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Mean, Median or Mode? 

A Striking Conclusion From Lottery Experiments 

 

Krzysztof Kontek1 

Artal Investments, Warsaw2 

Abstract 

This paper deals with estimating data from experiments determining lottery certainty 

equivalents. The paper presents the parametric and nonparametric results of the least squares 

(mean), quantile (including median) and mode estimations. The examined data are found to be 

positively skewed for low probabilities and negatively skewed for high probabilities. This 

observation leads to the striking conclusion that lottery valuations are only nonlinearly related 

to probability when means are considered. Such nonlinearity is not confirmed by the mode 

estimator in which case the most likely lottery valuations are close to their expected values. 

This means that the most likely behavior of a group is fully rational. This conclusion is a sig-

nificant departure from one of the fundamental results concerning lottery experiments pre-

sented so far. 

 

JEL classification: C01, C13, C14, C21, C51, C81, C91, D03, D81, D87 

Keywords: Lottery experiments, Certainty Equivalents, Least Squares, Quantile, Median, and 

Mode Estimators, Relative Utility Function, Prospect Theory. 

1. Introduction 

 1.1. One of the most important questions posed when describing a set of data is how 

to capture important information about a random variable in a single quantity. Mean and me-

dian values are typically considered measures of central tendency. The median is typically 

preferred as it is more robust to outliers than the mean. However several other definitions of 

“average” value are also encountered. The mode is less often used despite being the most fre-

quently occurring value in the data set.  

                                                 
1 The author is grateful to Stefan Traub from the Department of Economics, University of Bremen, Ulrich 
Schmidt from the Department of Economics, University of Kiel, and Katarzyna Idzikowska from the Center of 
Economic Psychology and Decision Sciences, Kozminski University, Warsaw, for making the results of their 
experiments available. This paper would never have been written without their data. 
2 Contact: ul. Chrościckiego 93/105, 02-414 Warsaw, Poland,  
e-mail: kontek@artal.com.pl, kkontek2000@yahoo.com. 
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Similar question arises whenever a statistical model is built and an estimation tech-

nique has to be chosen. As the least squares estimation results in the conditional mean and the 

least absolute value estimation results in the conditional median, these two procedures are the 

most commonly used in practical applications. However, considerations between mean, me-

dian, and mode assume less importance when the distribution of a random variable is sym-

metric. In such a case, the mean, median and mode all coincide, and the sample mean can be 

used as an estimate of the population mode. 

The situation is very different for skewed data, which are found in many applications 

(e.g. wages, prices, etc). For positively skewed data, the mode is generally less than the me-

dian, which is less than the mean. For negatively skewed data, the reverse holds true. Incor-

rect assumptions about random variable distribution can therefore invalidate statistical 

inference.  

1.2. This paper analyzes data from experiments determining the certainty equivalents 

of lotteries. The typical approach presented by Tversky and Kahneman (1992), Gonzales and 

Wu (1999) and others, is to estimate the model parameters by using the median values of the 

certainty equivalents for specific lotteries and applying the nonlinear least squares procedure. 

This assumes a random (symmetric) distribution of errors. The results obtained by the authors 

point to the nonlinearity of lottery valuations: the lotteries are valued more than their expected 

values for low probabilities and less than their expected values for higher probabilities.  

This paper shows that the distribution of data found in lottery experiments is not sym-

metric and varies with probability. In particular, the relative certainty equivalents for the two 

data sets are positively skewed for low probabilities, negatively skewed for high probabilities 

and not skewed for medium probabilities. This was first observed when using the standard 

measure of skewness. It was further confirmed by least squares (mean), quantile (including 

median) and mode estimations, where all these estimations were performed both parametri-

cally and nonparametrically. The results led to the striking conclusion that the lottery valua-

tion is only nonlinearly related to probability when the means and (in one of two sets) medi-

ans of certainty equivalents are considered. Such nonlinearity disappears once the mode esti-

mator is used. This means that the most likely lottery valuations are close to their expected 

values. Another way of saying this is that the most likely behavior of the examined groups 

was fully rational. This conclusion is a significant departure from one of the fundamental re-

sults concerning lottery experiments presented so far. 

