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Abstract

I develop awareness-dependent subjective expected utility by taking unaware-
ness structures introduced in Heifetz, Meier, and Schipper (2006, 2008, 2009) as
primitives in the Anscombe-Aumann approach to subjective expected utility. I ob-
serve that a decision maker is unaware of an event if and only if her choices reveal
that the event is “null” and the negation of the event is “null”. Moreover, I char-
acterize “impersonal” expected utility that is behaviorally indistinguishable from
awareness-dependent subject expected utility and assigns probability zero to some
subsets of states that are not necessarily events. I discuss in what sense impersonal
expected utility can not represent unawareness.
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1 Introduction

Unawareness refers to the lack of conception rather than the lack of information. There is

a fundamental difference between uncertainty about which event obtains and the inability

to conceive of some events. In the literature, unawareness has been defined epistemically

using syntactic and semantic approaches.1 While epistemic characterizations are concep-

tually insightful, the behavioral content of unawareness remains unclear. For instance, a

referee of a recent report on Heifetz, Meier, and Schipper (2010a) wrote “It has become

a folk wisdom among readers of this literature that unawareness is often nothing but an-

other name for 0-probability belief. ... Is unawareness really nothing but another name

for 0-probability belief? I don’t know.”

Heifetz, Meier, and Schipper (2006, 2008, 2009) introduced a syntax-free semantics

of unawareness using state-spaces familiar to economists, decision theorists, and game

theorists.2 Instead of one state-space, it consists of a lattice of disjoint spaces, where

every space in the lattice captures one particular horizon of meanings or propositions.

Higher spaces capture wider horizons, in which states correspond to situations described

by a richer vocabulary. In the present paper, I replace the standard state-space in

the Anscombe and Aumann (1963) approach to subjective utility theory by a lattice of

spaces. This is done because Dekel, Lipman, and Rustichini (1998) showed that standard

state-spaces preclude unawareness while Heifetz, Meier, and Schipper (2006) showed that

non-trivial unawareness obtains in a lattice of spaces. In this richer framework, I am able

to characterize awareness-dependent subjective expected utility. I choose the Anscombe-

Aumann approach not because I think it is the most natural one in the context of

unawareness but because it is perhaps the most “standard” approach and starting point.

Apart from the lattice of spaces, the setting should be entirely familiar and thus easily

accessible to the reader. The message I like to convey is that unawareness structures lend

themselves in a straight-forward way as primitives in subjective expected utility theory.

Acts are now defined on the union of all spaces and do not necessarily conform

1For a comprehensive bibliography see http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm
2Apart from having a syntax-free semantics, Heifetz, Meier, and Schipper (2006, 2008) generalize

Modica and Rustichini (1999) and a version of Fagin and Halpern (1988) to the multi-agent case. The
precise connection between Fagin and Halpern (1988), Modica and Rustichini (1999), Halpern (2001)
and Heifetz, Meier, and Schipper (2006) is understood from Halpern and Rêgo (2008) and Heifetz, Meier,
and Schipper (2008). The connection between Heifetz, Meier, and Schipper (2006, 2008) and Galanis
(2007) is explored in Galanis (2008). The relationship between Board and Chung (2009) and Heifetz,
Meier, and Schipper (2006) is studied in Board, Chung, and Schipper (2009). The connections to the
models of Li (2009) and Feinberg (2009) are yet to be explored.

1



anymore to the principle of extensionality. That is, in my approach the interpretation

of the very same act depends on the awareness of the decision maker and the decision

maker may evaluate acts differently depending on her awareness. For instance, consider

a potential investor who considers the act “invest in firm X”. Firm X is a bundle of

potential opportunities and liabilities, which depend on the states of nature. Which of

these opportunities and liabilities the investor has in mind is determined by her awareness

of these events. An investor being aware of a potential law suit that involves the firm but

unaware of a potential innovation that may enhance the value of the firm may evaluate

the act differently than an investor who is unaware of the former but aware of the latter.

(See Heifetz, Meier, and Schipper (2009) and Meier and Schipper (2010) for the analysis

of speculative trade in such a setting.)

Preferences of the decision maker are defined on those modified acts, one preference

relation for each awareness level so that the same decision maker at different awareness

levels can be compared. Standard properties on preferences are imposed for each aware-

ness level and an additional property is imposed that confines the extensionality of an

act to the awareness level of the decision maker. An awareness-dependent subjective ex-

pected utility representation is then characterized in an embarrassingly straight-forward

way. Indeed, the first positive main message of this paper for the applied economist

may be that it is straight-forward to characterize subjective expected utility in unaware-

ness structures. This closes an important gap in the literature as I do not know of any

other choice-theoretic model that allows for non-trivial unawareness satisfying epistemic

properties introduced in Fagin and Halpern (1988), Modica and Rustichini (1999) and

Dekel, Lipman, and Rustichini (1998). In the literature on choice theory, non-trivial un-

awareness is precluded due to the use of standard state-space or it is not known whether

non-trivial unawareness obtains. In contrast, unawareness is defined epistemically in the

literature on unawareness but no choice-theoretic characterization has been provided.

This critique applies also to our own prior work. Originally, just epistemic properties of

unawareness structures have been studied in Heifetz, Meier, and Schipper (2006). Log-

ical foundations have been provided by Halpern and Rego (2008) and Heifetz, Meier,

and Schipper (2008). Unawareness structures have been applied to speculative trade in

Heifetz, Meier, and Schipper (2009) and Meier and Schipper (2010), to Bayesian games

in Heifetz, Meier, and Schipper (2010b), and to dynamic games and an application of

verifiable communication in Heifetz, Meier, and Schipper (2010a). Yet, until now notions

of utility and beliefs have been taken as primitives in those structures. The current paper

shows that they can be derived from choices within unawareness structures.
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The second goal is to apply the representation theorem to analyze the behavioral

implications of unawareness. Consider an outside observer who wishes to know from the

choices of a decision maker conforming to the Anscombe-Aumann approach whether she

is unaware of an event or not. It is shown that a decision maker is unaware of the event

if and only if her choices reveal that the event is “null” and the negation of the event is

“null”. This distinguishes unawareness from subjective probability zero belief, for which

the event is null but its negation cannot be null. Thus unawareness does have behavioral

implications different from probability zero belief. The following example illustrates the

point: Consider a potential buyer of a firm. Agreements on the change of ownerships

of private firms may be very complex involving many pages of legal documents. It is

not inconceivable that the buyer may be miss certain important clauses and may not

think about them when contemplating the transaction. In particular, the buyer may be

unaware of a specific costly future law suit that the firm may or may not be involved

in. Assume that the buyer can choose among two contracts. Under contract 1 the

potential law suit is the buyer’s responsibility. Under contract 2 the potential law suit

is the seller’s responsibility. Otherwise both contracts are the same in content. Being

indifferent between both contracts is consistent with assigning probability zero to the

event of the law suit. Assume now that a third contract is available. Under contract

3 the potential law suit is the seller’s responsibility but the seller receives an additional

compensation from the buyer in the event that the law suit does not obtain. Apart

from this clause, the content of contract 3 is the same as the other contracts. Being

indifferent between contract 3 and 2 is consistent with assigning probability zero to the

event of “no law suit”. Indifference between all three contracts is consistent with being

unaware of “law suit” but not with assigning probability zero to either the the events

“law suit” or “no law suit” because probability zero can not be assigned to an event and

its negation. We also provide a characterization of unawareness by (an extreme form of)

event exchangeability as introduced in de Finetti (1937) and further studied for instance

in Chew and Sagi (2006). A decision maker is unaware of an event if and only if any pair

of disjoint events with the same expressiveness are exchangeable.

