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A Simplified Approach to Analyzing Multi-regional 
Core-Periphery Models 

 
Takashi Akamatsu*1and Yuki Takayama* 
 

Abstract 
This paper shows that the evolutionary process of spatial agglomeration in 
multi-regional core-periphery models can be explained analytically by a much 
simpler method than the continuous space approach of Krugman (1996). The 
proposed method overcomes the limitations of Turing’s approach which has been 
applied to continuous space models. In particular, it allows us not only to examine 
whether or not agglomeration of mobile factors emerges from a uniform 
distribution, but also to trace the evolution of spatial agglomeration patterns (i.e., 
bifurcations from various polycentric patterns as well as from a uniform pattern) 
with decreases in transportation cost. 
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1. Introduction 
 

More than a decade has passed since the new economic geography (NEG) emerged with 
now well-known modeling techniques such as “Dixit-Stiglitz, Icebergs, Evolution, and the 
Computer”, by Fujita, Krugman and Venables (1999). These new modeling techniques, first 
introduced in the core-periphery (CP) model developed by Krugman (1991), provided a 
full-fledged general equilibrium approach and led to numerous studies on extending the 
original framework. Furthermore, in recent years, there has been a proliferation of theoretical 
and empirical work applying the NEG framework to deal with various policy issues (Baldwin 
et al., (2003), Behrens and Thisse (2007), Combes et al., (2009)). 

Despite the remarkable growth of the NEG theory, there remain some fundamental issues 
that need to be addressed before the theory provides a sound foundation for empirical work 
and practical applications. One of the most relevant issues is to reintroduce spatial aspects 
into the theory. Even though this direction was pursued in the early development stages of 
NEG (e.g., Krugman (1993, 1996), Fujita et al., (1999)), recent theoretical studies have been 
almost exclusively limited to the two-region CP/NEG models in which many essential aspects 
of “space/geography” have almost vanished. As a result, little is known about the rich 
properties of the multi-regional CP model. In view of the fact that two-region analysis has 
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some serious limitations2 due to the “degeneration of space”, it seems reasonable to argue 
that “a theoretical analysis of economic geography must make an effort to get beyond the 
two-location case” since “real-world geographical issues cannot be easily mapped into 
two-regional analysis” (Fujita et al., (1999, Chap.6)). In other words, advancing our 
understanding of the multi-regional NEG/CP models is a prerequisite for systematic empirical 
work as well as for systematic evaluation of policy proposals. 

Why, despite the obvious needs, have there been very few theoretical studies on 
multi-regional CP models in the last decade? This seems to be a direct result of technical 
difficulties that inevitably arise in examining the properties of the multi-regional CP model. 
As is well known in the NEG theory, the two-regional CP model, depending on transportation 
costs, exhibits a “bifurcation” from a symmetric equilibrium to an asymmetric equilibrium. In 
dealing with the multi-regional CP model, we are likely to encounter more complex 
bifurcation phenomena and hence we need to devise better methods to analyze them. In 
contrast to the large number of works on the CP model that have flourished during the last 
decade, there has been very little progress in developing effective approaches to this 
bifurcation problem since the work of Krugman (1996) and Fujita et al., (1999). 

The only method that has been used to analyze bifurcation in the multi-regional CP model 
is the Turing (1952) approach, in which one focuses on the onset of instability of a uniform 
equilibrium distribution (“flat earth equilibrium”) of mobile agents. That is, assuming a 
certain class of adjustment process (e.g., “replicator dynamics”), one examines a trend of the 
economy away from, rather than toward, the flat earth equilibrium whose instability implies 
the emergence of some agglomeration.3 Krugman (1996) and Fujita et al., (1999, Chap.6) 
applied this approach to the CP model with a continuum of locations on the circumference 
and succeeded in showing that the steady decreases in transportation costs lead to the 
instability of the flat earth equilibrium state. Recently, a few studies have also applied this 
approach, and re-examined the robustness of the Krugman’s findings in the CP model with 
continuous space racetrack economy. Mossay (2003) theoretically qualifies the Krugman’s 
results in the case of workers’ heterogeneous preferences for location. More recently, Picard 
and Tabuchi (2009) examined the impact of the shape of transport costs on the structure of 
spatial equilibria4. 

                                                 
2 For more elaborated discussions on the limitations of the two-regional analysis, see, for example, Fujita 
and Thisse (2009), Akamatsu et al., (2009), Behrens and Thisse (2007), Fujita and Krugman (2004). 
3 The first notable application of this approach to analyzing agglomeration in a spatial economy was made 
by Papageorgiou and Smith (1983). 
4 Tabuchi et al. (2005) also study the impact of falling transport costs on the size and number of cities in a 
multi-regional model that extends a two-regional CP model by Ottaviano et al., (2002). Oyama (2009) 
showed that the multi-regional CP model admits a potential function, which allowed to identify a stationary 
state that is uniquely absorbing and globally accessible under the perfect foresight dynamics. However, 
these analyses are restricted to a very special class of transport geometry in which regions are pairwise 
equidistant. 
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While this approach offers a remarkable way of thinking about a seemingly complex issue, 
it has two important limitations. First, it deals with only the first stage of agglomeration when 
the value of a parameter (e.g., transportation cost) steadily changes; it cannot give a good 
description of what happens thereafter. Indeed, Krugman (1996) and Fujita et al., (1999, 
Chap.17) resort to rather ad hoc numerical simulations for analyzing the possible bifurcations 
in the later stages; recent studies of Mossay (2003) and Picard and Tabuchi (2009) are silent 
on the bifurcations in the later stages. Second, the eigenvalue analysis required in the 
approach becomes complicated, and it is, in general, almost impossible to analytically obtain 
the eigenvalues for an arbitrary configuration of mobile workers. This is one of the most 
difficult obstacles that prevent us from understanding the general properties of the 
multi-regional CP model. 

In this paper, we show that the evolutionary process of spatial agglomeration in the 
multi-regional CP models can be readily explained by a much simpler method than the 
continuous space approach of Krugman (1996) and Fujita et al., (1999). The main features of 
the proposed method are as follows: 

1) it is applicable to the CP model with an arbitrary discrete number of regions, in contrast 
to Krugman’s approach that is restricted to a special limiting case (i.e., continuous space). 

2) it exploits the concept of a “spatial discounting matrix (SDM)” in a circular city/region 
system (“racetrack economy (RE)”). This together with the discrete Fourier transformation 
(DFT) provides an analytically tractable method of elucidating the agglomeration properties 
of the multi-regional CP model, without resorting to numerical techniques. 

3) it allows us not only to examine whether or not agglomeration of mobile factors emerges 
from a uniform distribution, but also to trace the evolution of spatial agglomeration patterns 
(i.e., bifurcations from various polycentric patterns as well as from a uniform pattern) with 
the decreases in transportation cost. That is, it overcomes the limitations of Turing’s approach 
that Krugman (1996), Fujita et al., (1999), Mossay (2003), and Picard and Tabuchi (2009) 
encountered in their continuous space models. 

To demonstrate the proposed method, we employed a pair of multi-regional CP models, 
which are “solvable” variants of Krugman’s original CP model. By the term “solvable”, we 
mean that an explicit form of the indirect utility function of a consumer for a short-run 
equilibrium (in which a location pattern of workers is fixed) can be obtained (Proposition 1). 
More specifically, each of the CP models presented here is a multi-regional version of the 
two-region CP models recently developed by Forslid and Ottaviano (2003) and Pflüger 
(2004). 

In the analysis of these CP models, we intentionally restricted ourselves to the case of four 
regions for clarity of exposition, although the approach presented in this paper can deal with a 
model with an arbitrary number of regions. Interested readers can consult Akamatsu et al., 
(2009) for more general cases. The four-region setting allowed us to illustrate the essential 
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feature of our approach without going into too much technical detail. Indeed, even in this 
simple setting, we observed a number of interesting properties of the multi-regional CP model 
that are not reported in the literature. 

In order to understand the bifurcation mechanism of the CP model, we need to know how 
the eigenvalues of the Jacobian matrix of the adjustment process depend on bifurcation 
parameters (e.g., the transportation cost coefficient τ). A combination of the RE (with discrete 
locations) and the resultant circulant properties of the SDM greatly facilitate this analysis. 
Indeed, it is shown (in Proposition 2) that the eigenvalue gk of the Jacobian matrix of the 
adjustment process can be expressed as a quadratic function of the eigenvalue fk of the SDM. 
The former eigenvalue gk thus obtained has a natural economic interpretation as the strength 
of “net agglomeration force”, and offers the key to understanding the agglomeration 
properties of the CP economy. 