1.3. This paper makes several contributions to the existing literature on analyzing lot-
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tery experiment results. To the best of the author’s knowledge, this is the first paper to pre-

sent: (i) an analysis of certainty equivalents distribution; (ii) a simple nonparametric estima-

tion method; (iii) a quantile (including median) estimation; and (iv) a mode estimation.  

All these contributions were made possible by the relative utility function model, 

which, in contrast to the Prospect Theory model, adopts the classical econometric approach 

when describing experimental data. This difference is explained in more detail in Point 2. 

Point 3 presents the data used for the analysis together with their characteristics obtained from 

standard measures of distribution moments. Point 4 covers nonparametric estimation methods 

and point 5 is devoted to parametric methods. Point 6 summarizes the results of the paper. 

2. Prospect Theory and the Relative Utility Model 

2.1. Certainty equivalents are typically determined in lottery experiments for several 

combinations of outcomes and for several probabilities of winning3. Usually, 20-30 subjects 

are examined in each experiment. An example of a data set can be found in Tversky and Kah-

neman (1992). These data served to derive the Cumulative version of Prospect Theory, for 

which Kahneman was awarded the Nobel Prize for Economics in 2002. Table 2.1 presents 

some of these data for illustrative purposes.  

       Probability 

Lotttery 
.01 .05 .10 .25 .50 .75 .90 .95 .99 

{0, 100}  14  25 36 52  78  

{50, 150}  64  72.5 86 102  128  

Table 2.1. Median certainty equivalents for two lotteries from Tversky and Kahneman’s experiment 
(1992). The given probabilities concern the greater of two outcomes.  

2.2. Applying the classical econometric approach to the description of lottery experi-

ments would require building a model in which certainty equivalents are explained by a 

nonlinear function of lottery parameters (outcomes and probabilities). Prospect Theory, how-

ever, assumes another approach. Certainty equivalents are related to lottery parameters 

through the so called lottery (prospect) value V, which is a product of two nonlinear functions 

– the value function v(x) and the probability weighting function w(p). The certainty equivalent 

has a value of v(ce), as it is a specific form of lottery in which the probability of winning 

equals 1. In the simplest case, when a lottery has two outcomes, the lower of which has a 

                                                 
3 A possible, but very rare, approach is the opposite one i.e. determining probability for different certainty 
equivalent values. 
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value of 0, the following relationship has to be resolved using the estimation procedure4: 

( ) ( ) ( )pwPvcev = ,      (2.1) 

where P = Max(x) is the maximum lottery outcome, p denotes the probability of winning the 

prize, the two functions v and w are estimated, and the prospect value V is not present any 

more.  This relationship is clearly not the most convenient estimation model5. Moreover, due 

to both the hidden representation of certainty equivalents and the product of the two estimated 

functions, the Prospect Theory model does not allow the joint presentation of experimental 

and estimation results on the one graph. 

Tversky and Kahneman (1992) and Gonzales and Wu (1999) estimated the model pa-

rameters by using the median values of the certainty equivalents and applying the nonlinear 

least squares procedure. However, due to the model adopted “the standard nonlinear regres-

sion technique does not permit an examination of residuals for v and w separately” (Gonzales  

and Wu, 1999). This means that the Prospect Theory model makes it difficult, if not impossi-

ble, to notice the asymmetry of data. Almost every derivation of this model encountered in the 

literature therefore assumes a normal error distribution.  