The third goal of this note is to analyze in what sense unawareness could be “mod-

eled” nevertheless by probability zero. I characterize “impersonal” expected utility that

is behaviorally indistinguishable from awareness-dependent expected utility. The repre-

sentation delivers a probability measure on the “flattened state-space”, the union of all

state-spaces in the lattice, that assigns zero probability not only to null events but also

to any subsets of states (that may not necessarily be events) that the decision maker does
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“not reason” about. I argue that such a probability zero measure can not be interpreted

anymore as a “personal” or “subjective” belief but it is an artificial construct ascribed to

the decision maker by the modeler. In this sense, while being behaviorally indistinguish-

able from unawareness, the probability zero approach misses the main goal of subjective

expected utility theory, namely to ability to ascribe “personal” or “subjective” belief to

a decision maker based on his choices.

I also discuss a model in which facing of a certain act may already influence the

awareness of a decision maker. That is, a decision maker’s awareness may depend on

how fine-grained the description of an act is. Intuitively, above investor contemplating

“invest in firm X” is now assumed to read all the fine-print associated with this act. In

this case, revealing unawareness becomes very limited.

Awareness-dependent expected utility may be seen as a step towards analyzing Sav-

age’s (1954) “small worlds” assumption. Savage (1954, p. 82-83) used the term for the

space of states of nature to indicate the “...practical necessity to confining attention, or

isolating, relatively simple situations...”. Savage (1954, p. 16) felt that he “was unable

to formulate criteria for selecting these small worlds...”. While I can not deliver such a

criterion either, my approach allows the modeler to analyze the decision maker in various

sets of “small worlds” which are partially ordered by their richness. The representation

theorem should be interpreted either from the modeler’s (bird’s) point of view as con-

templating a decision maker’s (admittedly counterfactual) choices at various awareness

levels, or from the decision maker’s point of view conditional on her awareness level.3

The paper is organized as follows: In Section 2, I present primitives of unawareness

structures. In Section 3, I develop awareness-dependent subjective expected utility with

confined extensionality of acts. This is applied to the problem of revealing unawareness

in Section 4. In Section 5, I characterize impersonal expected utility and discuss its

relation to awareness-dependent subjective expected utility. In Section 6, I finish with

a discussion of extensions and the related literature. Proofs, although mostly straight-

forward once the unawareness structure is in place, are collected in the appendix to show

where they depart from the standard Anscombe-Aumann approach.

3In an extended model with states of the world (as in Heifetz, Meier, and Schipper, 2009) rather
than states of nature, i.e., in which states also encode the preference and thus beliefs of the decision
maker, the decision maker at a given awareness level could also reason about her own decisions at lower
awareness levels.
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2 Primitives of Unawareness Structures

2.1 State-Spaces

Let S = {Sα}α∈A be a finite lattice of disjoint state-spaces, with the partial order � on S.

For simplicity we assume in this paper that each S is finite. If Sα and Sβ are such that

Sα � Sβ we say that “Sα is more expressive than Sβ – states of Sα describe situations

with a richer vocabulary than states of Sβ ”.4 Denote by Ω =
⋃

α∈A
Sα the union of these

spaces.

Spaces in the lattice can be more or less “rich” in terms of facts that may or may not

obtain in them. The partial order relates to the “richness” of spaces. The upmost space

of the lattice may be interpreted as the “objective” state-space. Its states encompass full

descriptions.

2.2 Projections

For every S and S ′ such that S ′ � S, there is a surjective projection rS
′

S : S ′ → S,

where rSS is the identity. (“rS
′

S (ω) is the restriction of the description ω to the more

limited vocabulary of S.”) Note that the cardinality of S is smaller than or equal to

the cardinality of S ′. We require the projections to commute: If S ′′ � S ′ � S then

rS
′′

S = rS
′

S ◦ rS
′′

S′ . If ω ∈ S ′, denote ωS = rS
′

S (ω). If D ⊆ S ′, denote DS = {ωS : ω ∈ D}.

Projections “translate” states in “more expressive” spaces to states in “less expres-

sive” spaces by “erasing” facts that can not be expressed in a lower space.

These surjective projections may embody Savage’s idea that “(i)t may be well, how-

ever, to emphasize that a state of the smaller world corresponds not to a state of the

larger, but to a set of states” (Savage, 1954, p. 9).

2.3 Events

Denote g(S) = {S ′ : S ′ � S}. For D ⊆ S, denote D↑ =
⋃
S′∈g(S)

(
rS
′

S

)−1
(D). (“All the

extensions of descriptions in D to at least as expressive vocabularies.”)

An event is a pair (E, S), where E = D↑ with D ⊆ S, where S ∈ S. D is called

the base and S the base-space of (E, S), denoted by S(E). If E 6= ∅, then S is uniquely

4Here and in what follows, phrases within quotation marks hint at intended interpretations, but we
emphasize that these interpretations are not part of the definition of the set-theoretic structure.
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determined by E and, abusing notation, we write E for (E, S). Otherwise, we write ∅S

for (∅, S). Note that not every subset of Ω is an event.

Some fact may obtain in a subset of a space. Then this fact should be also “express-

ible” in “more expressive” spaces. Therefore the event contains not only the particular

subset but also its inverse images in “more expressive” spaces.

Let Σ be the set of events of Ω. Note that unless S is a singleton, Σ is not an algebra

because it contains distinct vacuous events ∅S for all S ∈ S. These vacuous events

correspond to contradictions with differing “expressive power”.

2.4 Negation

If (D↑, S) is an event where D ⊆ S, the negation ¬(D↑, S) of (D↑, S) is defined by

¬(D↑, S) := ((S \D)↑, S). Note, that by this definition, the negation of a (measurable)

event is a (measurable) event. Abusing notation, we write ¬D↑ := (S \D)↑. Note that by

our notational convention, we have ¬S↑ = ∅S and ¬∅S = S↑, for each space S ∈ S. The

event ∅S should be interpreted as a “logical contradiction phrased with the expressive

power available in S.” ¬D↑ is typically a proper subset of the complement Ω \D↑ . That

is, (S \D)↑ $ Ω \D↑ .

Intuitively, there may be states in which the description of an event D↑ is both

expressible and valid – these are the states in D↑; there may be states in which its

description is expressible but invalid – these are the states in ¬D↑; and there may be

states in which neither its description nor its negation are expressible – these are the

states in

Ω \
(
D↑ ∪ ¬D↑

)
= Ω \ S

(
D↑
)↑
.

Thus our structure is not a standard state-space model in the sense of Dekel, Lipman,

and Rustichini (1998).

2.5 Conjunction and Disjunction

If
{(
D↑λ, Sλ

)}
λ∈L

is a collection of events (with Dλ ⊆ Sλ, for λ ∈ L), their conjunc-

tion
∧
λ∈L

(
D↑λ, Sλ

)
is defined by

∧
λ∈L

(
D↑λ, Sλ

)
:=
((⋂

λ∈LD
↑
λ

)
, supλ∈L Sλ

)
. Note,

that since S is a complete lattice, supλ∈L Sλ exists. If S = supλ∈L Sλ, then we have(⋂
λ∈LD

↑
λ

)
=
(⋂

λ∈L

((
rSSλ
)−1

(Dλ)
))↑

. Again, abusing notation, we write
∧
λ∈LD

↑
λ :=⋂

λ∈LD
↑
λ (we will therefore use the conjunction symbol ∧ and the intersection symbol ∩
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interchangeably).

We define the relation ⊆ between events (E, S) and (F, S ′) , by (E, S) ⊆ (F, S ′) if

and only if E ⊆ F as sets and S ′ � S. If E 6= ∅, we have that (E, S) ⊆ (F, S ′) if and

only if E ⊆ F as sets. Note however that for E = ∅S we have (E, S) ⊆ (F, S ′) if and

only if S ′ � S. Hence we can write E ⊆ F instead of (E, S) ⊆ (F, S ′) as long as we keep

in mind that in the case of E = ∅S we have ∅S ⊆ F if and only if S � S(F ). It follows

from these definitions that for events E and F , E ⊆ F is equivalent to ¬F ⊆ ¬E only

when E and F have the same base, i.e., S(E) = S(F ).

The disjunction of
{
D↑λ

}
λ∈L

is defined by the de Morgan law
∨
λ∈LD

↑
λ = ¬

(∧
λ∈L ¬

(
D↑λ

))
.