To investigate the evolutionary process of the spatial agglomeration in the multi-regional 
CP models, we considered the process in which the value of the spatial discounting factor 
(SDF) r steadily increased (which means transportation cost decreases) over time. Starting 
from r = 0 at which a uniform distribution of skilled labor is a stable equilibrium state, we 
investigated when and what spatial patterns of agglomeration emerged (i.e. a bifurcation 
occuring) with the increases in the SDF. The analytical expression of the eigenvalues allowed 
us to identify the “break point” and the associated patterns of agglomeration that emerged at 
the bifurcation (Proposition 4). Unlike the conventional two-region models that exhibit only 
a single time of bifurcation, this is not the end of the story in the four-region model. Indeed, it 
is shown (in Proposition 5) that the agglomeration pattern after the first bifurcation evolves 
over time with the steady increases in the SDF: it first grows to a duocentric pattern, which 
continues to be stable for a while; further increases in the SDF, however, trigger the 
occurrence of a second bifurcation, which in turn leads to the formation of a monocentric 
agglomeration. This result was derived by using a simple analytical technique based on a 
similarity transformation. Furthermore, it was theoretically deduced (in Proposition 6) that 
the collapse of agglomeration (that corresponds to “re-dispersion” in the two-region CP 
model) can occur for a high-SDF range. 

The remainder of the paper is organized as follows. Section 2 presents the equilibrium 
conditions of the multi-regional CP models as well as definitions of the stability and 
bifurcation of the equilibrium state. Section 3 defines the SDM in a racetrack economy, whose 
eigenvalues are provided by a DFT. Section 4 analyzes the evolutionary process of spatial 
patterns observed in our models. Section 5 concludes the paper. 
 
2. The Model 
 
2.1. Basic Assumptions 

We present a pair of multi-regional CP models whose frameworks follow Forslid and 
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Ottaviano(2003) and Pflüger(2004) (defined as FO and Pf). The basic assumptions of the 
multi-regional CP model are the same as those of the FO and Pf models except for the number 
of regions, but we provide them here for completeness. The economy is composed of K 
regions indexed by 1,...,1,0 −= Ki , two factors of production and two sectors. The two 
factors of production are skilled and unskilled labor. Each worker supplies one unit of his type 
of labor inelastically. The skilled worker is mobile across regions and hi denotes the number 
of these factors located in region i. The total endowment of skilled workers is H. The 
unskilled worker is immobile and equally distributed across all regions. The unit of unskilled 
worker is chosen such that the world endowment KL =  (i.e., the number of unskilled 
workers in each region is one). The two sectors are agriculture (abbreviated by A) and 
manufacturing (abbreviated by M ). The A-sector output is homogeneous and produced using 
a unit input requirement of unskilled labor under constant returns to scale and perfect 
competition. This output is the numéraire and assumed to be produced in all regions. The 
M-sector output is a horizontally differentiated product and produced using both skilled and 
unskilled labor under increasing returns to scale and Dixit-Stiglitz monopolistic competition. 
The goods of both sectors are transported, but transportation of the A-sector goods is 
frictionless while transportation of the M-sector goods is inhibited by iceberg transportation 
costs. That is, for each unit of the M-sector goods transported from region i to j, only a 
fraction 1/1 <ijφ  arrives. 

All workers have identical preferences U over the M and A-sector goods. The utility of 
each consumer in region i is given by: 

 [FO model5] A
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i

A
i
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where A
iC  is the consumption of the A-sector goods in region i; M

iC  represents the 
manufacturing aggregate in region i; )(kq ji  is the consumption of variety ],0[ jnk ∈  
produced in region j and nj is the number of varieties produced in region j; μ is the constant 
expenditure share on industrial varieties and σ is the constant elasticity of substitution 
between any two varieties. The budget constraint is given by: 

  i
j
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A
i YdkkqkpC

j
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where )(kp ji  denotes the price in region i of the M-sector goods produced in region j, and Yi 
denotes the income of a consumer in region i. 

The utility maximization of (2.1) or (2.2) yields the following demand )(kqij  of a 
                                                 
5 We take logarithms of the Forslid and Ottaviano(2003) type (i.e., Cobb-Douglas-type) utility function to 
facilitate the analysis. Note that this transformation has no influence on the properties of the model. 
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consumer in region i for a variety of the M-sector goods k produced in location j: 
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denotes the price index of the differentiated product in region i. Since the total income and 
population in region i are wi hi +1 and hi +1, respectively, we have the total demand )(kQ ji : 
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The A-sector technology requires one unit of unskilled labor in order to produce one unit of 
output. With free trade in the A-sector, the choice of this goods as the numéraire implies that 
in equilibrium the wage of the unskilled worker L

iw  is equal to one in all regions, that is, 
iwL

i ∀= 1 . In the M-sector, product differentiation ensures a one-to-one relation between 
firms and varieties. Specifically, in order to produce )(kxi  unit of product k, a firm incurs a 
fixed input requirement of α unit of skilled labor and a marginal input requirement of )(kxiβ  
unit of unskilled labor. With 1=L

iw , the total cost of production of a firm in region i is thus 
given by )(kxw ii βα + , where wi is the wage of the skilled worker. Given the fixed input 
requirement α, the skilled labor market clearing implies that in equilibrium the number of 
firms is determined by α/ii hn =  so that the number of active firms in a region is 
proportional to the number of its skilled workers. 

Due to the iceberg transportation costs, the total supply of the M-sector firm located in 
region i (i.e. )(kxi ) is given by: 

  ∑=
j

ijiji kQkx )()( φ   (2.5) 

Therefore, a typical M-sector firm located in region i maximizes profit as given by: 

  ∑ ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=Π

j j
ijijiijiji kQwkQkpk )()()()( φβα .  

Since we have a continuum of firms, each one is negligible in the sense that its action has no 
impact on the market (i.e., the price indices). Hence, the first order condition for the profit 
maximization gives: 
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This expression implies that the price of the M-sector goods does not depend on variety k, so 
that )(kQij  and )(kxi  also do not depend on k. Thus we describe these variables without 
argument k. Substituting (2.6) into (2.3), the price index becomes 
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where σφ −≡ 1
jijid  is a “spatial discounting factor” between region i and j: from (2.4), (2.6) 

and (2.7), jid  is represented as )/()( iiiijiji QpQp , which means that jid  is the ratio of total 
expenditure in region i for each M-sector product produced in region j to their expenditure for 
a domestic product. 
 
2.2. Short-Run Equilibrium 

In the short run, the skilled workers are immobile between regions, that is, their spatial 
distribution ( T

110 ],...,,[ −≡ Khhhh ) is taken as given. The short-run equilibrium conditions 
consist of the M-sector goods market clearing condition and the zero profit condition due to 
the free entry and exit of firms. The former condition can be written as (2.5). The latter 
condition requires that the operating profit of a firm is entirely absorbed by the wage bill of its 
skilled workers: 
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Substituting (2.4), (2.5), (2.6) and (2.7) into (2.8), we have the short-run equilibrium wage 
equations: 
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where kk kjj hdΔ ∑≡)(h  denotes the market size of the M-sector in region j. Thus, 
)(/ hjij Δd defines the market share in region j of each M-sector product produced in region i. 

To obtain the indirect utility function )(hiv , we express the equilibrium wage )(hiw  as 
an explicit function of h. For this, we rewrite (2.9) and (2.10) in matrix form by using the 
“spatial discounting matrix” D whose ),( ji  entry is ijd . Then, the equilibrium wage 

T
110 )](),...,(),([)( hhhhw −≡ Kwww , is given by: 
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 [Pf model] )}()({ )( )()( hwhwhw LH +=
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  1MhwhMhw   )(,)( )()( ≡≡ LH   (2.12)  

where T]1...,,1,1[≡1  and I is a unit matrix. M and H are defined as 

  ]diag[],diag[,1 hHDhΔDΔM ≡≡≡ −   (2.13)  

This leads to the following proposition. 

Proposition 1: The indirect utility T
110 )](),...,(),([)( hhhhv −≡ Kvvv  of the multi-regional FO 

and Pf models can be expressed as an explicit function of  h: 

 [FO model] )]([ln)()(  hwhShv += μ   (2.14) 

 [Pf model] )}()({)()( )()(
 

1 hwhwhShv LH ++= −σ   (2.15) 

where T
110 ]ln...,,ln,[ln]ln[ −≡ Kwwww . )(),( )( hwhw H  and )()( hw L  are defined in (2.11), 

(2.12), and ]ln[)1()( 1 DhhS −−≡ σ . 
 
