834 2134 1650

LE + Lev 0–2 6 15718 3127 4228 4477 3952 8386 1644 2314 2266 2228 6998 1418 1842 2143 1660

LE + Lev 0–3 8 15493 3068 4223 4420 3870 8249 1656 2299 2211 2170 6910 1351 1850 2142 1656

LE × 2 + Lev 0 4 15345 3195 4055 4316 3823 8300 1737 2235 2193 2180 7282 1496 1923 2212 1695

LE × 2 + Lev 0–1 6 15290 3138 4063 4326 3829 8236 1667 2243 2204 2188 6986 1416 1841 2140 1655

LE × 2 + Lev 0–2 8 15277 3113 4071 4338 3842 8234 1657 2252 2214 2198 6950 1375 1849 2149 1665

Nested logit equilibrium
NLE + Lev 0 3 13921 3985 3313 3636 3021 7620 1840 1966 1990 1863 6136 1971 1357 1661 1185

Benchmark concepts
Naive model (λ = 0) 0 18050 5437 4180 4469 3963 9541 2815 2275 2242 2209 8509 2622 1905 2228 1755

Prop. odds logit regr. 17 12111 3917 3130 2961 2286 6898 2032 1903 1653 1480 5159 1903 1259 1326 834

39



D Parameter estimates

Note: We report three sets of maximum likelihood estimates per model: one for the

whole data set, and one each for block 1 and block 2. In parentheses, the respective

standard errors are given.

Table 7: Parameter estimates of the strategic choice models

(a) Logit models

Blocks 1+2 Block 1 Block 2

λ µ λ µ λ µ

3.297
(0.048)

2.990
(0.062)

3.656
(0.077)

2.380
(0.177)

−0.164
(0.048)

2.181
(0.147)

−0.126
(0.028)

2.664
(0.123)

−0.151
(0.022)

(b) SLE models

Blocks 1+2 Block 1 Block 2

λ1 λ2 µ λ1 λ2 µ λ1 λ2 µ

2.661
(0.035)

4.789
(6e−05)

2.541
(5e−05)

4.777
(0.002)

2.777
(0.012)

4.788
(7e−05)

2.558
(0.122)

4.820
(0.120)

−0.013
(0.002)

2.588
(0.120)

1.717
(0.081)

−0.089
(0.015)

2.253
(0.057)

3.166
(0.090)

−0.186
(0.004)

(c) Heterogenous logit models

Blocks 1+2 Block 1 Block 2

Shape Scale Shape Scale Shape Scale

0.683
(0.055)

5.967
(0.100)

0.788
(0.001)

7.301
(2.644)

0.693
(0.051)

15.237
(0.170)
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Table 7: Parameter estimates (continued)

(d) Limited look-ahead models

LLA I LLA II
λ4 λ3 λ2 λ1 λ4 λ3 λ2 λ1

Overall 4.410
(0.001)

4.313
(0.281)

9.758
(0.701)

8.921
(0.003)

2.583
(0.064)

8.278
(0.580)

3.850
(0.253)

0.404
(0.008)

Block 1 3.868
(0.001)

4.691
(0.001)

6.344
(0.001)

6.902
(0.001)

2.126
(0.069)

12.856
(1.210)

4.102
(0.001)

0.416
(0.009)

Block 2 4.043
(0.002)

2.905
(0.004)

6.643
(0.001)

11.460
(0.010)

3.763
(0.001)

34.315
(2.838)

3.306
(0.207)

0.322
(0.011)

(e) One logit equilibrium type

Logit Eq. Level 1 Level 2 Level 3

ρ0 ρE λE ρ1 λ1 ρ2 λ2 ρ3 λ3

Overall
.423 0.577

(0.045)
3.604
(0.060)

.468 0.412
(0.049)

3.289
(0.079)

0.119
(0.027)

4.815
(0.240)

.468 0.412
(0.049)

3.289
(0.079)

0.119
(0.027)

4.815
(0.240)

0
(−)

4.818
(1.303)

.208 0.092
(0.024)

2.956
(0.096)

0.031
(0.012)

8.339
(0.094)

0.154
(0.037)

28.212
(2.551)

0.513
(0.047)

2.622
(0.106)

Block 1
.370 0.630

(0.053)
3.293
(0.073)