Typically
∨
λ∈LD

↑
λ $

⋃
λ∈LD

↑
λ, and if all Dλ are nonempty we have that

∨
λ∈LD

↑
λ =⋃

λ∈LD
↑
λ holds if and only if all the D↑λ have the same base-space. Note, that by these

definitions, the conjunction and disjunction of events is a event.

2.6 Probability Measures

Let ∆ (S) be the set of probability measures on S.

For a probability measure µ ∈ ∆ (S ′), the marginal µ|S of µ on S � S ′ is defined by

µ|S (D) := µ

((
rS
′

S

)−1

(D)

)
, D ⊆ S.

Let Sµ be the space on which µ is a probability measure. Whenever Sµ � S(E) then

we abuse notation slightly and write

µ (E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

2.7 Unawareness

Definition 1 (Unawareness) We say that a decision maker is unaware of the event E

if her belief is represented by a probability measure µ ∈ ∆(S) with S 6� S(E).

This follows the definition of unawareness in a more sophisticated model in which

states of the world rather than states of nature are considered. That is, states also

capture beliefs of agents. In such a richer setting, unawareness of an agent may differ

from state to state even within the same space. Unawareness operators on events can be
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defined and it can be shown that all properties on unawareness that have been suggested

in the literature indeed obtain. See Heifetz, Meier, and Schipper (2009) for details.

Since S(E) = S(¬E) by definition, we have the following observation.

Remark 1 (Symmetry) A decision maker is unaware of the event E if and only if she

is unaware of the event ¬E.

3 Subjective Expected Utility

3.1 Outcomes

Let X be an arbitrary space of outcomes or prizes. We denote by ∆(X) the set of simple

probability measures on X, i.e., the set of finitely additive probability measure with

finite support (see Fishburn, 1970, Section 8.2). For p ∈ ∆(X), we denote by supp(p)

the support of p.

3.2 Acts

An act is a function f : Ω −→ ∆(X).

Note that different from Anscombe-Aumann acts, f is not defined on just one state-

space but on the union of spaces Ω. This is interpreted as follows: Let’s say an individual

investing in a firm (e.g., the act f) perceives a lottery of outcomes. Which lottery obtains

depends on which event obtains. She may be unaware of some events but not of others.

If the state ω ∈ S obtains and her awareness level is given by space S ′ ≺ S, then the

lottery perceived is not f(ω) but f(ωS′). An act at a certain state may mean different

things to different agents depending on their awareness level. We aim to capture the

awareness level of the decision maker by her preferences only and not by the acts she is

facing. That’s why acts are labels whose interpretation depends on the awareness of the

decision maker. Alternatively, we could assume that acts faced by the decision maker

may influence her awareness. This alternative assumption will be discussed in Section 6.2.

For any event E and acts f and g, define a composite act fEg by

fEg(ω) =

{
f(ω) if ω ∈ E
g(ω) otherwise.

Note that different from composite acts in the Anscombe-Aumann approach, g is not

only prescribed on the negation of E but also on all states that are neither in E nor in

¬E.
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For any collection of pairwise disjoint events E1, E2, ..., En ⊂ Σ and acts f 1, f 2, ..., fn, g ∈
A, let f 1

E1
f 2
E2
...fnEng denote the composite act that yields f i(ω) if ω ∈ Ei for i = 1, ..., n,

and g(ω) otherwise.

If f and g are acts and α ∈ [0, 1] then αf + (1 − α)g is an act defined pointwise by

(αf + (1−α)g)(ω) = αf(ω) + (1−α)g(ω) for all ω ∈ Ω. Let A denote the set of all acts.

Remark 2 A is a mixture space. I.e., for all f, g ∈ A and all α, β ∈ [0, 1], (i) 1f+0g =

f , (ii) αf+(1−α)g = (1−α)g+αf , and (iii) α[βf+(1−β)g]+(1−α)g = αβf+(1−αβ)g.

3.3 Preferences

The decision maker’s choices are represented by a collection of preferences, {%S}S∈S , one

for each space S ∈ S with each %S defined on A.

For each S ∈ S, strict preference, �S, is defined on A by %S and not -S. Indifference,

∼S, is defined on A by %S and -S.

Preferences are allowed to vary with state-spaces. The idea is that an act f may be

preferred over the act g at a certain awareness level but g may be preferred over f at a

different awareness level. E.g., suppose to you prefer onions over any other food. Yet, if

you were aware that Dr. Weissbarth of Stockton University suspects onions to cause the

fatal disease cuppacuppitis then you may rank onions below some other vegetable.

3.4 Assumptions on Preferences

The following five well known properties are standard in the Anscombe-Aumann ap-

proach, but adapted here to the lattice of state-spaces.

Property 1 (Weak Order) For all S ∈ S, �S is complete and transitive.

Property 2 (Archimedean Continuity) For all S ∈ S and f, g, h ∈ A, if f �S g �S
h, then there exists α, β ∈ (0, 1) such that αf + (1− α)h �S g �S βf + (1− β)h.

Property 3 (Independence) For all S ∈ S, f, g, h ∈ A and α ∈ (0, 1), if f �S g then

αf + (1− α)h �S αg + (1− α)h.

Definition 2 (Null Event) An event E is S-null if S(E) � S and fEg ∼S hEg for all

f, g, h ∈ A. A state ω is S-null if {ω}↑ is S-null. An event E is S-nonnull if S(E) � S

and fEg �S hEg for some f, g, h ∈ A.
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This definition generalizes Savage’s notion of null-event to our structure. We will show

that it captures “events conceived but assigned probability zero” rather than “events not

conceived of”. We think that indeed this is in the spirit of Savage’s notion of null-event

because in Savage “events not conceived of” are simply not considered in the decision

maker’s small world.

Remark 3 For each S ∈ S:

(i) For any event F with S(F ) 6� S, F is neither S-null nor S-nonnull.

(ii) ∅S′ is S-null if and only if S ′ � S.

Property 4 (Nondegeneracy) For all S ∈ S there exist f, g ∈ A such that f �S g.

Property 5 (State Independence) If f ∈ A, p, q ∈ ∆(X) are such that p{ω}↑f �S
q{ω}↑f for some ω, then for all S-nonnull ω′ we have p{ω′}↑f �S q{ω′}↑f

If the decision maker has preference %S, then the following property suggests the

interpretation that she has “awareness level” S. This property is trivially satisfied in

standard state-space models. Yet, it is key in the current approach.

Property 6 (Confined Extensionality) For any S ∈ S, if f, g ∈ A are such that

f(ω) = g(ω) for all ω ∈ S, then f ∼S g.

The examples in Figures 1 and 2 illustrate Property 6. There are only two spaces, S1

and S2. Different shades represent different outcomes. For instance, in Figure 1, the left

composite act yields “grey” in state ω1 but “white” in states ω2 and ω3. If the decision

maker’s awareness level is given by the lower space S2, then she does not care what

happens in the upper space because she is unaware of those events. Figure 2 illustrates

that if the decision maker’s awareness level is given by the upper space S1, then she

cares only about states in S1. She neglects whatever happens in lower spaces presumably

because she fully understands that she is aware.

The proofs of the following three remarks can be found in the appendix.

Remark 4 Property 6 implies: For all events E, if S(E) 6� S, then

(i) fEg ∼S g for all f, g ∈ A.
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Figure 1: Illustration of Property 6

S S
ω1 ω2

S1
ω1 ω2
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S2 S2
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ω3
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Figure 2: Illustration of Property 6
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(ii) fEg ∼S hEg and f¬Eg ∼S h¬Eg for all f, g, h ∈ A.

Remark 5 Properties 1 and 6 imply if S ′ � S, then fS′↑g %S hS′↑g if and only if f %S h.

Remark 6 Properties 1, 4, and 6 imply that for each S ∈ S there exists a state ω ∈ S
that is S-nonnull.