2.3. Long-Run Equilibrium and Adjustment Dynamics 

In the long run, the skilled workers are inter-regionally mobile and will move to the region 
where their indirect utility is higher. We assume that they are heterogeneous in their 
preferences for location choice. That is, the indirect utility for an individual s located in region 
i is expressed as: 

  )()( )()( s
ii

s
i vv ε+= hh    

where )(s
iε  denotes the utility representing the idiosyncratic taste for a residential location. 

The distribution of }|{  
)(

 ss
i ∀ε  is assumed to be the Weibull distribution and to be identical 

and independent across regions. Under this assumption, the fraction Pi(h) of the skilled 
workers choosing region i is given by: 
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hh
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where ),0( ∞∈θ  is the parameter expressing the inverse of the variance of individual tastes. 
When ∞→θ , (2.16) means that the workers decide their location only by )(hiv , which 
corresponds to the case without heterogeneity (i.e., the skilled workers are homogeneous). 

The long-run equilibrium is defined as the spatial distribution of the mobile workers h that 
satisfies the following condition:  

  iHPh ii ∀= )(h   (2.17)  

or equivalently written as 0hhPhF =−≡ )()(  H , where H is the total endowment of the 
skilled worker, and T

110 )](...,),(),([)( hhhhP −≡ KPPP . This condition means that the actual 
number of individuals hi in each region is equal to the number )(hiHP  of individuals who 
choose that region under the current distribution h of skilled workers. 
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For this equilibrium condition, it is natural to assume the following adjustment process: 

  )(hFh =&    (2.18) 

This is the well-known logit dynamics, which were developed in evolutionary game theory 
(Fudenberg and Levine (1998) and Sandholm (2009)). 

The adjustment process of (2.18) allows us to define stability of long-run equilibrium h* in 
the sense of local stability: the stability of the linearized system of (2.18) at h*. It is well 
known in dynamic system theory that the local stability of the equilibrium h* is determined by 
examining the eigenvalues of the Jacobian matrix of the adjustment process6: 

  IhvhJhF −∇=∇ )()()(  H   (2.19) 

where each of )(hJ  and )(hv∇  is a K-by-K matrix whose ),( ji  entry is ji vP ∂∂ /))(( hv  
and ji hv   /)( ∂∂ h , respectively. 
 
3. Net agglomeration forces in a racetrack economy 
 
3.1. Racetrack economy and spatial discounting matrix 

Consider a “racetrack economy” in which 4 regions }3 ,2 ,1 ,0{  are equidistantly located 
on a circumference with radius 1. Let ),( jit  denote the distance between two regions i and j. 
We define the distance between two regions as that measured by the minimum path length: 

  ),()4/2(),( jimjit ⋅= π    

where } ||4  , |.{|min),( jijijim −−−≡ . The set )}3,2,1,0,( ),,({ =jijit  of the distances 
determines the spatial discounting matrix D whose ),( ji  entry, ijd , is given by: 

  )],(  )1(exp[ jitdij ⋅⋅−−≡ τσ   (3.1a) 

Defining the spatial discount factor (SDF) by 

  )]4/2(  )1(exp[ πτσ ⋅−−≡r   (3.1b) 

we can represent ijd  as ),( jimr . It follows from the definition that the SDF r is a 
monotonically decreasing function of the transportation cost (technology) parameter τ, and 
hence the feasible range of the SDF (corresponding to ∞+<≤  0 τ ) is given by ]1 ,0(   : 

1    0 =⇔= rτ , and 0    →⇔+∞→ rτ . Note here that the SDF yields the following 
expression for the SDM in the racetrack economy: 
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6 See, for example, Hirsch and Smale (1974). 
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As easily seen from this expression, the matrix D is a circulant which is constructed from the 
vector T2

0 ],,,1[ rrr≡d (see Appendix 3 for the definition and properties of circulant 
matrices). This circulant property of the SDM plays a key role in the following analysis. 
 
3.2. Stability, eigenvalues and Jacobi matrices 

Stability of equilibrium solutions for the CP model can be determined by examining the 
eigenvalues T

321,0 ],,[ gggg≡g  of the Jacobian matrix of the adjustment process (2.18). 
Specifically, the equilibrium solution h satisfying (2.17) is asymptotically stable if all the 
eigenvalues of )( hF∇  have negative real parts; otherwise the solution is unstable (i.e., at 
least one eigenvalue of )( hF∇  has a positive real part), and the solution moves in the 
direction of the corresponding eigenvector. The eigenvalues, if they are represented as 
functions of the key parameters of the CP model (e.g. transport technology parameter τ ), 
further enable us to predict whether or not a particular agglomeration pattern (bifurcation) will 
occur with changes in the parameter values. 

The eigenvalues g of the Jacobian matrix )( hF∇  at an arbitrary distribution h of the 
skilled labor cannot be obtained without resorting to numerical techniques. It is, however, 
possible in some symmetric distributions h  to obtain analytical expressions for the 
eigenvalues g of the Jacobian．The key tool for making this possible is a circulant matrix, 
which has several useful properties for the eigenvalue analysis. To take “Property 1” of a 
circulant in Appendix 3 for example, it implies that if )( hF∇  is a circulant then the 
eigenvalues g can be obtained by discrete Fourier transformation (DFT) of the first row vector 

0x  of )( hF∇ : 0 xZg = , where Z is a 4-by-4 DFT matrix. Furthermore, “Property 2” assures 
us that )( hF∇  is indeed a circulant if )(hJ  and )( hv∇  in the right-hand side of (3.2) are 
circulants (note here that a unit matrix I is obviously a circulant). 

A uniform distribution of skilled workers, ]4/ ,4/ ,4/ ,4/[ HHHH≡h , which has 
intrinsic significance in examining the emergence of agglomeration, gives us a simple 
example for illustrating the use of the above properties of circulants. We first show below that 
the Jacobian matrix )( hF∇  at the uniform distribution h  is a circulant. This in turn allows 
us to obtain analytical expressions for the eigenvalues of )( hF∇  as will be shown in 3.3. 
For clarity of exposition, we restrict the analysis below to the case for the Pf model while the 
same conclusion holds for the FO model (for the details, see Appendix 2). 

In order to show that )( hF∇  is a circulant, we examine each of )(hv∇  and )(hJ  in 
turn. For the configuration h  in which 4/Hh ≡  skilled workers are equally distributed in 
each region (i.e., ],,,[ hhhh≡h ), the definition of M in (2.13) yield DhM 1)()( −= hd , where 

1d ⋅≡ 0d , and hence the Jacobian matrix of indirect utility functions at h  reduces to: 

  }]/[ ]/[ {)( 21
 dadbh DDhv −=∇ −   (3.2) 

where a and b are constant parameters defined as: 
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  )1( 11 −− +≡ ha σ , 11)1( −− +−≡ σσb   (3.3) 

Note that the right-hand side of (3.2) consists only of additions and multiplications of the 
circulant matrix D. It follows from this that )(hv∇  is a circulant. We now show that )(hJ  
is a circulant. From the definition (2.16) of the location choice probability functions P(h), we 
have the Jacobian matrix J(h) at h  as: 

  ( )EIhJ )4/1()4/()( −= θ   (3.4) 

where E is a 4 by 4 matrix whose entries are all equal to 1. This clearly shows that )(hJ  is a 
circulant because I and E are obviously circulants. Thus, both )(hv∇  and )(hJ  are 
circulants, and this leads to the conclusion that the Jacobian matrix of the adjustment process 
at the configuration h : 

  IhvhJhF −∇=∇ )()()(  H   (3.5) 

is a circulant. 
 