.470 0.370
(0.060)

2.514
(0.085)

0.159
(0.031)

4.702
(0.214)

.470 0.370
(0.060)

2.514
(0.086)

0.159
(0.031)

4.702
(0.214)

0
(−)

4.708
(0.770)

.184 0.196
(0.037)

2.468
(0.073)

0.015
(0.008)

8.228
(0.037)

0.144
(0.032)

64.525
(0.000)

0.459
(0.048)

3.973
(0.277)

Block 2
.293 0.706

(0.050)
4.546
(0.013)

.315 0.445
(0.047)

4.903
(0.122)

0.240
(0.036)

3.575
(0.106)

.316 0.390
(0.045)

4.913
(0.160)

0.230
(0.036)

3.825
(0.119)

0.063
(0.024)

6.136
(0.322)

.149 0.321
(0.022)

4.948
(1.084)

0.073
(0.022)

5.283
(0.313)

0.062
(0.024)

8.435
(0.700)

0.392
(0.038)

2.175
(0.123)
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Table 7: Parameter estimates (continued)

(f) Two logit equilibrium types

Logit Eq. 1 Logit Eq. 2 Level 1 Level 2

ρ0 ρE1 λE1 ρE2 λE2 ρ1 λ1 ρ2 λ2

Overall
.228 0.377

(0.041)
3.482
(0.060)

0.394
(0.037)

4.913
(0.071)

.261 0.246
(0.037)

3.478
(0.130)

0.378
(0.036)

4.933
(0.206)

0.113
(0.022)

4.110
(0.300)

.281 0.121
(0.034)

2.696
(0.086)

0.377
(0.037)

4.914
(0.073)

0.182
(0.033)

3.675
(0.086)

0.039
(0.017)

4.741
(0.200)

Block 1
.253 0.375

(0.050)
3.007
(0.087)

0.372
(0.047)

4.913
(0.043)

.286 0.258
(0.048)

2.970
(0.119)

0.349
(0.046)

4.903
(0.069)

0.106
(0.026)

4.626
(0.234)

.254 0.222
(0.048)

2.452
(0.079)

0.334
(0.056)

4.904
(0.066)

0.104
(0.026)

4.610
(0.227)

0.087
(0.092)

5.010
(0.970)

Block 2
.215 0.421

(0.053)
3.772
(0.113)

0.363
(0.049)

6.160
(0.001)

.238 0.313
(0.049)

3.804
(0.175)

0.378
(0.044)

4.947
(0.236)

0.069
(0.021)

6.508
(0.698)

.231 0.286
(0.047)

3.769
(0.172)

0.351
(0.043)

4.948
(0.289)

0.071
(0.022)

5.777
(0.359)

0.060
(0.027)

10.280
(0.941)

(g) NLE models

Blocks 1+2 Block 1 Block 2

λ κ ρ λ κ ρ λ κ ρ

3.635
(0.002)

0.243
(0.001)

0.976
(0.009)

4.249
(1e−4)

0.374
(7e−05)

0.892
(0.009)

3.683
(4e−05)

0.228
(1e−05)

0.966
(0.015)
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Table 8: Proportional odds regression of final contributions

Blocks 1+2 Block 1 Blocks 1+2

Model 1 Model 1’ Model 2 Model 2’ Model 3 Model 3’

Coefficients
α 4.157

(0.368)
4.085
(0.367)

6.058
(0.532)

5.953
(0.530)

2.447
(0.517)

2.457
(0.516)

D −0.952
(0.201)

0.593
(0.098)

−1.508
(0.312)

−0.108
(0.139)

0.265
(0.768)

1.231
(0.140)

R −0.229
(0.216)

−0.526
(0.102)

−0.141
(0.333)

−0.486
(0.148)

−0.272
(0.808)

−0.633
(0.144)

RF −0.356
(0.218)

0.131
(0.102)

−0.842
(0.344)

0.019
(0.145)

−0.507
(0.847)

0.275
(0.149)

G −0.046
(0.019)

0.132
(0.010)

−0.099
(0.057)

0.222
(0.030)

−0.034
(0.055)

0.044
(0.030)

D×G 0.246
(0.028)

0.411
(0.082)

0.102
(0.080)

R×G −0.050
(0.030)