3.5 Awareness-Dependent Subjective Expected Utility

Definition 3 (ASEU) We say that {%S}S∈S admits an awareness-dependent subjec-

tive expected utility (ASEU) representation if there exists a collection of nonconstant von

Neumann-Morgenstern utility functions {uS : X −→ R}S∈S and a collection of probability

measures {µS ∈ ∆(S)}S∈S such that for all S ∈ S and f, g ∈ A,

f �S g if and only if

∫
S

uS ◦ fdµS >
∫
S

uS ◦ gdµS,

and

µS({ω}) = 0 if and only if ω is S-null.
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Moreover, if there exists another collection of von Neumann-Morgenstern utility func-

tions {vS : X −→ R}S∈S and a collection of probability measures {νS ∈ ∆(S)}S∈S , then

for any S ∈ S there are constants aS > 0 and bS such that vS(x) = aSuS(x) + bS and

νS = µS.

The specification outlined so far allows me to apply the Anscombe and Aumann

(1963) approach to each S ∈ S separately to prove in the appendix the following result.

Theorem 1 (Representation) {%S}S∈S admits an awareness-dependent subjective ex-

pected utility representation if and only if it satisfies Properties 1 to 6.

Definition 4 An awareness-dependent subjective expected utility representation has awareness-

independent utilities if or all S, S ′ ∈ S there exist constants aS′S > 0 and bS′S such that

uS = aS′SuS′ + bS′S.

If an awareness-dependent subjective expected utility representation has awareness-

independent utilities, then the utility function uS at awareness level S is also a utility

function for any awareness level S ′ ∈ S because conditional on each awareness level,

utilities are unique up to affine transformations. I believe that in reality this may not be

satisfied except in rather special cases.

Property 7 (Awareness-Independent Ranking) For p, q ∈ ∆(X), p �S q if and

only if p �S′ q for all S ′, S ∈ S.

Proposition 1 {%S}S∈S admits an awareness-dependent subjective expected utility rep-

resentation with awareness-independent utilities if and only if it satisfies Properties 1 to

7.

4 Revealed Unawareness

Suppose an outside observer wishes to infer from choices of a decision maker whether she

is unaware of an event E or not. The outside observer does not know the preferences of the

decision maker nor does he know which preference relation is related to which awareness

level (the mapping from state-spaces to binary relations over acts). All he knows is that

the choices of the decision maker are summarized by one preference relation in {%S}S∈S
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satisfying Properties 1 to 6. We denote by - the observed choices and define ≺ and ∼
as usual.

The following behavioral implications of unawareness are proved in the appendix.

Proposition 2 (Revealed Unawareness) Let {%S}S∈S satisfy Properties 1 to 6. A

decision maker is unaware of the event E if and only if for all events F with S(F ) = S(E),

fFg ∼ hFg for all f, g, h ∈ A.

Proposition 2 may be restated using event exchangeability (de Finetti, 1937) albeit

in an extreme form.

Definition 5 (Event Exchangeability) A pair of disjoint events E,E ′ ∈ Σ are ex-

changeable if for any f, g, h ∈ A, fEhE′g ∼ hEfE′g.

Corollary 1 Let {%S}S∈S satisfy Properties 1 to 6. A decision maker is unaware of the

event E if and only if any pair of disjoint events F, F ′ ∈ Σ such that S(F ) = S(F ′) =

S(E) are exchangeable.

It is known that all null events are exchangeable and that in standard state-spaces

exchangeability expresses a notion of equal likelihood (see Chew and Sagi, 2006). Un-

awareness structures allow for an extreme form of event exchangeability where all pairs

of disjoint events with the same base-space may be exchangeable. The decision maker is

“equally unaware” of all of them. Being unaware of one event means being unaware of

any other event with the same base-space.

Consider now an outside observer who wishes to infer from choices of a decision

maker whether she attaches subjective probability zero belief to the event E or whether

she is unaware of the event E. The following proposition states the different behavioral

implications of unawareness and subjective probability zero belief. With the structure in

place, the proof is straight-forward.

Proposition 3 (Null versus Unawareness) Let {%S}S∈S satisfy Properties 1 to 6.

(i) Unawareness: A decision maker is unaware of the event E if and only if fEg ∼ hEg

and f¬Eg ∼ h¬Eg for all f, g, h ∈ A.

(ii) Subjective Probability Zero Belief: A decision maker ascribes subjective probability

zero to the event E if and only if fEg ∼ hEg and not f¬Eg ∼ h¬Eg for all f, g, h ∈
A.

13



A decision maker is unaware of an event E if and only if she considers both E and

the negation of E to be “null”. This is different from assigning subjective probability

zero to the event E which is characterized by considering E to be null but the negation

of E to be nonnull.

5 Impersonal Expected Utility

In what sense could a probability zero approach “model” behavior under unawareness

nevertheless?

Given a lattice of spaces S, I follow Heifetz, Meier and Schipper (2009) in defining the

flattened state-space associated with S simply by the union of all spaces, Ω =
⋃
S∈S S.

Note that the set of all subsets 2Ω may contain elements that are not events in the

unawareness structure (unless the lattice is trivially a singleton). That is, typically

Σ $ 2Ω.

A probability measure µS on S is extended to a probability measure ϕS on the flat-

tened state-space Ω by

ϕS(E) :=

{
µS(E ∩ S) if E ∩ S 6= ∅
0 otherwise.

Note that Ω is just a standard state-space. The extended probability measure does

not have full support. It is extended by assigning probability zero to all subsets of Ω that

are “not reasoned” about by the decision maker. Such subsets may not be events in the

unawareness structure.

Consider a composite act of the form

f{ω}g(ω′) =

{
f(ω′) if ω = ω′

g(ω′) otherwise.
(1)

Although {ω} may not be an event in the unawareness structure, we still have f{ω}g ∈ A
since for every f, g ∈ A we can define h ∈ A such that h(ω) = f(ω) and h(ω′) = g(ω′)

for ω′ 6= ω. f{ω}g = h{ω}↑g and h{ω}↑g ∈ A.

In the following remark is proved in the appendix. It characterizes “null” in the

flattened state-space by S-null or unawareness.

Remark 7 Properties 1 and 6 imply that f{ω}g ∼S h{ω}g for all f, g, h ∈ A if and only

if ω ∈ Ω is S-null or ω /∈ S.
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Definition 6 (IEU) We say that {%S}S∈S admits an impersonal expected utility (IEU)

representation if there exists a collection of nonconstant von Neumann-Morgenstern util-

ity functions {uS : X −→ R}S∈S and a collection of probability measures {ϕS ∈ ∆(Ω)}S∈S
such that for all f, g ∈ A,

f �S g if and only if

∫
Ω

uS ◦ fdϕS >
∫

Ω

uS ◦ gdϕS,

and

ϕS({ω}) = 0 if and only if ω is S-null or ω /∈ S.

Moreover, if there exists another collection of von Neumann-Morgenstern utility func-

tions {vS : X −→ R}S∈S and a collection of probability measures {φS ∈ ∆(Ω)}S∈S , then

for any S ∈ S there are constants aS > 0 and bS such that vS(x) = aSuS(x) + bS and

φS = ϕS.

Compared to awareness-dependent subjective expected utility, we integrate over the

union of spaces Ω and use the extended probability measure ϕS in impersonal expected

utility. Moreover, for any state ω that is not “reasoned about” by the decision maker

with the awareness level S, the extended probability measure ϕS assigns probability zero

as well.

Theorem 2 (Characterization) {%S}S∈S admits an impersonal expected utility rep-

resentation if and only if it satisfies Properties 1 to 6.

Corollary 2 {%S}S∈S admits an impersonal expected utility representation if and only

if it admits an awareness-dependent subjective expected utility representation.

Corollary 3 Let {%S}S∈S satisfy Properties 1 to 6. Denote by {µS ∈ ∆(S)}S∈S the

collection of subjective probability measures from the awareness-dependent subjective ex-

pected utility representation of %S, and by {ϕS ∈ ∆(Ω)}S∈S the collection of probability

measures from the impersonal representation of %S. Then for any S ∈ S, µS(E) = ϕS(E)

for all events E ∈ Σ with S(E) � S.

6 Discussions

6.1 Which representation to select?

How to select among the two alternative representations of choice under unawareness?