2.3. The model of the relative utility function provided by Kontek (2009a) results from 

the classical econometric approach to data description. This model assumes first that the cer-

tainty equivalent ce is a nonlinear function g of the lottery parameters: 

( )pPgce ,= .       (2.2) 

As the certainty equivalent ce is a monotonic function of probability p, the following relation-

ship should also hold: 

( )Pcehp ,= ,       (2.3) 

where h is a nonlinear function. It is assumed that the certainty equivalent can be expressed in 

relation to the lottery prize P:  

P

ce
r = ,        (2.4) 

where r denotes the relative certainty equivalent. Eq. (2.3) then yields: 

                                                 
4 If the lower payment is greater than 0, the formula is more complex (see Gonzales, Wu, 1992). The relationship 
becomes even more complicated for lotteries with more than two outcomes. However, as the details of Cumula-
tive Prospect Theory digress from the main subject of the paper, they are not presented here. 
5 Gonzales and Wu (1999) state that “Estimation of the value function and weighting function in the context of 
utility function theory presents challenging problems. A major stumbling block is the need to use the inverse of 
the value function in estimation. In an experiment, however, one observes the ce rather than v(ce).” 
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( )rQp = ,       (2.5) 

where Q denotes a relative utility function, which should have the form of a cumulative den-

sity function defined over the range [0,1]. It should be emphasized that transforming the cer-

tainty equivalent to its relative form r is not just an artificial transformation, but is based on 

the observation that changes in wealth are perceived in relative rather than absolute terms 

(Kontek, 2009b). It therefore follows that the certainty equivalents of a lottery are perceived 

in relation to its prize.  

As probability p is a single-variable function of the relative certainty equivalent r then 

r can be easily expressed as a function of p: 

( )pQr 1−= ,       (2.6) 

where Q
-1 is the inverse of the relative utility function. Because it is certainty equivalents, 

rather than probabilities, that are typically determined in experiments, the inverse form (2.6) 

of the relative utility function will be mostly used throughout the paper. 

2.4. The assumed model may also be derived from the basic Prospect Theory model. 

According to Prospect Theory, the value function αxxv =)( , so (2.1) can be transposed to: 

( )
( )

( )α
α

α

α

rw
P

ce
w

P

ce
w

Pv

cev
wp

1111 −−−− =







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






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


=












=








= ,   (2.7) 

from which is it clear that probability p is a single-variable function of the relative certainty 

equivalent r (cf. (2.5)). Consequently, rearranging (2.7) gives: 

( )α
1

pwr = ,       (2.8)  

from which it is clear that the relative certainty equivalent r is a single-variable function of 

probability p (cf. (2.6)). It is interesting to note that the relative certainty equivalent r also 

appears in Prospect Theory, although not in a transparent way. 

2.5. According to the relative utility model, if the lower lottery outcome is greater than 

0, then the value of r is expressed by: 

AP

Ace
r

−
−

= ,       (2.9) 

where A = Min(x) is the minimum lottery outcome. The relationship described by (2.9) en-

sures that r assumes values from the range [0, 1], even in the case of lotteries with a risk free 

component. 
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2.6. The main advantage of the relative utility approach is that it can explain the re-

sults of lottery experiments using only one function. Moreover, it is a single-variable model 

and should therefore allow both the data and the estimated results to be easily observed. The 

direct relationship between r and p makes the estimation procedure much easier and allows 

the model residuals to be examined. To illustrate the basic transformations (2.4) and (2.9), 

Table 2.2 presents the values of the relative certainty equivalents r for the certainty equiva-

lents presented in Table 2.1. 

       Probability 

Lottery 
.01 .05 .10 .25 .50 .75 .90 .95 .99 

{0, 100}  0.14  0.25 0.36 0.52  0.78  

{50, 150}  0.14  0.225 0.36 0.52  0.78  

Table 2.2. Values of the relative certainty equivalent r for the data from Table 2.1. 