3.3. Net agglomeration forces 

The fact that the matrices )(hJ  and )(hv∇  as well as )( hF∇  are all circulants allows 
us to obtain the eigenvalues g of )( hF∇  by applying a similarity transformation based on 
the DFT matrix Z. Specifically, the similarity transformation of both sides of (3.5) yields: 

  ][diag][diag  ][diag][diag   1eg −= δH   (3.6a) 

where δ  and e  are the eigenvalues of )(hJ  and )(hv∇ , respectively. In a more concise 
form this can be written as: 

  1eg −⋅= ][ ][  δH   (3.6b) 

where ][][ yx ⋅  denote the component-wise products of vectors x and y. The two eigenvalues, 
δ  and e , in the right-hand side of (3.6) can easily be obtained as follows. The former 

eigenvalues δ  are readily given by the DFT of the first row vector of )(hJ  in (3.4): 

    T
   ]1 ,1 ,1 ,0[)4/(θ=δ       (3.7) 

As for the latter eigenvalues e , notice that )(hv∇  in (3.2) consists of additions and 
multiplications of the circulant D/d. This implies that the eigenvalues e can be represented as 
functions of the eigenvalues f of the spatial discounting matrix D/d: 

  }][][{ 2
   

1
 ffe abh −= −   (3.8) 

where 2][x  denotes the component-wise square of a vector x (i.e., ][][][ 2 xxx ⋅≡ ). The 
eigenvalues T

321,0 ],,[ ffff≡f , in turn, are obtained by the DFT of the first row vector 
d/0d  of the matrix d/D : 
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ddZf  (3.9) 

where i denotes the imaginary unit, )1/()1()( rrrc +−≡ . Thus, we have the following 
proposition characterizing the eigenvalues and eigenvectors of the Jacobian matrix )(hF∇ : 

Proposition 2: Consider a uniform distribution ],,,[ hhhh=h  of skilled workers in a 
racetrack economy with 4 regions. The Jacobian matrix )(hF∇  of the adjustment process 
(2.18) of the CP model at h  has the following eigenvector and the associated eigenvalues: 

1) the kth eigenvector )3,2,1,0(    =k  is given by the kth row vector, kz , of the discrete 
Fourier transformation (DFT) matrix  Z. 

2) the kth eigenvalue )3,2,1(   =kgk  is given by a quadratic function of the kth eigenvalue fk 
of the spatial discounting matrix d/D : 

  ))(( rfGg kk θ=   )3,2,1(   =k , 10 −=g  (3.10a) 

  12
    )( −−−≡ θxaxbxG    (3.10b) 

  )1/()1()()()( 31 rrrcrfrf +−≡== , 2
2 )()( rcrf =  (3.10c) 

where a and b are constant parameters defined in (3.3) for the Pf model (For the FO model, 
see Appendix 2). 

The eigenvectors )}3,2,1,0( ,{    =kkz  in the first part of Proposition 2 represent 
agglomeration patterns of skilled workers by the configuration pattern of the entries. For 
example, all entries of z0 are equal to one, and the entry pattern of ]1,1,1,1[     0 =z  corresponds 
to the state (configuration of skilled workers among four regions) in which skilled workers are 
uniformly distributed among four regions; ]1,1,1,1[      2 −−=z  has the alternate sequence of 1 
and −1 representing a duocentric pattern in which skilled workers reside in two regions 
alternately; similarly, 1z  and 3z   correspond to a monocentric pattern. 

The eigenvalue gk in the second part of the proposition can be interpreted as the strength of 
“net agglomeration force” that leads the uniform distribution in the direction of the kth 
agglomeration pattern (i.e., the kth eigenvector). By the term “net agglomeration force”, we 
mean the net effect of the “agglomeration force” minus “dispersion force”. Specifically, each 
of these two forces corresponds to xb  and 2 xa  in (3.10b), respectively. As is clear from 
the derivation of the eigenvalues g, the former term ( xb ) stems from S∇  and the first term 

TM  of )(Hw∇ (see (A1.2) and (A1.3) in Appendix 1), each of which means the so-called 
“forward linkage” (or “price-index effect”) and “backward linkage” (or “demand effect”), 
respectively. This implies that this term represents the centripetal force induced by the 
increase in variety of products that would be realized when the uniform distribution h  
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deviates to the agglomeration pattern zk. The latter term ( 2 xa ), which stems from )(Lw∇  
and the second term of )(Hw∇ , represent the centrifugal force due to the increased market 
competition (“market crowding effect”) in the agglomerated pattern zk. 

 
4. Theoretical prediction of agglomeration patterns 
 
4.1. Emergence of agglomeration 

In order for the bifurcation from the uniform equilibrium distribution ],,,[ hhhh=h  to 
occur with the changes in the SDF r (or the transportation cost τ ), either of the eigenvalues 

)( 31 gg =  and 2g  must change sign. Since the eigenvalues )3,2,1(   =kgk  are given by 
)( kfG , the changes in sign mean that there should exist real solutions for the quadratic 

equation (4.1) with respect to kf : 

  0)( 12
    =−−≡ −θkkk fafbfG   (4.1) 

Moreover, the solutions must lie in the interval )1 ,0[    that is the possible range of the 
eigenvalue fk (see (3.10)). These conditions lead us to the following proposition: 

Proposition 3: Suppose that we continuously increase the value of the SDF r (i.e., we 
decrease the transport cost parameter τ ) of the CP model in a racetrack economy with 4 
regions, starting from 0=r . In order for a bifurcation from a uniform equilibrium 
distribution ],,,[ hhhh=h  to some agglomeration to occur, the parameters of the CP model 
should satisfy: 

  0 4 12 ≥−≡Θ −θab , and ab 2≤Θ+   (4.2) 

The first inequality of (4.2) is the condition for the existence of real solutions of the (4.1) 
with respect to fk . This condition is not necessarily satisfied for the cases when heterogeneity 
of consumers is very large (i.e., θ  is very small), which implies that no agglomeration 
occurs in such cases. The second inequality of (4.2), which stems from the requirement that 
the solutions of (4.1) are less than 1, corresponds to the “no black-hole” condition that is well 
known in literature dealing with the two-region CP model. For the cases when parameters of 
the CP model do not satisfy this condition, the eigenvalues )3,2,1(   =kgk  are positive even 
when the SDF is zero (i.e., transportation cost τ  is very high), which means that the uniform 
distribution h  cannot be a stable equilibrium. 

In the following analyses, we assume that the parameters ),,( θσh  of the CP model satisfy 
(4.2). We then have two real solutions for the quadratic equation (4.1) with respect to kf : 

  )2/()(* abx Θ+≡+  and )2/()(* abx Θ−≡−  (4.3) 

Each of the solutions *
±x  means a critical value (“break point”) at which a bifurcation from 

the flat earth equilibrium h  occurs when we regard the eigenvalue fk as a bifurcation 
parameter. Since we are interested in the process of increasing the SDF r, it is more 
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meaningful to express the break point in terms of the SDF (rather than in terms of fk). Note 
here that each of the eigenvalues )}({ rfk  is a monotonically decreasing function of the SDF 
(see (3.10c) in Proposition 2). This implies that, in the process of increasing the SDF, the 
eigenvalue )(rfk  first crosses the critical value *

+x  before reaching *
−x . We can also see 

from (3.10c) that the eigenvalue f2(r) first reaches the critical value *
+x  before )(1 rf  does, 

since )(2 rf  is always smaller than )(1 rf : 

  ]1 ,0()()()()( 2
21 ∈∀≡>≡ rrcrfrcrf   

Thus, we can conclude that, in the course of the steady increases in the SDF, the first 
bifurcation occurs when the SDF first reaches the critical value *

+r  that satisfies: 

  2**
2

* )()( +++ ≡= rcrfx    

To be more specific, the critical value *
+r  of the SDF is given by: 

  )1( / )1( ***
+++ +−= xxr   (4.4) 

It is worth noting that (4.4) implicitly provides information on the changes in *
+r  with the 

changes in values of the CP model parameters ),,( θσh  since *
+x  is explicitly represented as 

a function of the CP model parameters in (4.3). To take but one example, consider the effect 
of an increase in the skilled workers h of the Pf model with homogeneous consumers (i.e., 

+∞→θ ), for which the solution *
+x  in (4.3) reduces to: 

  )1(//  .lim 1
  

* −
++∞→

+== hbabx σ
θ

   

It can easily be seen that the increase in the number of skilled workers h increases *
+x , and 

this in turn decreases the critical value *
+r . 

The fact that the eigenvalue f2(r) first crosses the critical value *
+x  also enables us to 

identify the associated agglomeration pattern that emerges at the first bifurcation. Recall here 
that the equilibrium solution moves in the direction of the eigenvector whose associated 
eigenvalue first hits the critical value. As stated in Proposition 2, this direction is the second 
eigenvector ]1,1,1,1[      2 −−=z . Therefore, the pattern of agglomeration that first emerges is: 

  ] , , ,[2 δδδδδ −+−+=+= hhhhzhh  )0( h≤≤ δ   

in which skilled workers agglomerate in alternate two regions. Thus, we can characterize the 
bifurcation from the uniform distribution as follows. 

Proposition 4: Suppose that the conditions of (4.2) in Proposition 3 are satisfied for the CP 
model, and that the uniform distribution ] , , ,[ hhhh=h  of skilled workers is a stable 
equilibrium at some value of the SDF r. Starting from this state, we consider the process 
where the value of the SDF continuously increases (i.e., the transportation cost τ decreases). 