First, while both Theorem 1 and 2, provide characterizations of Properties 1 to 6, the
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characterization in Theorem 2 falls short of a representation in the following sense: The

representation in Definition 6 does not distinguish between “two kinds” of probability

zero. A decision maker assigns probability zero to a state if this state is null or if she is

unaware of this state. Both, the notion of null-event and being unaware of an event are

represented by probability zero in impersonal expected utility. Yet, we know already from

Proposition 3 that unawareness and null have different behavioral implications. Thus,

while both awareness-dependent expected utility and impersonal expected utility are

behaviorally distinguishable, the representation of Definition 6 is impractical to capture

the relevant behavioral distinction between the notions of null and unawareness. It

“overburdens” the notion of probability zero by forcing it to represent two behaviorally

and conceptually different states of mind: null and unaware. This may limit the use of

impersonal expected utility in applications that seek to explicitly work out implications

of unawareness.

Second, in order to claim that probability zero “models” behavior under unawareness

in applications, we need to consider unawareness structures. However, using the unaware-

ness structure in the first place makes the impersonal expected utility approach obsolete

since behaviorally it is indistinguishable from awareness-dependent expected utility but

latter but has the advantage of a transparent epistemic interpretation.

Third, probability measures in impersonal expected utility can not be interpreted as

a “personal” or “subjective” probabilities of the decision maker. (Hence, the attribute

“impersonal”.) Statements like “I am assigning probability zero to the event E since I

am unaware of it” are nonsensical since the very statement implies that I think about

the event E. (Indeed, one of the epistemic properties of unawareness is that if a deci-

sion maker is aware that she is unaware of the event E then she is aware of the event

E.5) Historically, it was precisely the goal of subjective expected utility theory to make

sense of statements like “I find the event E more likely than the event F”. For me the

attraction of subjective expected utility theory is that choices provide a window into the

decision maker’s reasoning. This attraction is lost with impersonal expected utility but

not with awareness-dependent expected utility. In latter representation, it makes sense

to interpret the probability measures as “personal” or “subjective” beliefs of a decision

maker given her awareness level. In contrast, the probability measures in impersonal

expected utility can only be interpreted as an artificial construct ascribed to the decision

maker by an outside observer. The issue here is more severe than the usual “as if” as-

5This is AU-introspection in Dekel, Lipman, and Rustichini (1998). It obtains in unawareness struc-
tures, see Heifetz, Meier, and Schipper (2009, Proposition 3).
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sumption in decision theory. In subjective expected utility, the decision maker may not

really reason with the subjective probabilities ascribed to her by her choices. But it is not

impossible that she could use them for reasoning. Here, in impersonal expected utility,

it is impossible that the decision maker uses herself such impersonal probabilities and at

the same time be unaware of some events. The impossibility result by Dekel, Lipman,

and Rustichini (1998) applies because the flattened state-space is a standard state-space.

Fourth, in a richer model with states of the world, in which states also describe

beliefs of the decision maker like in an unawareness belief structure analogous to type

spaces in Bayesian games, it can be shown that given a standard type space with zero

probability, it is not always possible to find some unawareness belief structure with non-

trivial unawareness (see Heifetz, Meier and Schipper, 2009, Section 2.13). That is, not

every probability zero model actually “models” unawareness.

Finally, if we allow multiple players to interact in the richer model just mentioned,

then the probability zero model needs additional restrictions on how probabilities agree

among players. If player’s unawareness of an event is “modeled” by assigning probability

zero to this event, then she can not believe that others do not assign probability zero to

this event etc. These restrictions may become quickly intractable but they fall naturally

into place in an unawareness belief structure à la Heifetz, Meier and Schipper (2009).

6.2 When Facing Acts Influences Awareness

Property 6 implies that events of which the decision maker is unaware of do not affect

her ranking of acts. This holds even for composite acts that condition on events that the

decision maker is unaware of. More generally, it rules out that a decision maker becomes

aware of an event merely by facing an act. While this is also the implicit assumption in

standard decision theory (i.e., different acts do change the subset of “small worlds”), it

may be unrealistic in some situations. Sometimes, when facing an act, a decision maker

may become in very subtle ways a bit more careful with the “fine prints” of acts, and

this care may lead her to become aware of events. E.g., a buyer facing a decision about

whether or not to buy a certain insurance contract may become aware of events when

reading all the fine prints of the contract. If ex ante an outside observer does not know

how acts affect the awareness of a decision maker, can he still elicit whether or not a

decision maker is unaware of an event? To answer this question, I considered also a

modified framework. Acts may influence the awareness of a decision maker but the order
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in which the acts are presented to the decision maker does not.6

Denote by AS the set of all acts that would make the decision maker at least aware

of events with base-space S. We assume that if f and g are in AS and E is an event

with base-space S(E) � S, then the composite act fEg is in AS. If f ∈ AS and g ∈ AS′ ,
and α ∈ [0, 1], then αf + (1 − α)g is an act defined pointwise and by the join by

(αf + (1 − α)g)(ω) = αf(ω) + (1 − α)g(ω) ∈ AS∨S′ for all ω ∈ Ω. Note that AS is

a mixture space for all S ∈ S. Note also that AS ⊆ AS′ if S � S ′. For each S ∈ S,

define a preference relation %S on AS and impose modified Properties 1’ through 6’ on

{%S}S∈S , in which we replace A by AS in each assumption. When A is replaced by

AS in Definition 3, we can prove analogously to Theorem 1 a representation theorem by

simply replacing A by AS and Properties 1 to 6 by Properties 1’ to 6’ in the proof.

This modified theorem can then be used to investigate revealed unawareness analogous

to Section 4. That is, we ask whether or not an outside observer can infer from choices

alone that the decision maker is unaware of an event E. The outside observer does not

know the preferences of the decision maker, nor does he know which preference relation

is related to which awareness level (the mapping from state-spaces to binary relations

over acts), nor does he know how acts would change the awareness of the decision maker

(the mapping from state-spaces to subsets of acts). Clearly, Propositions 2 and 3 do not

apply anymore to this setting. When an outside observer presents the decision maker

with acts, he may change the decision maker’s awareness. In a sense, the outside observer

may destroy the unawareness of the decision maker with the experiment to measure it.

However, it may still allow the outside observer to measure at least whether or not a

decision maker was unaware of some events ex ante (i.e., before the experiment).

To see this, suppose that the outside observer sees the following sequence of choices:

(1) f � g, (2) g � h (or h � g), and (3) f ≺ g. Then the outside observer can conclude

that the decision maker became aware of some event when facing h. Note that observed

choices may not have properties of a preference relation anymore since it appears as if

her choices are intransitive. Note further that the outside observer can not conclude of

which event the decision maker became aware through h. Finally, note that the converse

is not true. I.e., it is not true that if the decision maker is unaware of some event, then

we can find such a choice experiment to reveal it. For instance, already with the first

choice between f and g the decision maker may become aware of an event.

6A decision maker’s awareness level may increase to S after facing the act f and further to S′ after
facing the act g, but it can not be that her awareness level is S′′ 6= S′ when facing f after g.
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I conclude that if a decision maker’s conceivable “small worlds” are affected by the acts

the decision maker is facing, then the possibility of revealing unawareness is extremely

limited. In such a case, the outside observer may need to use additional assumptions on

how acts influence awareness in order to reveal a decision maker’s unawareness.

6.3 Related Literature

Li (2008) analyzes in a different model unawareness versus zero probability. Her study is

a bit more ambitious than mine as she considers a two-period model in which an initially

unaware decision maker becomes aware in the second period. The decision maker chooses

among bets defined on her first period “subjective” states. This requires her to specify

how those “subjective bets” correspond to “objective” bets in the second period. In

contrast, in my model acts are defined already on all states although the decision maker

may have a limited understanding of them. Li (2008) considers various specifications,

including one in which unawareness of an event may be though of “as if” the decision

maker believes that the event does not obtain.

Ahn and Ergin (2010) study framing that may also be due to lack of awareness.

