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Abstract 

This paper uses laboratory experiments to investigate the effects of alternative solutions to a 
common-pool resource with a unidirectional flow. The focus is on the comparative economic 
efficiency of communications, bilateral “Coasian” bargaining, auctions and price-based 
allocations. All treatments improve allocative efficiency relative to a baseline environment.  
Communication and bilateral bargaining are not generally as effective as market allocations.  An 
exogenously imposed, optimal fee results in the greatest efficiency gain, followed by auction 
allocations that determine the usage fee endogenously. 
 

 

 

I. Introduction 

 The standard solution to the tragedy of the commons is to assign broad-based property 

rights, thereby internalizing the externality.  Subsequent purchases and sales can then reallocate 

these rights to efficient producers.  When property rights are difficult to enforce or when their 

assignment is politically infeasible, a host of direct regulations may arise. The path-breaking 

work of Elinor Ostrom and her coauthors has uncovered a rich variety of institutional solutions, 

most of which do not involve property right assignments or heavy-handed regulation.1   

A particularly interesting common-pool resource problem arises when resource 

availability follows a unidirectional flow, such that usage by upstream producers only imposes 

externalities on those farther downstream.  An example is the situation of farmers aligned along a 
                                                           
* University of Virginia (Holt, Mallow, and Sullivan) and University of Arizona (Johnson)   We wish to thank 
Claudia Antonacci, Andrew Barr, Rachel Blank, Anna Draganova, Stephanie Lawrence, Ricky Sahu, and Sara St. 
Hilaire for research assistance.  We also received helpful comments from Ben Cohen, Nicholas Smith and Ilya 
Zlatkin.  This research was funded in part by the National Science Foundation (SES0098400) and the University of 
Virginia Bankard Fund. 
1   See Ostrom, E., R. Gardner, and J. K. Walker (1994) and the special section of the Fall 1993 Journal of Economic 
Perspectives devoted to “Management of the Local Commons.” 
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canal, who make sequential use of the scarce water resource to irrigate their fields.2  Even with 

well defined property rights, overuse by upstream farmers may prevent water from reaching 

fertile downstream areas.3  In such cases, market-based solutions may offer some advantages: 

e.g., marketable shares of water flow provide farmers with incentives to trade in such a way that 

water is diverted to its highest-value uses (Yoder, 1986).  Social solutions may also exist.  For 

example, opportunities for efficient coordination of canal repairs or joint marketing may put 

property owners in social settings where they are in a better position to negotiate mutual 

reductions (Ostrom and Gardner, 1993).  

The first laboratory experiments on this topic are reported by Gardner, Ostrom, and 

Walker (1990), who provide a conceptual framework for evaluating problems associated with 

overuse of a common-pool resource.  In these experiments, subjects simultaneously select the 

intensity of their harvest from a common-pool resource by allocating “tokens” between two 

activities.  Walker, Gardner, and Ostrom (1990) consider the effects of changing the endowment 

of tokens.  Cardenas, Janssen and Bousquet (2008) introduce a water irrigation experiment: the 

first attempt to investigate sequential extraction of a common-pool resource, in contrast to 

simultaneous request. 

Experiments that include simultaneous provision and sequential appropriation of water 

resources suggest that the lack of trust from downstream players towards upstream players curbs 

cooperation.4 Social pressures may result in some improvements, especially for small groups of 

economically or ethnically homogeneous users.5  In experimental work where the requests for 

appropriations are made sequentially, but distribution occurs at the conclusion of the decision 

sequence, individual requests and position sequence are negatively correlated.6 Late movers 

request less and early movers request more, regardless of the information conditions and the 

                                                           
2  Other examples of directional flows include pollution that is blown by prevailing winds, and the harvest of 
migratory fish. 
3  Ostrom and Gardner (1993) report an example from Nepal in which overuse by “headlanders” during the pre-
monsoon season results in crop values that are much lower than what could be achieved with a reallocation to 
downstream rice farmers. 
4  Cardenas, Johnson and Rodrigues (2009) conducted both a “water irrigation” experiment and a “water trust” 
experiment.  
5  Cardenas (2003) and Cardenas et al. (2002) report field experiments in which non-homogeneous groups have more 
difficulty in dealing with common-pool resource problems. 
6 Budescu et al. (1997) considered information manipulations on the effect of having a sequence of extraction 
requests from a shared common-pool resource. 
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randomness of order assignment. 