2.7. It is possible to propose several functional forms for the relative utility function Q. 

The aim of this paper, however, is not to compare specific types of functions, but to present 

the estimation methodology. Beta distribution is therefore the only one used in this paper, as it 

is the best known and most widely used distribution defined over the interval [0,1]. Hence, the 

function Q is described using Cumulative Beta Distribution as follows: 

( ) ( )βα ,;rIrQp == ,      (2.10)  

where I denotes the regularized incomplete beta function. The curve is S-shaped for α > 1 and 

β > 1, inversed S-shaped for 0 < α < 1 and 0 < β < 1, J-shaped for α > 1 and 0 < β < 1, and 

inverse J-shaped for 0 < α < 1 and β > 1. For α = 1 and β = 1 the curve is linear. The inverse 

form of (2.10) is:  

( ) ( )βα ,;11 pIpQr −− == ,     (2.11) 

where I-1 denotes the inverse of the regularized incomplete beta function. More on the relative 

utility function approach, especially as applied to multi-prize lotteries, can be found in Kontek 

(2009a).  

3. Characteristics of Data Sets 

3.1. The full set of Tversky and Kahneman’s data can now be visualized using the me-

thodology presented in Point 2 (see Figure 3.1). These data are less useful for further research 

as only the medians of the lottery results were published. For this reason, this paper presents 

the estimation methodology using two other data sets. 



 7 

Figure 3.1. Tversky and Kahneman’s data transformed using (2.9). The points represent the median 
values of certainty equivalents for specific lotteries. Set 3 consists of data for losses and Set 4 consists 
of data for gains. 

3.2.1. Set 1 - the experimental data presented by Traub and Schmidt (2009), whose re-

search concerned the relationship between WTP (Willingness to Pay) and WTA (Willingness 

to Accept). Twenty four subjects participated in the experiment. Only that subset of the data 

covering the certainty equivalents of two outcome lotteries was used in further analyses.  

Figure 3.2. Experimental results transformed using (2.9) for Set 1 and Set 2. 

3.2.2. Set 2 - the experimental data of Idzikowska (2009), whose research concerns the 

question of whether the form in which probability is presented has any impact on the shape of 

the probability weighting function. Twenty five subjects participated in the experiment and 
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some of the responses were disregarded by Idzikowska on account of their inconsistency. The 

present research uses that subset of the data related to experimentally learned probabilities. 

3.3. The data from both sets were used without correction. The only exception re-

garded Set 1, when the value of r was less than 0 or greater than 1. This resulted from provid-

ing certainty equivalent values outside the acceptable range (e.g. $25 for a $30-40 lottery or 

$12 for a $0-10 lottery). In such cases, the values of r were corrected to 0 and 1 respectively. 

3.4. First and foremost, it should be noted that the data are scattered in both cases (in 

Set 2 even more than in Set 1). This results from the wide range of certainty equivalent values 

provided by the subjects which may, in turn, indicate very diverse risk attitudes within the 

examined group.  

3.5. Careful analysis of Figure 3.2, and especially Set 2, leads to the conclusion that 

these data are positively skewed for low probabilities and negatively skewed for high prob-

abilities. This observation is confirmed by the classical measures of variance, skewness and 

kurtosis determined for specific probabilities. The results are shown in Figure 3.3.  

 

Figure 3.3. Distribution moments of relative certainty equivalents r for specific probabilities. 

The calculated variances of r for specific probabilities differ in a ratio of 3:1. How-

ever, it is difficult to find any relationship between the probabilities and variances. Quite 



 9 

striking results may be observed for skewness. The values of r are clearly positively skewed 

for low probabilities and negatively skewed for high probabilities. Additionally, skewness 

changes almost linearly with probability. As a result, the values of r for medium probabilities 

are hardly skewed at all. Kurtosis values differ as well. In Set 1, kurtosis is greater than 3 for 

all probabilities. This demonstrates that the distribution of r is more peaked than a normal 

distribution. In Set 2, kurtosis assumes values both greater and less than 3. This means that 

the distribution of r is more peaked than a normal distribution for some probabilities and less 

peaked for others. 