They take more or less fine partitions of a state-space as the primitive. Since the set

of all partitions forms a lattice, I believe that their analysis could be “translated” into

unawareness structures. In their approach, acts are defined to be measurable with respect

to some of the partitions. When a decision maker faces an act that is measurable with

respect to some partition, then she evaluates the act on at least the events of that

partition. Intuitively, they assume that a decision maker always reads the “fine prints”

of an act presented. This is important for their aim of studying how decisions are affected

by framing through acts. It is in contrast to my approach taken in Section 3 because

- translated into their approach - I define acts on all partitions simultaneously. One

interesting feature of their representation is a (not necessarily additive) set function

from which the partition-dependent probability measure is defined. It allows them to

relate beliefs across partitions. They discuss various interpretations of this set function.

In particular, their approach is an extension and axiomatization of support theory in

psychology.

Ahn and Ergin’s (2010) notion of “completely unforeseen” differs from the notion of

(propositional) unawareness in the epistemic literature. It is consistent with their model

that an event is “completely unforeseen” while its negation is not. This is in contrast

with the symmetry property of unawareness: if a decision maker can reason about the
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negation of an event, then she can reason about the event (and vice versa).

Grant and Quiggin (2008) study in a dynamic model under which conditions decisions

taken by a decision maker within her “small worlds” are optimal also when being fully

aware. While those conditions are quite stringent, the question is meaningful from a

paternalistic point of view.

There is also a growing literature on “subjective state spaces” that are derived from

preferences. The motivation of this literature can be viewed as a critique of my approach

since analogous to Savage’s state-space, I take the lattice of spaces as primitive. For

instance, as Epstein, Marinacci, and Seo (2007) rightfully point out “even if we know

how to model a ‘coarse or incomplete state’ and we redefined the Savage state-space

accordingly” (as I do), “the resulting approach would still be unsatisfactory if, as in

Savage, the state-space were adopted as a primitive and thus presumed observable by

the modeler. Ideally, the agent’s conceptualization of the future should be taken to be

subjective - it should be derived from preferences, that is, from in principle observable

behavior.” In my approach, the choices of the decision maker effectively reveal the

space among exogenously predefined state-spaces. I find it extremely intriguing to also

derive the entire unawareness structure endogenously from (admittedly counterfactual)

choices. This is beyond the scope of this paper and left for future research. In defense

of my current approach, I like to point out that, first, the modest goal of my paper is to

provide a simple tool for studying both unawareness and subjective expected utility. The

literature on “subjective state-spaces” does not focus on unawareness as defined in the

epistemic literature. Rather, it analyzes a decision maker facing “coarse” contingencies

meaning that the decision maker lacks conception of some contingencies, knows that she

lacks conception and may take this into account. A comprehensive model of unforeseen

contingencies should have both, the absolute lack of conception of some contingencies

as under unawareness as well as the suspicion of some other contingencies out there.

Suspicion of unawareness may be conceptually questionable in models that epistemically

preclude any unawareness.

Finally, Blume, Easley, and Halpern (2009) take a syntactic approach to subjective

expected utility theory in which primitives in standard subjective expected utility theory

such as the state-space, outcome space, and acts are replaced by syntactic descriptions.

This requires a modified set of properties which are used to characterize subjective ex-

pected utility theory including the primitives. It is intriguing to extend their approach

to unawareness structures. I believe some ideas from Heifetz, Meier, and Schipper (2008)

can be used for that.
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A Proofs

A.1 Proof of Remark 4

(i) If S(E) 6� S, then fEg(ω) = g(ω) for all ω ∈ S for all f, g ∈ A. Hence by Property 6,

fEg ∼S g for all f, g ∈ A.

(ii) If S(E) 6� S, then fEg(ω) = hEg(ω) for all ω ∈ S. Hence by Property 6,

fEg ∼S hEg. Since S(E) = S(¬E), we have by analogous arguments f¬Eg ∼S h¬Eg. �

A.2 Proof of Remark 5

If S ′ � S, then fS′↑g(ω) = f(ω) and hS′↑g(ω) = h(ω) for all ω ∈ S ′↑ ∩ S. Since

S ′ � S, we have S ′↑ ∩ S = S. Hence by Property 6 and transitivity (Property 1),

fS′↑g ∼S f %S h ∼S hS′↑g imply fS′↑g %S hS′↑g and vice versa. �

A.3 Proof of Remark 6

Assume that Properties 1, 4, and 6 hold, and suppose by contradiction that for some

S ∈ S all states in S are S-null. Since S is finite, number states 1, ..., |S|. Then for all

g, h ∈ A, g ∼S h{ω1}↑g ∼S h{ω1,ω2}↑g ∼S ... ∼S h{ω1,ω2,...,ω|S|−1}↑g ∼S hS↑g ∼S h, where

the last ∼S follows from Property 6. By transitivity (Property 1), we have g ∼S h for all

g, h ∈ A, a contradiction to Property 4. �

A.4 Proof of Remark 7

“⇐”: If ω /∈ S, then f{ω}g(ω′) = g(ω′) = h{ω}g(ω′) for all ω′ ∈ S and all f, g, h ∈ A.

Thus by Property 6, f{ω}g ∼S h{ω}g for all f, g, h ∈ A.

State ω being S-null means S({ω}↑) � S and f{ω}↑g ∼S h{ω}↑g for all f, g, h ∈ A. If

S({ω}↑) = S, then f{ω}g(ω′) = f{ω}↑g(ω′) and h{ω}g(ω′) = h{ω}↑g(ω′) for all ω′ ∈ S and

all f, g, h ∈ A. By Property 6, f{ω}g ∼S f{ω}↑g and h{ω}g ∼S h{ω}↑g for all f, g, h ∈ A.

Thus by Property 1, f{ω}g = h{ω}g for all f, g, h ∈ A. If S({ω}↑) ≺ S, then ω /∈ S. Thus,

in this case the result follows from above arguments.

“⇒”: Suppose to the contrary that f{ω}g ∼S h{ω}g for all f, g, h ∈ A but ω is S-

nonnull and ω ∈ S. ω being S-nonnull and ω ∈ S means that f{ω}↑g �S h{ω}↑g for

some f, g, h ∈ A. Since ω ∈ S, f{ω}↑g(ω′) = f{ω}g(ω′) and h{ω}↑g(ω′) = h{ω}g(ω′) for all
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ω′ ∈ S. By Property 6, f{ω}↑g ∼S f{ω}g and h{ω}↑g ∼S h{ω}g. From Property 1 follows

f{ω}g �S h{ω}g, a contradiction. �

A.5 Proofs of Theorems 1 and 2

The proofs follows essentially Fishburn (1970, Chapter 13.1 and 13.2). We point out

minor differences along the way. We present the proofs of both results side-by-side so

that the interested reader can compare the differences. Moreover, this presentation helps

to minimize redundancies.

First we show the following representation results in terms of state-dependent utilities

or additively separable utilities.

Proposition 4 {%S}S∈S satisfies Properties 1 to
3 and 6 if and only if there exists a collection of
functions {uS : X×S −→ R}S∈S such that for all
S ∈ S and f, g ∈ A,

f �S g if and only if

∑
ω∈S

∑
x∈supp(f(ω))

uS(x, ω)f(ω)(x) (2)

>
∑
ω∈S

∑
x∈supp(g(ω))

uS(x, ω)g(ω)(x).

Moreover, if {vS : X × S −→ R}S∈S is another
collection of functions satisfying formula (2), then
for each S ∈ S there exist constants aS ∈ R++

and bS ∈ R such aSuS(·, ω) + bS = vS(·, ω) for
each ω ∈ S.

Proposition 5 {%S}S∈S satisfies Properties 1 to
3 and 6 if and only if there exists a collection of
functions {wS : X × Ω −→ R}S∈S such that for
all S ∈ S and f, g ∈ A,

f �S g if and only if

∑
ω∈Ω

∑
x∈supp(f(ω))

wS(x, ω)f(ω)(x) (3)

>
∑
ω∈Ω

∑
x∈supp(g(ω))

wS(x, ω)g(ω)(x).