−0.105
(0.086)

−0.038
(0.084)

RF×G 0.082
(0.031)

0.234
(0.088)

0.084
(0.089)

Intercepts
0|1 1.094

(0.232)
2.230
(0.210)

1.723
(0.342)

2.804
(0.304)

0.434
(0.592)

1.193
(0.399)

1|2 1.407
(0.232)

2.533
(0.211)

2.067
(0.344)

3.139
(0.305)

0.722
(0.592)

1.481
(0.399)

2|3 1.729
(0.233)

2.843
(0.212)

2.462
(0.345)

3.523
(0.308)

0.975
(0.592)

1.734
(0.400)

3|4 2.045
(0.233)

3.144
(0.214)

2.875
(0.346)

3.917
(0.311)

1.202
(0.593)

1.960
(0.400)

4|5 2.290
(0.234)

3.380
(0.215)

3.136
(0.348)

4.166
(0.313)

1.441
(0.593)

2.199
(0.401)

5|6 2.544
(0.235)

3.623
(0.217)

3.441
(0.350)

4.461
(0.316)

1.654
(0.594)

2.412
(0.402)

6|7 2.749
(0.236)

3.821
(0.218)

3.695
(0.352)

4.709
(0.319)

1.822
(0.594)

2.579
(0.403)

7|8 2.927
(0.237)

3.991
(0.220)

3.915
(0.354)

4.924
(0.322)

1.972
(0.594)

2.728
(0.404)

8|9 3.200
(0.239)

4.252
(0.222)

4.275
(0.358)

5.274
(0.326)

2.191
(0.595)

2.945
(0.406)

9|10 3.461
(0.240)

4.501
(0.224)

4.488
(0.360)

5.482
(0.329)

2.482
(0.596)

3.234
(0.408)

BIC 4927 4981 2496 2514 2440 2432
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Table 9: Proportional odds estimates of strategies

Aggregate data set D treatments U treatments

Bl. 1+2 Block 1 Block 2 Bl. 1+2 Block 1 Block 2 Bl. 1+2 Block 1 Block 2

c 0.244
(0.011)

0.126
(0.014)

0.346
(0.017)

0.147
(0.012)

0.090
(0.016)

0.256
(0.018)

0.472
(0.030)

0.081
(0.042)

0.725
(0.049)

c 0.149
(0.012)

0.187
(0.015)

0.145
(0.018)

0.236
(0.014)

0.255
(0.019)

0.207
(0.022)

0.047
(0.024)

0.153
(0.031)

0.033
(0.038)

α 0.601
(0.219)

1.108
(0.292)

1.166
(0.350)

3.06
(0.271)

4.321
(0.358)

0.092
(0.428)

1.235
(0.399)

0.418
(0.545)

3.242
(0.662)

D 0.624
(0.067)

0.623
(0.087)

0.686
(0.104)

R −0.171
(0.063)

−0.138
(0.082)

−0.217
(0.098)

−0.176
(0.062)

−0.322
(0.083)

−0.347
(0.096)

RF −0.474
(0.067)

−0.026
(0.085)

−0.630
(0.111)

−0.291
(0.067)

−0.039
(0.086)

−0.584
(0.111)

G 0.054
(0.006)

0.109
(0.017)

−0.089
(0.019)

0.089
(0.008)

0.242
(0.021)

0.074
(0.024)

0.012
(0.011)

−0.029
(0.032)

0.002
(0.032)

0|1 0.504
(0.128)

0.922
(0.174)

−0.117
(0.279)

1.832
(0.161)

2.610
(0.216)

0.74
(0.356)

0.247
(0.212)

−0.365
(0.313)

1.541
(0.484)

1|2 1.168
(0.128)

1.559
(0.174)

0.596
(0.279)

2.323
(0.162)

3.175
(0.217)

1.187
(0.355)

1.312
(0.214)

0.497
(0.311)

2.551
(0.493)

2|3 1.821
(0.129)

2.156
(0.175)

1.197
(0.280)

2.883
(0.164)

3.813
(0.221)

1.624
(0.356)

2.061
(0.217)

1.111
(0.313)

3.499
(0.501)

3|4 2.402
(0.131)

2.710
(0.177)

1.781
(0.281)

3.368
(0.167)