3.6. It is interesting to combine all the distributions and observe the aggregated distri-

bution of r around its mean values. This is shown in Figure 3.4. The histograms presented 

give the impression that the distribution of the relative certainty equivalents r is roughly 

symmetric, and, in the case of Set 2, even normal. However, this is only true when the aggre-

gated data are considered. In fact, the distribution of r is anything but symmetric or normal for 

most probabilities. 

 

Figure 3.4. Aggregated distribution of r around its mean values. 

4. Nonparametric Estimation 

4.1. The advantage of nonparametric estimation methods is that they allow the ap-

proximate shape of an estimated relationship to be determined without specifying its func-

tional form. Gonzales and Wu (1999) proposed a nonparametric estimation method for the 

Prospect Theory model, which is, however, very complex and relies on multiple, recursive 

interpolations of the v and w functions. In the case of the relative utility function, the non-

parametric estimation is unusually simple and, in its simplest form, has already been pre-

sented in Figures 3.1 and 3.2. The full estimation procedure determines the mean, median, 

lower and upper quartiles, together with the mode of the relative certainty equivalent r for 

given probabilities. Determination of the first four values is obvious. Only the estimation of 
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the mode, which in the case of a purely nonparametric approach means determining the most 

frequently occurring (i.e. the commonest) value or values of r for a given probability, requires 

some comment. 

Figure 4.1. Nonparametric estimation of both data sets. In the case of quantile estimation, the lower 
quartile is marked with dark blue points, the upper quartile with orange points. 

4.2. The graphs presented in Figure 4.1 give an instant image of the analyzed data. In 

the case of Set 1, both the commonest and median values are located on the p = r line, which 

marks the expected value of the lottery. The values for the lower quartile line up above that 

curve and those of the upper quartile below it. Mean values create a slight S-shaped curvature. 

The data for Set 2 are more distinct. The median, quartile and mean values are clearly S-

shaped, where this shape is more curved for means than for medians. Such curvature, how-

ever, is not that obvious for the commonest values, all the more so given that there are a few 

values r that appear most frequently for some probabilities (e.g. 0.25). 

5. Standard Parametric Estimation 

5.1. The general  estimation model with additive errors is written in vector notation as 

(Cameron, Trivedi, 2005):  

[ ] exyEy += | ,       (5.1) 

where E[y|x] denotes the conditional expectation of the observed variable y given explanatory 

variable x, and e denotes a vector of unobserved random errors. The nonlinear estimation 
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model assumes E[y|x] to be a nonlinear function g(x; θ), where θ denotes a vector of parame-

ters. The error term is then defined as the difference between the observed variable and its 

conditional expectation, ei = yi - g(xi; θ). The loss function L(e) defines the loss associated 

with the error e. The estimation procedure minimizes the expected value of the loss function 

(expected loss), and importantly, the type of the loss function determines the conditional ex-

pectation of the result. 

5.2. If the loss function is the square of the error then the conditional expectation of y 

is the mean of x. In the case of the relative utility function Q, the least squares (mean) estima-

tor minimizes the following function (cf. (2.6)):  

( ) ( )[ ]∑
=

−−=
N

i

iimean pQrS

1

21 ;θθ ,     (5.2) 

where i denotes the next among all N data. Assuming the function Q has k parameters, the 

number of degrees of freedom is N – k. It follows that the average estimation error is given 

by: 

( )
kN

SMin
err mean

mean −
= .      (5.3) 

5.3. If the loss function is absolute error, then the conditional expectation of y is the 

median of x. In the case of the relative utility function, the median estimator minimizes: 

( ) ( )∑
=

−−=
N

i

iimed pQrS

1

1 ;θθ .     (5.4) 

The average absolute error is defined as: 

( )
kN

SMin
err med

med −
= .      (5.5) 

5.4. If the loss function is asymmetric absolute error with a penalty of  q|e| on under-

prediction and a penalty of (1 - q)|e| on overprediction, then the conditional expectation of y is 

the qth quantile of x. In the case of the relative utility function the qth quantile estimator mi-

nimizes: 