Moreover, if {zS : X × Ω −→ R}S∈S is another
collection of functions satisfying formula (3), then
for each S ∈ S there exist constants aS ∈ R++

and bS ∈ R such aSwS(·, ω) + bS = zS(·, ω) for
each ω ∈ Ω.

Proofs of Propositions. Under Properties 1 to 3 and 6, the existence of a collection of functions
{US : A −→ R}S∈S such that for f, g ∈ A

f �S g if and only if US(f) > US(g) (4)

and US being affine, i.e.,

US(αf + (1− α)g) = αUS(f) + (1− α)US(g), for all α ∈ [0, 1], (5)

follows from applying the Mixture-Space Theorem (Herstein and Milnor, 1953, see also Fishburn, 1970,
Section 8.4) for each S ∈ S. Moreover, for each S ∈ S, US is unique up to positive affine transformations.
We want to show that for f ∈ A,

US(f) =
∑
ω∈S

∑
x∈supp(f(ω))

uS(x, ω)f(ω)(x) (6)

for some function uS : X × S −→ R for every
S ∈ S.

We want to show that for f ∈ A,

US(f) =
∑
ω∈Ω

∑
x∈supp(f(ω))

wS(x, ω)f(ω)(x) (7)

for some function wS : X × Ω −→ R for every
S ∈ S.
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The next step in the proof of Proposition 4 differs slightly from the Anscombe-Aumann approach.

We claim that Property 6 implies that

1
|S|

f +
|S| − 1
|S|

g ∼S

∑
ω∈S

1
|S|

f{ω}↑g. (8)

To see the claim, number states in S by 1, ..., |S|,
and observe that for any ω ∈ S,

1
|S|

f(ω) +
|S| − 1
|S|

g(ω)

=
1
|S|

f{ω1}↑g(ω) + · · ·+ 1
|S|

f{ω|S|}↑g(ω)

=
∑
ω′∈S

1
|S|

f{ω′}↑g(ω).

Hence Property 6 implies the claim.

We claim

1
|Ω|

f +
|Ω| − 1
|Ω|

g =
∑
ω∈Ω

1
|Ω|

f{ω}g. (9)

To see the claim, number states in Ω by 1, ..., |Ω|,
and observe that for any ω ∈ S,

1
|Ω|

f(ω) +
|Ω| − 1
|Ω|

g(ω)

=
1
|Ω|

f{ω1}g(ω) + · · ·+ 1
|Ω|

f{ω|Ω|}g(ω)

=
∑
ω′∈Ω

1
|Ω|

f{ω′}g(ω).

By equations (4) and (5), we have

1
|S|

US(f) +
|S| − 1
|S|

US(g) (10)

=
1
|S|

∑
ω∈S

US

(
f{ω}↑g

)
.

By equations (4) and (5), we have

1
|Ω|

US(f) +
|Ω| − 1
|Ω|

US(g) (11)

=
1
|Ω|

∑
ω∈Ω

US

(
f{ω}g

)
.

Define uS : ∆(X)× S −→ R by

uS(p, ω) := US

(
p{ω}↑g

)
− |S| − 1
|S|

US(g). (12)

Define wS : ∆(X)× Ω −→ R by

wS(p, ω) := US

(
p{ω}g

)
− |Ω| − 1
|Ω|

US(g). (13)

For f ∈ A,

uS(f(ω), ω) = US

(
f{ω}↑g

)
− |S| − 1
|S|

US(g). (14)

For f ∈ A,

wS(f(ω), ω) = US

(
f{ω}g

)
− |Ω| − 1
|Ω|

US(g). (15)

Summing over ω ∈ S and dividing by |S|, we ob-
tain

1
|S|

∑
ω∈S

uS(f(ω), ω) (16)

=
1
|S|

∑
ω∈S

US

(
f{ω}↑g

)
− |S| − 1
|S|

US(g).

Summing over ω ∈ Ω and dividing by |Ω|, we ob-
tain

1
|Ω|

∑
ω∈Ω

wS(f(ω), ω) (17)

=
1
|Ω|

∑
ω∈Ω

US

(
f{ω}g

)
− |Ω| − 1
|Ω|

US(g).

Comparing it with equation (10), we have

US(f) =
∑
ω∈S

uS(f(ω), ω). (18)

Comparing it with equation (11), we have

US(f) =
∑
ω∈Ω

wS(f(ω), ω). (19)

Combining equations (12) and (5) yields for p, q ∈
∆(X)

uS(αp+ (1− α)q, ω) (20)
= αuS(p, ω) + (1− α)uS(q, ω) for α ∈ [0, 1]

for ω ∈ S.

Combining equations (13) and (5) yields for p, q ∈
∆(X)

wS(αp+ (1− α)q, ω) (21)
= αwS(p, ω) + (1− α)wS(q, ω) for α ∈ [0, 1]

for ω ∈ Ω.
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For x ∈ X, let uS(x, ω) = uS(δx, ω), with δx being
the Dirac measure with unit mass on x. Since the
support of a simple probability measure is finite,

uS(p, ω) =
∑

x∈supp(p)

uS(x, ω). (22)

For x ∈ X, let wS(x, ω) = wS(δx, ω), with δx being
the Dirac measure with unit mass on x. Since the
support of a simple probability measure is finite,

wS(p, ω) =
∑

x∈supp(p)

wS(x, ω). (23)

Combining the representation in formula (4) with
equation (18) yields inequality (2) for f, g ∈ A.
Repeat this construction for each S ∈ S.

Combining the representation in formula (4) with
equation (19) yields inequality (3) for f, g ∈ A.
Repeat this construction for each S ∈ S.

Uniqueness up to positive linear transformations
follows from the uniqueness of US . If vS(·, ω) sat-
isfies formula (2) in place of uS(·, ω), then

VS(f) =
∑
ω∈S

∑
x∈supp(f(ω))

vS(x, ω)f(ω)(x),

VS = aSUS + bS , and aS > 0. Holding f(ω′)(x)
fixed for all ω′ ∈ S, ω′ 6= ω, it then follows that
vS(·, ω) = aS(ω)uS(·, ω) + bS(ω). This holds for
each ω ∈ S.

Uniqueness up to positive linear transformations
follows from the uniqueness of US . If zS(·, ω) sat-
isfies formula (3) in place of wS(·, ω), then

ZS(f) =
∑
ω∈Ω

∑
x∈supp(f(ω))

zS(x, ω)f(ω)(x),

ZS = aSUS + bS , and aS > 0. Holding f(ω′)(x)
fixed for all ω′ ∈ Ω, ω′ 6= ω, it then follows that
zS(·, ω) = aS(ω)wS(·, ω) + bS(ω). This holds for
each ω ∈ Ω.

Note that uS(·, ω) is constant on X if and only
if ω ∈ S is S-null. To see this, ω ∈ S being S-
null means (with some slight abuse of notation)
x{ω}↑g ∼S g for all x ∈ X and g ∈ A, which is
equivalent by formula (4) to US(x{ω}↑g) = US(g)
for all x ∈ X and g ∈ A. uS(x, ω) = US(g) −
|S|−1
|S| US(g) = 1

|S|US(g) which is independent of x
and thus constant in x.

Note that wS(·, ω) is constant on X if and only
if ω ∈ Ω is S-null or ω ∈ Ω \ S. To see this,
note that by Remark 7 (Property 1 and 6) ω ∈ Ω
being S-null or ω /∈ S if and only if (with some
slight abuse of notation) x{ω}g ∼S g for all x ∈ X
and g ∈ A, which is equivalent by formula (4) to
US(x{ω}↑g) = US(g) for all x ∈ X and g ∈ A.
uS(x, ω) = US(g)− |Ω|−1

|Ω| US(g) = 1
|Ω|US(g) which

is independent of x and thus constant in x.
For the converse, we prove only the nonstandard
Property 6. Suppose by contradiction that we
have the representation in formula (2) but Prop-
erty 6 is violated. Then there exist a space S ∈ S
and acts f, g ∈ A with f(ω) = g(ω) for all ω ∈ S
but f �S g. But this contradicts formula (2). �

For the converse, we prove only the nonstandard
Property 6. Suppose by contradiction that we
have the representation in formula (3) but Prop-
erty 6 is violated. Then there exist a space S ∈ S
and acts f, g ∈ A with f(ω) = g(ω) for all ω ∈ S
but f �S g.