In some cases, informal social arrangements at a local level seem to outperform 

regulations imposed by a higher government authority.7  However, the sequential structure of 

unidirectional externalities can create problems.  For example, let sequential locations along a 

canal be represented by users 1, 2, and 3, so that user 1 acts first, user 2 acts second, etc. User 3 

could pay user 1 to reduce water usage, but this private arrangement will be of little benefit to 3 if 

user 2 exploits the extra water flow when given the move.  In a long sequence of usage decisions, 

“defection” by a single upstream user, if observed or incorrectly inferred, may induce a cascade 

of downstream defections.  Efforts to impose use limits or fees may be hampered by misleading 

information provided to regulators or by offsetting activities taken by the users.8

This paper describes a laboratory experiment designed to evaluate the efficiency gains 

provided by four potential solutions to a sequential common-pool appropriation problem: 

communication (“chat”), bilateral bargaining with chat (“bargaining”), an auction of water rights 

(“auction”), and an optimal irrigation fee (“optimal fee”).  A between-subjects design is used to 

compare the allocative efficiencies of these potential solutions.  Section II describes the general 

game and specific treatment environments in detail.  Section III explores results of the 

experiment, specifically subject behavior and observed efficiency in each environment.  Section 

IV concludes with a discussion of observed themes and potential extensions. 

II. Procedures 

Participants in this experiment are given the role of “farmers” located along a common 

“canal” that flows by each of their farms in sequence.  Each session consists of 6 participants, 

with numbered addresses corresponding to their identities (IDs 1-6).  Addresses determine the 

sequence in which water use decisions are made: ID 1 moves first, ID 2 moves second, etc.  

Address locations do not change between the rounds. 

Each participant is endowed with 4 fields of randomly determined productivities.  The 

productivity value for a given field corresponds to the cash value of the crops that field yields in 

                                                           
7  Cardenas, Stranlund, and Willis (2000) conducted a field experiment in rural villages in Columbia. They find the 
application of rules and regulations that are imperfectly monitored and outside of informal community institutions 
tend to increase selfish, individualistic behavior—resulting in overuse. 
8  In fisheries, for example, limits on the season result in larger boats.  For an irrigation system, limits on pipe size 
may result in the use of more powerful pumps, etc.  There is a saying in Spanish: “el que hace la regla, hace la 
trampa” (he who makes the rule, makes the trick). 
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the absence of irrigation.  If irrigated, a field yields a cash value of triple its productivity value.  

Provided water is available, each participant decides whether or not to irrigate each field.  A total 

stock of 12 “units” of water is available in each round; irrigating a field is a binary decision that 

depletes a “unit” of water from the total available stock.  When deciding whether to irrigate each 

field, the available amount of water is visible to the participant, but the amounts taken by 

upstream user are not visible (except in specific treatments, as noted below).  

Rounds correspond to different growing seasons with renewed water supplies.  To reflect 

local climate variations, productivities are randomly generated from discrete-uniform 

distributions in each round.  All sessions are run with web-based Veconlab software, using the 

Water Externalities program.9  Rich terminology (farmers, fields, water) is used to help make the 

decision-making context clear to the participants.  The same context is used in all treatments. 

Table 1 displays the ranges of random field-productivity values, which differed between 

the three upstream producers (IDs 1-3) and the three downstream producers (IDs 4-6).  Both 

productivity ranges and their realizations in each round were private information.  Distributed as 

discrete-uniform random variables, productivities are constrained to be integer amounts: e.g. 

high-productivity fields are equally likely to have values of $7, $8, $9, $10, or $11, and low-

productivity fields are equally likely to have values of $2, $3, $4, $5, or $6. 