1) The net agglomeration force (i.e., the eigenvalue) kg  for each agglomeration pattern 
(i.e., the eigenvector) zk increases as the SDF increases, and the uniform distribution 
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becomes unstable (i.e., agglomeration emerges) at the break point *
+= rr  given by (4.3) 

and (4.4). 

2) The critical value *
+r  for the bifurcation decreases, as a) the heterogeneity of skilled 

workers (in location choice) is smaller (i.e., θ is large), b) the number of skilled workers 
relative to that of the unskilled workers are larger (i.e., h is large), c) the elasticity of 
substitution between two varieties is smaller (i.e., σ is small). 

3) The pattern of agglomeration that first emerges is ] , , ,[ δδδδ −+−+= hhhhh  
)0( h≤≤ δ , in which skilled workers agglomerate alternately in two regions. 

4.2. Evolution of agglomeration 
In conventional CP models with two regions, increases in the SDF (or decreases in 

transportation cost τ) lead to the occurrence of a bifurcation from the uniform distribution h  
to a monocentric agglomeration. In the CP model with four (or more) regions, the first 
bifurcation shown in 4.1 does not directly branch to the monocentric pattern; instead, further 
bifurcations (leading either to a more concentrated pattern or a more dispersed pattern) can 
repeatedly occur. In what follows, we will examine such evolution of agglomeration after the 
first bifurcation, restricting ourselves to the homogeneous consumer case (i.e., +∞→θ ). 

4.2.1. Evolution to a duocentric pattern h*–Sustain point for h* 
For the Pf model with homogeneous consumers, the deviation δ  from the uniform 

distribution h  monotonically increases with the increases in the SDF after the first 
bifurcation. Shortly after the increases in the SDF from the break point *

+= rr , this leads to a 
duocentric pattern, ]0 ,2 ,0 ,2[* hh=h , where skilled workers equally exist only in the 
alternate two regions. The fact that the duocentric pattern h* may exist as an equilibrium 
solution of the Pf model can be confirmed by examining the “sustain point” for h*. The 
sustain point is the value of the SDF above which the equilibrium condition for h*, 

    )}({max)()( **
2

*
0 hhh kk

vvv ==      (4.5) 

is satisfied. As shown in Appendix 4, the condition of (4.5) indeed holds for any r larger than 
*

01r , which is the sustain point for h*. This is illustrated in Figure 1(a), where the horizontal 
axis denotes the SDF r, and the curve represents the utility difference )()( *

1
*

0 hh vv −  as a 
function of r. As can be seen from this figure, )()( *

1
*

0 hh vv − , is positive for any r larger than 
1.0=r  (the sustain point), which means that the duocentric pattern h* continues to be an 

equilibrium for the range of the SDF above the sustain point. 

4.2.2. Bifurcation from the duocentric pattern–Break point at h* 
After the emergence of the duocentric pattern ]0 ,2 ,0 ,2[* hh=h , further increases in the SDF 
(above the sustain point * 

01rr = ) can lead to further bifurcations (i.e., *h  become unstable). 
In order to investigate such a possibility, we need to obtain the eigenvectors and the 
associated eigenvalues for the Jacobian matrix of the adjustment process at *h : 
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  (a) The sustain point for *h  (b) The sustain point for **h  

1. Figure  The sustainable regions for ]0 ,2 ,0 ,2[* hh=h  and ]0 ,0 ,0 ,4[** h=h  
 

  IhvhJhF −∇=∇ )( )()( **
 

* H    

A seeming difficulty we encounter in obtaining the eigenvalues is that the Jacobian )( *hF∇  
at *h  is no longer a circulant matrix, unlike the Jacobian )( hF∇  at h . This is because of 
the loss of symmetry in the configuration of skilled workers: D4 symmetry of h  is reduced 
to D2 symmetry of *h  (see Figure 2), which leads to the fact that )( *

 hJ  and )( *hv∇  are 
not circulants. However, as it turns out, it is still possible to find a closed form expression for 
the eigenvalues of )( *hF∇  by using the fact that the duocentric pattern *h  has partial 
symmetry and the submatrices of )( *

 hJ  and )( *hv∇  are circulants (see Lemma A.1). 

 

 

 

 

           D4 symmetry    D2 symmetry 

2. Figure  Symmetry of the two configurations ) , , ,( hhhh=h  and )0 ,2 ,0 ,2(* hh=h  

In order to exploit the symmetry remaining in the duocentric pattern *h , we begin by 
dividing the set }3,2,1,0{      =C  of regions into two subsets: the subset }2,0{    0 =C  of regions 
with skilled workers, and the subset }3,1{    1 =C  of regions without skilled workers. 
Corresponding to this division of the set of regions, we consider the following permutation 
σ  of the set }3,2,1,0{      =C : 

  3)3(  ,1)2(  ,2)1(  ,0)0( ==== σσσσ    

so that the first half elements )}1( ),0({ σσ  and the second half elements )}3( ),2({ σσ  of the 
set )}3( ),2( ),1( ),0({ σσσσ=PC  correspond to the subsets 10  and CC , respectively. For this 
permutation, we then define the associated permutation matrix P: 

*
01r  

**
02r

10 vv −  ivv −0  

r
r 

20 vv −  10 vv −  
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It can be readily verified that, for a 4 by 4 matrix A whose ),( ji  element is denoted as ija , 
TPAP  yields a matrix whose ),( ji  element is )( )( jia σσ , and that IPPPP == TT

 ; that is, 
the similarity transformation TPAP  gives a consistent renumbering of the rows and columns 
of A by the permutation σ . 

The permutation σ  (or the similarity transformation based on the permutation matrix P) 
constitutes a “new coordinate system” for analyzing the Jacobian matrix of the adjustment 
process. Under the new coordinate system, the SDM D can be represented as: 

  ⎥
⎦

⎤
⎢
⎣

⎡
=≡×

)0()1(

)1()0(
T

  
DD
DDPDPD   (4.6) 

where each of the submatrices D(0) and D(1) is a 2-by-2 circulant generated from a vector 
T2)0(

0 ] ,1 [ r≡d  and T
  

)1(
0 ] ,[ rr≡d , respectively. Similarly, the Jacobian matrix )( *hF∇ of the 

adjustment process is transformed into: 

  IhvhJPhFPhF −∇=∇≡∇ ××× )( )()()( **
 

T** H  (4.7a) 

where the Jacobian matrices in the right-hand side are respectively defined by: 

  ⎥
⎦

⎤
⎢
⎣

⎡
=∇≡∇×

)11()10(

)01()00(
T

 
*

 
*

2
1)()(

VV
VVPhvPhv

h
 (4.7b) 

  ⎥
⎦

⎤
⎢
⎣

⎡
=≡×

)11()10(

)01()00(
T

 
*

 
* )()(

JJ
JJPhJPhJ   (4.7c) 

and the submatrices )1,0,(  and  
)()( =jiijij JV  are 2-by-2 matrices.  

 For these Jacobian matrices under the new coordinate system, we can show (Lemma A.1) 
that all the submatrices )1,0,(  and  

)()( =jiijij JV  are circulants. This fact allows us to 
conclude (Lemma A.2) that knowing only the eigenvalues )00(e  of the submatrix )00(V  

)},(  /{ 0Cjidhdv ji ∈=  is sufficient to obtain the eigenvalues *g  of the Jacobian )( *hF∇ . 
Furthermore, it can be readily shown that the submatrix V(00) is a circulant consisting only of 
submatrices D(0) and D(1) of the SDM D (these are also circulants), which means that we can 
obtain analytical expressions for the eigenvalues )00(e . These considerations lead to the 
following lemma: 

Lemma 1: The Jacobian matrix )( *hF∇  of the adjustment process (2.18) of the CP model at 
h* has the following eigenvector and the associated eigenvalues: 

1) the kth eigenvector )3,2,1,0(    =k  is given by the kth row vector, *
kz , of the discrete 

Fourier transformation (DFT) matrix PZZPZ  ],[diag [2][2]
T* ≡ , where ⎥

⎦

⎤
⎢
⎣

⎡
−

≡
11

11
[2]Z . 
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2) the eigenvalues )}3,2,1,0( {    
* =kgk  are given by )3 ,1 ,0(  1* =−= kgk , and 

  ))(( 2*
   

*
2 rcGg θ= ,  (4.9a) 

  12*
 

*   )( −−−≡ θxaxbxG ,  (4.9b) 

where )1/()1()( 222 rrrc +−≡ , and the parameters a* and b are defined as 

  ))2(1( 11* −− +≡ ha σ , 11)1( −− +−≡ σσb .  

Proof: see Appendix 5. 