. Note that∑
ω∈S

∑
x∈supp(f(ω))

wS(x, ω)f(ω)(x) (24)

=
∑
ω∈S

∑
x∈supp(g(ω))

wS(x, ω)g(ω)(x)

follows from f(ω) = g(ω) for all ω ∈ S.
. Note further that∑

ω∈Ω\S

∑
x∈supp(f(ω))

wS(x, ω)f(ω)(x) (25)

=
∑

ω∈Ω\S

∑
x∈supp(g(ω))

wS(x, ω)g(ω)(x)

since as we noted earlier wS(·, ω) is constant on X
for all ω ∈ Ω \ S.
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. But this contradicts formula (3). �

We continue with the proof of Theorems 1 and 2 respectively. Fix a space S ∈ S. By Remark 6,
there exists a S-nonnull state ω◦ ∈ S. Let p, q ∈ ∆(X) and let ω ∈ S be any S-nonnull state.

For any f ∈ A,∑
x∈supp(p)

uS(x, ω)p(x) >
∑

x∈supp(q)

uS(x, ω)q(x) (26)

if and only if

US(p{ω}↑f) > US(q{ω}↑f) (27)

if and only if by Proposition 4

p{ω}↑f �S q{ω}↑f (28)

if and only if by Property 5

p{ω◦}↑f �S q{ω◦}↑f (29)

if and only if by Proposition 4

US(p{ω◦}↑f) > US(q{ω◦}↑f) (30)

if and only if∑
x∈supp(p)

uS(x, ω◦)p(x) >
∑

x∈supp(q)

uS(x, ω◦)q(x). (31)

For any f ∈ A,∑
x∈supp(p)

wS(x, ω)p(x) >
∑

x∈supp(q)

wS(x, ω)q(x) (32)

if and only if

US(p{ω}↑f) > US(q{ω}↑f). (33)

To see this note that

US(p{ω}↑f) =
∑

x∈supp(p)

wS(x, ω)p(x)

+
∑

ω′∈{ω}↑\{ω}

∑
x∈supp(p)

wS(x, ω′)p(x)

+
∑

ω′∈Ω\{ω}↑

∑
x∈supp(f(ω′))

wS(x, ω′)f(ω′)(x).

It is sufficient to show∑
ω′∈{ω}↑\{ω}

∑
x∈supp(p)

wS(x, ω′)p(x) (34)

=
∑

ω′∈{ω}↑\{ω}

∑
x∈supp(q)

wS(x, ω′)q(x).

Since ω ∈ S, ω′ ∈ {ω}↑ \ {ω} implies ω′ /∈ S. By
arguments in the proof of Proposition 5, wS(·, ω′)
is constant in X. This yields inequality (34). In-
equality (33) holds if and only if by Proposition 5

p{ω}↑f �S q{ω}↑f (35)

if and only if by Property 5

p{ω◦}↑f �S q{ω◦}↑f (36)

if and only if by Proposition 5

US(p{ω◦}↑f) > US(q{ω◦}↑f) (37)

if and only if (by analogous arguments as for in-
equality (33))∑
x∈supp(p)

wS(x, ω◦)p(x) >
∑

x∈supp(q)

wS(x, ω◦)q(x). (38)
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By the uniqueness of von Neumann-Morgenstern
utilities, there exist constants aS(ω) > 0 and
bS(ω) such that

aS(ω)uS(·, ω◦) + bS(ω) = uS(·, ω). (39)

By the uniqueness of von Neumann-Morgenstern
utilities, there exist constants aS(ω) > 0 and
bS(ω) such that

aS(ω)wS(·, ω◦) + bS(ω) = wS(·, ω). (40)

For S-null states let aS(ω) = 0 since we observed
in the proof of Proposition 4 that ω is S-null if
and only if uS(·, ω) is constant on X.

If ω is S-null or ω ∈ Ω \ S, let aS(ω) = 0 since
we observed in the proof of Proposition 5 that ω
is S-null or ω ∈ Ω \ S if and only if wS(·, ω) is
constant on X.

Define uS(x) := uS(x, ω◦), i.e. aS(ω◦) = 1 and
bS(ω◦) = 0. Then the representation in for-
mula (2) becomes

Define wS(x) := wS(x, ω◦), i.e. aS(ω◦) = 1
and bS(ω◦) = 0. Then the representation in for-
mula (3) becomes

f �S g if and only if

∑
ω∈S

∑
x∈supp(f(ω))

(aS(ω)uS(x) + bS(ω))f(ω)(x) (41)

>
∑
ω∈S

∑
x∈supp(g(ω))

(aS(ω)uS(x) + bS(ω))g(ω)(x)

f �S g if and only if

∑
ω∈Ω

∑
x∈supp(f(ω))

(aS(ω)wS(x) + bS(ω))f(ω)(x) (42)

>
∑
ω∈Ω

∑
x∈supp(g(ω))

(aS(ω)wS(x) + bS(ω))g(ω)(x)

which simplifies to

∑
ω∈S

bS(ω) + aS(ω)[
∑

x∈supp(f(ω))

uS(x)f(ω)(x)]


>
∑
ω∈S

bS(ω) + aS(ω)[
∑

x∈supp(g(ω))

uS(x)g(ω)(x)]

 .

which simplifies to

∑
ω∈Ω

bS(ω) + aS(ω)[
∑

x∈supp(f(ω))

wS(x)f(ω)(x)]


>
∑
ω∈Ω

bS(ω) + aS(ω)[
∑

x∈supp(g(ω))

wS(x)g(ω)(x)]

 .

We cancel bS(ω), divide by
∑

ω∈S aS(ω), and de-
fine

µS(ω) :=
aS(ω)∑

ω′∈S aS(ω′)
(43)

We cancel bS(ω), divide by
∑

ω∈Ω aS(ω), and de-
fine

ϕS(ω) :=
aS(ω)∑

ω′∈Ω aS(ω′)
(44)

to obtain

∑
ω∈S

 ∑
x∈supp(f(ω))

uS(x)f(ω)(x)

µS(ω)

>
∑
ω∈S

 ∑
x∈supp(g(ω))

uS(x)g(ω)(x)

µS(ω).

to obtain

∑
ω∈Ω

 ∑
x∈supp(f(ω))

wS(x)f(ω)(x)

ϕS(ω)

>
∑
ω∈Ω

 ∑
x∈supp(g(ω))

wS(x)g(ω)(x)

ϕS(ω).

Repeating this construction for every S ∈ S yields representations of Theorems 1 and 2 respectively.
�

A.6 Proof of Proposition 2

Suppose that Properties 1 to 6 hold. We need to show that µS ∈ ∆(S), for S 6� S(E) if
and only if for all events F such that S(F ) = S(E) we have fF ∼ hFg for all f, g, h ∈ A.
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“⇒”: If µS ∈ ∆(S) with S 6� S(E), then for all events F with S(F ) = S(E),

∑
ω∈S

 ∑
x∈supp(fF g(ω))

uS(x)fFg(ω)(x)

µS(ω)

=
∑
ω∈S

 ∑
x∈supp(hF g(ω))

uS(x)hFg(ω)(x)

µS(ω). (45)

for all f, g, h ∈ A. By Theorem 1, we have fFg ∼S hFg for all events F such that
S(F ) = S(E) and all f, g, h ∈ A, and S 6� S(E).

“⇐”: If for all events F with S(F ) = S(E) we have fFg ∼ hFg for all f, g, h ∈ A,
then ∼=∼S with S 6� S(E) since otherwise it contradicts Remark 6. By Theorem 1,
there exists an awareness-dependent expected utility for which equation (45) holds for
all f, g, h ∈ A and F ∈ Σ such that S(F ) = S(E). Thus µS ∈ ∆(S) with S 6� S(E). �
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