 

Table 1. Fields and Ranges of Base Productivity Values (Tripled with Irrigation) 

Field 
Number 

Upstream Producers 
(IDs 1-3) 

Downstream Producers 
(IDs 4-6) 

1st $7-$11 $7-$11 
2nd $2-$6 $7-$11 
3rd $2-$6 $7-$11 
4th $2-$6 $2-$6 

 

The optimal allocation of the 12 water units is to irrigate the 12 high-productivity fields.  

Since the productivity ranges for the two types of fields do not overlap, this corresponds to 

                                                           
9  The program is available online at http://veconlab.econ.virginia.edu/admin.php for instructor setup and at 
http://veconlab.econ.virginia.edu/login.php for participant login.  Setup options are flexible in terms of the numbers 
of participants, the numbers of fields and the ranges of their random productivity draws, the possibility of random 
changes in the water stock, etc.  Instructions for participants are configured automatically to match the selected 
setup.  These instructions are presented to participants prior to the first round and prior to the round following a 
treatment change.  This program can also be used in a classroom setting to induce discussions of common-pool 
resource problems. 
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allocating 1 unit of water to each of the upstream producers (IDs 1-3), and allocating the 

remainder evenly over the downstream producers (IDs 4-6).  If upstream producers behave 

selfishly, they will each take 4 water units, leaving no available stock for the downstream 

producers with more high-productivity fields.  Since irrigation triples yield values, the net gain 

from irrigation is twice the yield value.  Notice that an optimal fee is a price for water of $13, 

which would deter farmers from irrigating low productivity fields, but would not deter those with 

high productivity fields.  The imposition of an optimal fee, in theory, would yield maximum 

earnings (100% efficiency), as compared with the approximate 75% efficiency that would result 

from purely selfish behavior under these parameter values.     

A baseline environment as just described is used for the first three rounds of each session.  

In the final three rounds, one of five different treatments is applied:  a repeat of the baseline (no 

change), communication (“chat”), bilateral bargaining with chat (“bargaining”), an auction of 

water rights (“auction”), or an optimal irrigation fee (“optimal fee”).  Repeating the baseline 

environment allows the experimenter to obtain a basis for comparison that is corrected for 

experience. 

In the chat treatment, participants are given three minutes to communicate in an online 

chat room.  After the chat period ends, they made decisions in sequence as before, except that 

each person is able to view the water use decisions of upstream participants by ID.  There is, of 

course, a large literature on the effects of communication in common-pool resource dilemmas.  

The purpose of this treatment is to determine how a controlled amount of social interaction might 

enhance efficiency in this sequential setup, in order to provide a basis for comparison with 

market-based policies to be discussed next. 

Like the communication treatment, the bargaining treatment also involves a chat room 

and public decision making.  The chat time is extended to 6 minutes in each round to provide 

participants sufficient time to negotiate binding bilateral contracts.  Two types of contracts are 

possible: (1) an offer to pay an upstream user to their restrict irrigation to at most Q units in 

exchange for a payment of $P, and (2) an offer to accept $P from a downstream user in exchange 

for agreeing to restrict one’s own irrigation to at most Q units.  Anyone who receives a proposed 

contract can accept it or not.  All agreements are bilateral and binding, but participants can make 

agreements with any number of upstream and downstream users.  For example, ID 1 might agree 

to restrict irrigation to 3 units in exchange for payment of $2 from ID 4, and the same person (ID 
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1) might agree to restrict irrigation to 2 units in exchange for a payment of $10 from ID 5.  In this 

case, ID 1 would receive a total of $12 and would be limited to use at most 2 units of water.   

This treatment is motivated by the Coase theorem, which suggests that bargaining under 

the umbrella of well-defined property rights should result in an efficient allocation even in the 

presence of externalities, as long as certain assumptions are satisfied (Coase, 1960).  The most 

critical assumption is the absence of transactions costs.  Although, there are no explicit 

bargaining costs in the experiment, time limits and the need to engage in multiple, interrelated 

negotiations may generate substantial indirect transactions costs.  Participants are also hampered 

in terms of not knowing others’ productivity values when negotiating contracts.   