The eigenvalues *g  obtained in Lemma 1 allow us to determine the critical value (“break 
point”) at which a bifurcation from the duocentric pattern ]0 ,2 ,0 ,2[* hh=h  to a more 
concentrated pattern occurs. In a similar manner to the discussion for the first bifurcation 
from the uniform distribution ] , , ,[ hhhh=h , we see that the second bifurcation from the 
duocentric pattern h* occurs when the eigenvalue )(*

2 xg  changes sign. Since )(*
2 xg  is 

given by (4.9), the critical values of )( 2rcx ≡  at which the eigenvalue changes sign are the 
solutions of the quadratic equation 0)(* =xG . For the homogeneous consumer case (i.e., 

+∞→θ ), the quadratic equation reduces to: 

  0 )(  .lim 2** =−=
+∞→

xaxbxG
θ

  (4.10) 

and hence, the critical values (the two solutions of (4.10)) are given by: 

  ))2(1(// 1
  

*** −
+ +== hbabx σ , and 0** =−x  (4.11) 

Note here that )( 2rcx ≡  is a monotonically decreasing function of the SDF. This implies 
that, in the course of increasing the SDF, the x first crosses x+

**. Therefore, the second 
bifurcation occurs when the SDF first reaches the critical value **

+r that satisfies )( 2 ****
++ = rcx . 

That is, the critical value of the second bifurcation in terms of the SDF is given by: 

  2/1 ****** )]1( / )1[( +++ +−= xxr   (4.12) 

We can also identify the associated agglomeration pattern that emerges at this bifurcation. The 
moving direction away from h* at this bifurcation is the second eigenvector )0 ,1 ,0 ,1(*

2 -=z . 
Accordingly, the emerging spatial configuration is given by: 

  )0 ,2 ,0 ,2(*
2 

* δδδ −+=+= hhzhh  )20( h≤≤ δ   

Thus, the properties of the second bifurcation can be summarized as follows: 

Proposition 5: Suppose that the SDF r is larger than the sustain point *
01r  of the duocentric 

pattern ]0 ,2 ,0 ,2[* hh=h  and *h  is a stable equilibrium for the CP model with 
homogeneous consumers. With the increases in the SDF, the duocentric pattern *h  become 
unstable at the second break point **

+= rr  given by (4.11) and (4.12), and then a more 
concentrated pattern ]0 ,2 ,0 ,2[ δδ −+= hhh  )20( h≤≤ δ  emerges. 
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4.2.3. Evolution to a monocentric pattern h** –Sustain point for h** 
After the second bifurcation, the deviation δ  from the duocentric pattern 

]0 ,2 ,0 ,2[* hh=h  monotonically increases with the increase in the SDF, which leads to a 
monocentric pattern, ]0 ,0 ,0 ,4[** h=h . This fact can be confirmed by examining a sustain 
point for the monocentric pattern. As shown in Appendix 4, the equilibrium condition for 

**h : 

  )}({max)( ****
0 hh kk

vv =   (4.13) 

is satisfied for any r larger than some critical value **
02r , which is the sustain point for **h . 

This is illustrated in Figure 1(b), where the horizontal axis denotes the SDF, and each of the 
red and blue curves is the utility difference )()( **

2
**

0 hh vv −  and )()( **
1

**
0 hh vv −  as a 

function of r, respectively. As can be seen from this figure, v0(h**) gives the largest utility 
among )}3,2,1,0( )( { ** =ivi h  for any r larger than 0.3 (the sustain point), which means that 
the monocentric pattern **h  continues to be an equilibrium  for the range **

021 rr >> . 
 The results obtained so far can be summarized as a schematic representation in Figure 3. 
 
 
 
 
 
 

.3 Figure  A series of agglomeration patterns that emerge in the course of increasing the SDF. 
 
4.3. Collapse of agglomeration 

In 4.1, we derived two critical values (of the eigenvalue fk of the matrix D), *
+x  and *

−x , at 
each of which a bifurcation from the uniform distribution ] , , ,[ hhhh=h  occurs, and only the 
properties of the bifurcation at the former critical value )( *

+x  have been shown. We now 
examine the bifurcation at the latter critical value )( *

−x . Before starting a detailed discussion 
on the bifurcation at *

−x , we should recall that the eigenvalue gk for each agglomeration 
pattern k is a quadratic function of fk as seen in Proposition 2. It follows that each of the 

}{ kg  is a unimodal function of the SDF because fk is a decreasing function of the SDF. In 
other words, all the net agglomeration forces monotonically decrease7 after a monotonic 
increasing process in the course of increasing the SDF. This fact implies that agglomeration 

                                                 
7 As seen from (3.12b), the absolute values of both the agglomeration force (the first term, b fk, of gk) and 
dispersion force (the second term, a fk

2, of gk) decline as fk decreases. It should be noted that the rate of decay 
(with the decrease in fk) of the agglomeration force, b, is constant, while that of the dispersion force, 2a fk, is 
proportional to fk. This means that the latter gets smaller than the former for fk < b/(2a). In other words, for the 
range [rk

-1(b/(2a)), 1] of the SDF, the agglomeration force declines faster than the dispersion force (i.e., the net 
agglomeration force decreases) as the SDF increases. 

  

r 
*
+r  **

+r  *
01r  **

02r  1 0 
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patterns observed in 4.1 and 4.2 might revert to the dispersed distribution h  if every net 
agglomeration force at h  could decrease to negative values for a (relatively) high SDF range. 
Whether or not this can happen decisively depends on the value of *

−x , which in turn depends 
on the heterogeneity of the consumers. Thus, we divide the following discussion into two 
cases: the first is when consumers are homogeneous with respect to location choice, and the 
second is when consumers are heterogeneous. As we shall see below, these two cases exhibit 
significantly different properties for the bifurcation at *

−x . 
 For the homogeneous consumers case (i.e., +∞→θ ), 2b=Θ  holds and hence the critical 
value given by (4.3) reduces to the following simpler expression: 

  0)(  .lim * =−
+∞→

θ
θ

x     

Substituting this into the inverse function, )(⋅kr , of the eigenvalue fk(r), we see that 

  krxr kk ∀==−   1)0()( *    

This means that the net agglomeration forces g are always positive for the interval )1 ,[ *
+r of 

the SDF. This fact is illustrated in Figure 4(a), where the horizontal axis denotes the SDF r, 
and the red curve denotes the eigenvalue g2 as a function of r, while the blue curve denotes 
the eigenvalue g1; both of the two curves are unimodal functions whose values reach zero at 

1=r . Therefore, the critical value of the SDF at which the bifurcation from agglomeration 
equilibrium to the flat earth equilibrium occurs is: 

  1.lim * =−
+∞→

r
θ

    

That is, no matter how large the SDF is, agglomeration never breaks down, except for the 
maximum limit at 1=r . 
 For the case in which consumers are heterogeneous (i.e., θ  is finite), we see from (4.3) 
that the critical value *

−x  is always positive regardless of the values of the CP model 
parameters, and hence: 

  kxrk ∀<−   1)( *     

This means that the net agglomeration force gk can be negative on the interval ]1 ),([ *
−xrk  of 

the SDF. This fact is illustrated in Figure 4(b), where the logit choice parameter θ  is set 
equal to 20; the horizontal axis, the red and blue curves denote the SDF, the eigenvalues g2 
and g1, respectively. Unlike the case of the homogeneous consumers, both of the two 
eigenvalues reach zero at 1<r . Accordingly, in the course of increasing the SDF, a 
bifurcation from some agglomeration pattern to the uniform distribution (“re-dispersion”) 
occurs at the critical value: 

  1)1(/ )1()( *
 

**
1

* <+−== −−−− xxxrr  (4.14) 

above which all the net agglomeration forces are negative. That is, the economy with 
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heterogeneous consumers necessarily moves from agglomeration to dispersion when the SDF 
increases (the transportation cost τ decreases) to a relatively high range. This is a generalized 
result of the “bell-shaped ” bifurcation diagram obtained in Tabuchi and Thisse (2002) and 
Murata (2003), in which consumers (skilled workers) in the two-region CP model are 
supposed to exhibit idiosyncratic taste differences in residential locations. 
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.4 Figure  Eigenvalues g1 and g2 as functions of the spatial discounting factor. 