( ) ( )[ ] ( ) ( )[ ]−−

==

+− −−+−= ∑∑ θθθ ;1; 1

11

1
ii

N

i

N

i

iiq pQrqpQrqS ,   (5.6) 

where a shorthand notation is used: [a]+ = a for positive a, and 0 for negative a; similarly [a]- 

= -a for negative a, and 0 for positive a. In the special case of q = 0.5, (5.6) reduces to (5.4). 
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The interpretation of the value Sq obtained by minimizing (5.6) may not be as clear as for me-

dian estimation, but (5.5) may be kept for convenience. 

5.5. The loss function may be defined in terms of the kernel function (Lee, 1989, 

Kemp, Silva, 2009):  

( ) 







−=

σ
e

KeL R21 ,      (5.7) 

where ( ) [ ]
2

1<
=

u
uKR

1
 denotes the rectangular kernel, with 1[A] being the indicator function 

for event A, and  σ > 0 the bandwidth parameter. However, (5.7) may be presented in a sim-

pler form: 

( )






≤

>
=

,0

,1

σ
σ

eif

eif
eL       (5.8) 

so that the loss function assumes a value of 1 outside a window of width 2 σ and a value of 0 

inside it6. The conditional expectation of y is the mode of x in this case.  

In the case of the relative utility function, there is one window per each probability 

considered in the experiment. The mode estimator minimizes the function:  

( ) ( )[ ]∑
=

− >−=
N

i

iimode pQrS

1

1 ; σθθ 1 .    (5.9) 

The value Smode obtained by the minimization specifies the number of data points located out-

side the windows and: 

( )
N

SMin
err mode

mode = ,      (5.10) 

determines the percentage of such data. It might be more convenient to use N – Min(Smode), 

which is the number points of data inside the windows. This value divided by 2 M σ, where M 

denotes the number of windows (probabilities considered), specifies the average data density 

in the vicinity of the estimated relative utility function: 

( )
σ

ρ
M

SMinN mode
m

2

−
= .      (5.11) 

It should be added that all measures given in this subsection may be sensitive to the 

chosen bandwidth parameter σ. 

                                                 
6 Cameron and Trivedi (2005, p. 67) state that the loss function for mode regression is the step function (i.e. L(e) 
= 0 if e < 0, and L(e) = 1 if e ≥ 0). This cannot be correct, as it would result in the 100th quantile being estimated. 
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5.6. The results of all estimation procedures are presented jointly in Figure 5.1.  

Figure 5.1. Estimation results for data sets using standard estimation methods: LS – Least Squares; 
Q1 – Lower Quartile; MED – Median; Q3 – Upper Quartile; MOD – Mode. The orange area marks 
data between the lower and upper quartiles. σ = 0.01 was assumed for the mode estimation. Errors are 
expressed as percentages. 

To a large extent, these results confirm those obtained using nonparametric estimators. 

The difference between the mode, median and mean values (especially for Set 2) confirms the 

skewness of the data first noticed using standard measures of distribution moments. As this 

difference varies with probability and changes sign near where p = 0.5, the data clearly 

changes its character from positively to negatively skewed with probability.   

In the first Set, the curves resulting from the mode and median estimations are practi-

cally superimposed on the line p = r. As the mode typically differs from the median value 

when the data are skewed, this can raise some objections as to the result. The mean estimator 

results in a slightly S-shaped curve. 

In the second set, the functions obtained by the median, and especially the mean, esti-

mator are much more curved. The area between the lower and upper quantiles is also much 

wider. However, the resulting curve of the mode estimator is almost a straight line p = r, as in 

the case of the first set.  

5.7. Quantile, and especially mode, estimators are characterized by some computa-

tional inconveniences because estimated expected loss functions are not smooth and may have 

multiple minima (Figure 5.2). In the case of quantile estimators, this is caused by an estimated 

curve with two parameters attempting to pass through any two points from the dataset (simi-

larly as the median value takes one of the values from the dataset with odd count). In the case 
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of the mode estimator, this is an obvious corollary of definitions (5.7) – (5.9), and the number 

of local minima is really huge.  