4.356
(0.225)

1.998
(0.357)

2.770
(0.221)

1.789
(0.316)

4.279
(0.507)

4|5 2.883
(0.133)

3.156
(0.179)

2.289
(0.283)

3.801
(0.169)

4.798
(0.229)

2.470
(0.36))

3.328
(0.225)

2.330
(0.319)

4.863
(0.511)

5|6 3.418
(0.135)

3.640
(0.182)

2.918
(0.287)

4.320
(0.173)

5.331
(0.234)

3.070
(0.364)

3.871
(0.229)

2.853
(0.324)

5.650
(0.519)

6|7 3.799
(0.137)

4.026
(0.184)

3.346
(0.289)

4.667
(0.175)

5.733
(0.237)

3.405
(0.366)

4.410
(0.236)

3.258
(0.329)

6.343
(0.528)

7|8 4.175
(0.139)

4.385
(0.187)

3.750
(0.292)

4.972
(0.177)

6.078
(0.240)

3.715
(0.369)

5.022
(0.245)

3.710
(0.336)

7.163
(0.543)

8|9 4.632
(0.141)

4.860
(0.190)

4.277
(0.295)

5.436
(0.18))

6.535
(0.244)

4.221
(0.373)

5.826
(0.261)

4.397
(0.355)

8.279
(0.566)

9|10 5.102
(0.144)

5.265
(0.194)

4.780
(0.298)

5.830
(0.182)

6.859
(0.246)

4.696
(0.376)

6.959
(0.294)

5.221
(0.393)

9.947
(0.607)

BIC 12111 6898 5159 8188 4912 3265 3795 1981 1781
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Table 10: Nonparametric tests of mean contributions and p-values (in parentheses) for α = 0.4 (in cells below diagonal) and

α = 0.6 (in cells above diagonal)

Block 1 U D DR DRF Block 2 U D DR DRF

U – −1.599
(0.1099)

0
(1)

−1.155
(0.2482)

U – −0.735
(0.4624)

−1.155
(0.2482)

−1.155
(0.2482)

D 1.47
(0.1416)

– −0.735
(0.4624)

−0.735
(0.4624)

D −2.449
(0.0143)

– 0.245
(0.8065)

0.245
(0.8065)

DR 1.732
(0.0833)

0
(1)

– −0.289
(0.7728)

DR −1.597
(0.1102)

0.980
(0.3272)

– −1.443
(0.1489)

DRF 0
(1)

−1.470
(0.1416)

−1.443
(0.1489)

– DRF −2.309
(0.0209)

−0.490
(0.6242)

−1.016
(0.3094)

–

Game 1 U D DR DRF Game 7 U D DR DRF

U – 1.715
(0.0864)

1.452
(0.1465)

2.309
(0.0209)

U – −0.246
(0.8057)

−0.289
(0.7728)

0
(1)

D 2.460
(0.0139)

– 1.230
(0.2187)

1.715
(0.0864)

D −2.460
(0.0139)

– 0.371
(0.7110)

0.738
(0.4606)

DR 2.323
(0.0202)

1.235
(0.2168)

– 0.871
(0.3836)

DR −1.732
(0.0833)

1.722
(0.0851)

– 0.289
(0.7728)

DRF 2.191
(0.0284)

−0.861
(0.3893)

−0.877
(0.3807)

– DRF −1.888
(0.0591)

−0.246
(0.8057)

−1.155
(0.2482)

–

Game 6 U D DR DRF Game 12 U D DR DRF

U – −1.960
(0.0500)

−1.016
(0.3904)

−2.033
(0.0421)

U – −1.722
(0.0851)

−1.016
(0.3094)

−1.607
(0.1081)

D 0.738
(0.4606)

– 0.980
(0.3272)

−0.249
(0.8033)

D −2.460
(0.0139)

– 0.984
(0.3252)

−0.507
(0.6121)

DR 0.290
(0.7715)

0.256
(0.7981)

– −1.162
(0.2454)

DR −2.323
(0.0202)

0.494
(0.6213)

– −0.871
(0.3836)

DRF −1.155
(0.2482)

−0.984
(0.3252)

0.581
(0.5614)

– DRF −1.742
(0.0814)

0.761
(0.4469)

0
(1)

–
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