 Some remarks regarding the “re-dispersion” are in order. First, for the “re-dispersion” to 
occur in the CP model, it is sufficient that the model parameter satisfies 0* >−x . This 
requirement, even if the consumers are homogeneous, can be satisfied by adding an extra 
negative (constant) term to the function G in (3.10) determining the critical values *

−x . 
Therefore, we can deduce that “re-dispersion” occurs whenever some dispersion forces, such 
as land rent or congestion externality, that increase with agglomeration (but do not depend on 
the SDF r) are introduced into the CP model. This deduction is, of course, applicable to the 
conventional two-region model as well as the current four-city model. This gives a consistent 
theoretical explanation of several “re-dispersion” results reported in studies on the two-region 
CP model: Tabuchi (1998), Helpman (1998) 8, Alonso-Villar (2007), in each of which 
residential land rent (that is an increasing function of the number of skilled workers in each 
city) is introduced into the two-region CP model with homogeneous consumers. 
 Second, somewhat surprisingly, the “re-dispersion” can be observed not only at the critical 
value r-

* but also in the course of evolving agglomeration; the re-dispersion at r-
* is the last 

among multiple re-dispersions in the course of increasing the SDF. The mechanism by which 

                                                 
8 Strictly speaking, the Helpman’s model and Murata-Thisse’s model do not exhibi “re-dispersion”; in their 
models, a uniform distribution is unstable (i.e., an agglomerated pattern is a stable equilibrium) when the SDF is 
very low (i.e., the transportation cost is very high). This is because their models do not satisfy the “no 
black-hole” condition (note that their models are not endowed with immobile laborers that function as a 
dispersion force in the Krugman’s CP model), which causes the degeneration of the first bifurcation from the 
uniform distribution. As a result, their model exhibits only a single time of bifurcation from the agglomeration to 
dispersion, and the one and only bifurcation corresponds to the “re-dispersion” in the current context. 
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such repetitions of agglomeration and dispersion may occur can best be explained by the 
example in Figure 5. Each of the red and the blue curves in this figure respectively represent 
the eigenvalue g2 and g1 at the uniform distribution h  as a function of the SDF r (the 
horizontal axis). It follows that a bifurcation from agglomeration to dispersion occurs at the 
time if all the eigenvalues become negative. We can see from the figure that this actually 
occurs twice during the process of increasing r: 
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.5 Figure  Repetition of agglomeration and dispersion ( 20,4.2,1.0 === θσh ) 

 :A Range  the uniform distribution h  is unstable because the eigenvalue g2 associated 
with the eigenvector ]1,1,1,1[      2 −−=z  at h  is positive. 

 :B Range  the uniform distribution h  is stable because all the eigenvalues }{ kg  at h  
are negative. The bifurcation from agglomeration )( 2 zh δ+  to dispersion occurs at the 
boundary **

−r  between A and B. 
 :C Range  the uniform distribution h  is unstable because the eigenvalues g1 and g3 

associated with the eigenvectors ]i,1,i ,1[   1 −−=z  and ]i ,1,i,1[     3 −−=z  at h  are 
positive. The bifurcation from dispersion to agglomeration ))(( 3 1 zzh ++ δ  occurs at the 
boundary r+

** between B and C. 
 :D Range  the uniform distribution h  is stable because all the eigenvalues }{ kg  at h  

are negative. The bifurcation from agglomeration ))(( 3 1 zzh ++ δ  to dispersion occurs at 
the boundary *

−r  between C and D. 

The observations so far can be summarized as the following proposition: 

Proposition 6: Starting with an agglomeration state, we consider the process where the SDF 
continuously increases (i.e., the transportation cost τ decreases). 

1) The net agglomeration force kg  for each kz  monotonically decreases with the increase 
in the SDF after a monotonic increase process (i.e., gk is a unimodal function of the SDF). 

2) For the CP model with homogeneous consumers, all the net agglomeration forces reach 
zero only at the limit of 1=r . That is, the agglomeration equilibrium never reverts to the 
uniform distribution equilibrium during the course of increasing the SDF. 
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3) For the CP model with heterogeneous consumers, all the net agglomeration forces 
reaches zero at a strictly positive value of the SDF. That is, a bifurcation from some 
agglomeration to the uniform distribution equilibrium (“re-dispersion”) occurs at *

−= rr , 
where *

−r
 is given by (4.3) and (4.14). Furthermore, the “re-dispersion” can occur not only 

from the monocentric agglomeration but also from the duocentric agglomeration. That is, 
repetitions of agglomeration and dispersion may be observed for the CP model with 
heterogeneous consumers (see Figure 5) 
 

5. Concluding remarks 
 
 This paper provided a simple approach to analyzing the bifurcation phenomena in the 
multi-regional core-periphery (CP) model. The proposed method allows us not only to 
examine whether or not agglomeration of mobile factors emerges from a uniform distribution, 
but also to trace the evolution of spatial agglomeration patterns (i.e., bifurcations from various 
polycentric patterns as well as a uniform pattern) with the steady decreases in transportation 
cost. Furthermore, it is theoretically deduced that the evolutionary process in the CP model 
may exhibit repetitions of agglomeration and dispersion, which gives a theoretical explanation 
for several “bell-shaped development” results reported in studies on the two-region CP 
models. Although we restricted ourselves to illustrating the evolutionary process in the 
four-region case, the approach can be extended to more general cases. The detailed discussion 
on the method available for models with an arbitrary number of regions can be found in 
Akamatsu et al., (2009). 
 Through the analysis of the CP model, we also demonstrated that the spatial discounting 
matrix (SDM) encapsulates the essential information required for analyzing the multi-regional 
CP model. Specifically, in order to know spatial concentration-dispersion patterns that may 
emerge in the CP model, it suffices a) to obtain the eigenvalues of the SDM, and b) to 
represent the Jacobian matrix of the indirect utility as a function of the SDM. It should be 
emphasized that this fact holds for a wide variety of models dealing with the formation of 
spatial patterns in economic activities. Indeed, the same procedure as that of this paper can be 
readily applied to other variants of the multi-regional CP model. Therefore, it would be 
valuable for future research to investigate the bifurcation behaviors in these models by 
exploiting the method presented in this paper. We believe that such systematic studies would 
substantially improve our understanding of the nature of agglomeration economies. 
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Appendix 1 Jacobian Matrices for the Pf model 
The Jacobian matrix of the adjustment process for the Pf model is 

  IhvhJhF −∇=∇ )()()(  H .   

The Jacobian matrices, vJ ∇ and  , in the right-hand side of (2.19) is given by 
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  )]()([)()( )()(1 hwhwhShv HL ∇+∇+∇=∇ −σ   (A1.2) 

where the matrices )( , LwS ∇∇  and )(Hw∇  in the right-hand of (A1.2) are given by 

  T1)1( MS −−=∇ σ ,   (A1.3a) 

  T)( MMw −=∇ L ,  T)(  MMHMw −=∇ H . (A1.3b) 

Appendix 2 Jacobian Matrices and Its Eigenvalues for the FO model 
We show the Jacobian matrix )(hv∇  and eigenvalues g of )(hF∇  for the FO model in turn. 
(1) Differentiating the indirect utility function (2.14) with respect to h and substituting hh =  into the 
result, )(hv∇  is given by: 

  )( )/()( 11 hwDhv ∇+=∇ −
−

− wdh κ   (A2.1) 

where )1/( −≡− σμκ  and ])1/[()( hww i κκ −=≡ h . The matrix )(hw∇  in the right-hand side is 
obtained by differentiating both sides of (2.9) with respect to h and substituting hh =  into this equation: 

  ])/([ )/(])/( [  )( 11 dddwh DIDDIhw −−=∇ −− κκ  (A2.2) 

where σμκ /≡ . Substituting (A2.2) into (A2.1), we obtain the Jacobian matrix of the indirect utility: 

  } )]/()[/()]/([)/({ )( 1
 

1 ddddh DIDDIDhv −−+=∇ −
−

− κκκ  (A2.3) 

(2) To obtain g, it is sufficient to calculate the eigenvalues e of )(hv∇ , since )(hF∇  and )(hJ  are 
expressed as (3.5) and (3.4), respectively. From the fact that the right-hand side of (A2.3) consists only of D 
and I (i.e., )(hv∇  is a circulant), we can obtain e by the DFT of the first row vector of this matrix. 

  ]}[]1[{ 11
kkkkk ffffhe −−+= −

−
− κκκ  (A2.4) 

Substituting (A2.4) and (3.7) into (3.6b), we have: 
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where 12
  )( −−−≡ θkkk fafbfG , 1+≡ −κκa , )1( 1−

− ++≡ θκκb . 

Appendix 3 Properties of Circulant Matrices 
A circulant C  is defined as a square matrix of the form: 
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The elements of each row of C are identical to those of the previous row, but are moved one position to the 
right and wrapped around. The whole circulant is evidently determined by the first row vector 
c=[c0,c1,…,cK-1]. Circulant matrices satisfy the following two well-known properties9. 