 

Figure 5.2. On the left, the shape of the expected loss function for the quantile estimator close to its 
minimum. On the right is the shape of the expected loss function for the mode estimator. 

In regard to the above, the only practical method of finding the global minimum of the 

mode estimator is to use a contour plot and then make multiple attempts at finding the mini-

mum in selected areas with different starting points. This process is clearly very burdensome. 

As a consequence, the mode estimators based on kernels with bounded support (as 5.7) “are 

difficult to implement and unattractive to practitioners, having seen little, if any, use in prac-

tice” (Kemp, Silva, 2009). If so, Figure 5.1 presents an original and at once very important 

result. 

6. Conclusions  

6.1. The results presented in this paper show that the distribution of data encountered 

in lottery experiments is not symmetric and varies with probability. Knowledge of this distri-

bution is therefore essential in order to derive correct conclusions about the behavior of exam-

ined groups. As demonstrated, the lottery valuation is nonlinear with probability only when 

means and (in one of two sets) medians are considered. However, the relationship between the 

relative certainty equivalents and the probabilities is (almost) linear for modes in both data 

sets. This means that the most likely lottery valuation is close to its expected value. Another 

way of saying this is that the most likely behavior of the examined groups was fully rational. 

This is the main result of this paper.  

6.2. The paper presented a wide range of estimation techniques in use for lottery ex-

perimental data. These include: least squares (mean), quantile (including median), and mode 

estimators, all performed in both parametric and nonparametric way. This is possibly the most 

wide-ranging coverage of estimation techniques for lottery experiment results ever under-
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taken. Such an extensive number of methods were made possible by using the relative utility 

model which, in contrast to the Prospect Theory model, adopts a classical econometric ap-

proach to data description. 

6.3. The paper confirmed well known advantages and disadvantages of nonparametric 

and standard parametric estimators. The nonparametric methods easily determine the values 

of means, medians, quantiles and modes for given probabilities. The problem remains that the 

determined quantiles and modes take particular values and these can vary considerably with 

small changes to the examined sample. An unquestionable advantage of nonparametric esti-

mators is their simplicity and computational ease. But the lack of any function describing the 

relationship prevents them being used in other applications and this is a distinct disadvantage. 

On the other hand, the parametric estimators yield smoother estimations of the values 

sought, although data asymmetry which changes with probability may seriously affect the 

results of standard estimation procedures. This arises from the fact that the mean, median, qth 

quantile and mode estimations appear to be merely a consequence of using specific loss func-

tions, viz. squared, absolute, asymmetric absolute and kernel errors. As a result, it is difficult 

to predict the influence that an unequal amount of data and all the changes in variance, skew-

ness and kurtosis will have on the shapes of the estimated curves.  

Computational problems also arise in the case of quantile and (especially) mode esti-

mation. This is mostly caused by the type of expected loss functions, which are not smooth in 

either case. 

6.4. Some topics are therefore left for further consideration. First, a more detailed 

analysis is required for the Set 1 results where the median and mode estimations are practi-

cally the same, but the mean estimation differs. As all these values should be different when 

the data are skewed, this can raise some objections as to the result. Second, in order to answer 

these objections, a more detailed analysis of data distribution is required as the standard 

measures of distribution moments only offer a partial description. Third, a more sophisticated 

estimation procedure might be required as the standard estimation techniques assume vari-

ance, skewness and other distribution moments to be constant over the estimation domain. 

Fourth, the standard median and mode estimators are characterized by computational incon-

veniences, which poses the risk that the global optimum will not be found. This raises the 

question of whether, and if so how, these inconveniences might be overcome. Finally, the 

important question of how to define the maximum likelihood estimator for the lottery experi-

ment data has been left open. 
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