Property 1: Every circulant matrix C is diagonalized by the following similarity transformation: 

  )(diag* λCZZ =     

where Z is the DFT matrix whose ),( kj  entry is given by )]/2(iexp[ Kjkjk πω = , 1i −≡ ; 
[ ]T

110 ,,, −≡ Kλλλ Lλ , and Z* denotes the conjugate transpose of Z. The kth eigenvalues and the 
eigenvectors of C are therefore λk and the kth row of the DFT matrix Z, respectively. Furthermore,  λ is 
directly given by the DFT of the first row vector c of C: TZcλ = . 

Property 2: If C1 and C2 are circulant matrices, the sum C1 + C2 and the product C1C2 are circulants. Also, 
if C1 is nonsingular, its inverse C1

−1 is a circulant. 

Appendix 4 Sustain points for ]0 ,2 ,0 ,2[* hh=h  and ]0 ,0 ,0 ,4[** h=h  
We will show the derivation of sustain points for ]0 ,2 ,0 ,2[* hh=h  and ]0 ,0 ,0 ,4[** h=h , in turn. 
(1) For the duocentric pattern ]0 ,2 ,0 ,2[* hh=h , we can easily obtain the indirect utility for each region by 
substituting *hh =  into (2.15): 
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where )1/(2)( 2rrrx +≡ . To obtain the sustain point for *h , we represent the utility difference between 
the “core” regions and the “periphery” regions as a function of the SDF: 
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By inspecting the function v01(r), we see that it takes zero value at 1=r  and *
01rr = >0 (i.e., the equation 

0)(01 =rv  has two positive solutions 1 and *
01r ) and that: 
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This means that the equilibrium condition for *h , )}({max)()( **
2

*
0 hhh kk vvv == , is satisfied for any r 

larger than *
01r ; that is, *

01rr =  is the sustain point for *h . 
(2) The sustain point for the monocentric pattern ]0 ,0 ,0 ,4[** h=h  can be obtained in a similar manner. 
The indirect utility at **h  is given by: 
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Define the following utility difference functions at )0 ,0 ,0 ,4(** h=h : 
                                                 
9 For the proofs of these properties, see, for example, Gray (2006). 
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After a tedious calculation, we can show that: 
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where *
 0 ir  is the solution of 0)( 0 =rv i  )2,1( =i . That is, the equilibrium condition for **h , )( **

0 hv
 )}({max **hkk v= , is satisfied for any r larger than **

02r ; that is, **
02rr =  is the sustain point for **h . 

Appendix 5 Proof of Lemma 1 
The following two lemmas help us prove Lemma 1: 

Lemma A.1: All the submatrices )1,0,(    
)()( =jiand ijij JV  defined in (4.7) are circulants. 

Lemma A.2: The eigenvalues )3,2,1,0(    
* =kgk  of the Jacobian matrix )( *hF∇  at ]0  ,2  ,0  ,2[* hh=h  

are represented as 1 )00(
1 

*
2 −= eg θ  and )3 ,1 ,0(  1* =−= kgk , where T)00(

1
)00(

0
)00( ] ,[ ee≡e  denotes the 

eigenvalues of the Jacobian matrix V(00). 

Proof of Lemma A.1: We prove that each of the submatrices J(ij) and V(ij) is a circulant in turn. 
(1) Let each of p(0) and p(1) denote the location choice probability of the subset of regions )0(0 =iC  and 

)1(1 =iC  at the agglomerating pattern h*, respectively: 
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A straightforward calculation of the definition (4.7) of T
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 )(
)( 

)(   ji
i

ji p pJ θ=  where  ⎥
⎦

⎤
⎢
⎣

⎡
−−

−−
=

)()(

)()()(  

jijj

jjijji

pp
pp

δ
δ

p  )1,0,( =ji   

This explicitly shows that the submatrices )1,0,()( =jiijJ  are circulants generated from: 
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(2) As is shown in (A1.2), the Jacobian matrix )( *hv∇  consists of additions and multiplications of 
1** )}({)( −≡ hΔDhM . It follows from this that the Jacobian matrix T
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coordinate system consists of those of T
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Therefore, in order to prove that V(ij) )1,0,( =ji  are circulants, it suffices to show that the submatrices 
)(ijM  )1,0,( =ji  are circulants. Note here that T
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 )( PhMP  can be represented as: 
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The first bracket of the right-hand side of (A5.3) is given in (4.6), and a simple calculation of the second 
bracket yields: 

 1
)1( )1()0( )0(

1T1* ]},,,[diag{)2()}({ −−− = ddddhPhΔP    
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where 2
)0( 1 rd +≡  and rd 2)1( ≡ . Thus, we have: 
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h   (A5.4) 

which shows that the submatrices )(ijM  )1,0,( =ji  are circulants. 

Proof of Lemma A.2: We prove that the eigenvalues of the Jacobian )( *hF∇  are given by 
1−T)00(

1 ]0, ,0,0[ eθ  when 2/1)0( →p . Consider the Jacobian )( *hF×∇  in the new coordinate system: 

 T
 

*
 

* )()( PhFPhF ∇≡∇× IhvhJ −∇= ×× )()( *
 

*
 H I

FF
FF

−⎥
⎦

⎤
⎢
⎣

⎡
≡ )11()10(

)01()00(
 2  (A5.5a) 

 ∑ =≡ 1,0
)()()(

k
jkkiij VJF   )1,0,( =ji   (A5.5b) 

Note here that the submatrices )(ijF  of the Jacobian matrix )( *hF×∇  are circulants because all 
submatrices )(ijJ  and )(ijV  )1,0,( =ji  are circulants. This enables us to diagonalize each of the 
submatrices )(ijF  by using a 2-by-2 DFT matrix Z[2]: 

 I
ff
ffZFZ −⎥

⎦

⎤
⎢
⎣

⎡
=∇ ××−×

)(diag)(diag
)(diag)(diag 2  )( )11()10(

)01()00(
1   (A5.6) 

where )(ijf  is the eigenvalues of )(ijF , and ],[diag [2][2] ZZZ ≡× . It also follows that applying the 
similarity transformation based on ]2[Z  to both sides of (A5.5b) yields: 

 ∑ = ⋅= 1,0
)()()( ][][k

jkkiij ef δ   )1,0,( =ji   (A5.7) 

where T)(
1

)(
0

)( ] ,[ ijijij δδ≡δ  and T)(
1

)(
0

)( ] ,[ ijijij ee≡e  denote the eigenvalues of the Jacobian matrices )(ijJ  
and )(ijV  )1,0,( =ji , respectively. The former eigenvalues δ(ij) can be given analytically by the DFT of the 
first row vector )(

0
ijJ  of the submatrix )(ijJ : 

 )(
0]2[

)( ijij JZ=δ   )1,0,( =ji    (A5.8) 

Substituting (A5.1) and (A5.2) into (A5.8), we have: 

 
T)00( ] 1 )[1)(2/( εεθ −=δ ,   

T
  

)11( ] 11 [)2/( εεθ −=δ    

 
T

 
)01( ] 0 )[1()2/( εεθ −−=δ , 

T
   

)10( ] 01 [)2/( −= εεθδ   

It follows from this that: 
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Substituting these δ(ij) )1,0,( =ji  into (A5.7) yields: 
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Thus, when 2/1)0( →p , (A5.6) reduces to: 
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Converting this into the original coordinate system, we obtain: 
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where PZPZ ×≡  
T* . Since eigenvalues of an upper-triangular matrix are given by the diagonal entries, we 

can conclude that the eigenvalues of the Jacobian )( *hF∇  are given by 1−T)00(
1 ]0, ,0,0[ eθ . 

Proof of Lemma 1: Substituting (A1.2) and (A5.4) into the definition of )( *hv×∇  in (4.7), we see that the 
Jacobian matrix V(00)

  consists of additions and multiplications of D(0) and D(1): 
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where 2
)0( 1 rd +≡ , rd 2)1( ≡ , ))2(1( 11* −− +≡ ha σ , 11*

)1( )2( −−≡ ha σ , and 11)1( −− +−≡ σσb . Since D(0) 
and D(1) are circulants, we have the following expressions for the eigenvalues e(00) of the Jacobian V(00): 
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where each vector )1,0()( =iif  is the eigenvalues of D(i)/d(i), each of which is obtained by DFT of vectors 
)(

0
id : 
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Substituting (A5.10) into (A5.9) yields: 

 0)00(
0 =e ,  2*)00(

1  xaxbe −= , where )( 2rcx ≡   (A5.11) 

Combining (A5.11) and Lemma A.2, we obtain Lemma 1. 

 

 

 