In the auction treatment, a permit is required to irrigate a field.  All farmers, regardless of 

address, have the opportunity to bid for as many as 4 permits each. The highest 12 bids are 

selected, and the price paid for the permit is the highest rejected bid (i.e. the 13th bid).  This is a 

multi-unit, uniform-price auction with private values, so it is never optimal to bid above one’s 

value.10  Bidding below value at the rejection margin could, however, reduce the price paid for 

other permits.  Therefore, bidding at value is not necessarily an equilibrium strategy, as would be 

the case in a second-price auction with a single prize.  If bids do mirror values, then an auction 

would select the high-value users; the resulting allocation would be efficient, and the clearing 

price would constitute an optimal usage fee.  The purpose of the auction treatment is to determine 

how effectively a market process could approximate an optimal fee. 

In contrast to endogenous determination of the fee in the auction treatment, the optimal 

fee treatment simply imposed an exogenous per-unit fee of $13 for each water unit used, 

simulating a Pigouvian tax.  The revenue from the fee is not returned to the participants.11  No 

chat was allowed in the auction and optimal fee treatments. 

Reported results are based on a total of 25 six-person sessions, run between March and 

December 2009, using student subjects recruited from the University of Virginia.  Session lasted 

from 35 to 60 minutes, depending on the treatment.  Participants received $6 for showing up, and 

were paid a cash amount equal to 4% of the money they earned in the experiment.  Earnings 
                                                           
10  This setup is similar to the multi-unit uniform-price auction was implemented by the Regional Greenhouse Gas 
Initiative (RGGI) for the sale of allowances for Carbon Dioxide emissions from electric power generators in 10 
northeast states. Laboratory experiments were used to refine recommended auction procedures (Holt, et al., 2007 and 
Burtraw, et al., 2009).   
11  We also ran 5 sessions in which the treatment involved an optimal fee, but in which the fee revenues were equally 
divided among the farmers.  This treatment is not reported, since the results are quite similar to the optimal fee 
treatment with no rebate. 
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depended on the treatment, but generally ranged from $12 to $30, including the initial $6 

payment. 

III. Results 

In every environment of the experiment, there exists a unique optimal allocation in which 

water is used to irrigate the 12 most productive fields. Data from this experiment are used to 

calculate efficiencies as a percentage of this optimal allocation.  Efficiencies by round are shown 

in Figure 1, where each line represents an average over all 5 sessions for a specific environment.  

The dashed gray line, which lies below the others, tracks the predicted efficiency for the case 

where all water is taken by the three upstream farmers.  Note that these “selfish” predictions are 

at about 75% efficiency, with some slight variability due to random productivity draws.  The 

legend labels on the right indicate the treatment used in rounds 4-6.   

 

Treatment in Rounds 4 - 6:
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Figure 1.  Baseline Efficiencies (Rounds 1-3) by Session and Treatment 

 

The highest efficiencies are observed when an optimal fee is exogenously imposed, 

followed by an auction.  Bargaining and chat are less efficient, and exhibit little difference.  

Under baseline conditions, average efficiencies are 1 to 3 percentage points higher than the 

purely selfish predictions, indicating a small amount of altruistic behavior.  Recall that in this 

environment, the unidirectional flow of water and static location of participants means that acts 

of generosity cannot be reciprocated. 

Average efficiencies, disaggregated by session, are arrayed in Figure 2 for the baseline 
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environment (rounds 1-3), and in Figure 3 for the treatment environments (rounds 4-6).  The 

order of sessions from left to right in Figure 2 matches that in Figure 3.  Notice that there are 5 

bars in each treatment cluster, each representing the average efficiency in a session-environment. 
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Figure 2.  Baseline Efficiencies (Rounds 1-3) by Session and Treatment 
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Figure 3.  Treatment Efficiencies (Rounds 4-6) by Session and Treatment 
 

A quick glance at these data affords several qualitative observations.  Despite some 

variability, efficiencies in the baseline environment look basically homogeneous across 

experimental sessions.  There is no correlation between baseline efficiencies and treatment 

efficiencies, except in the bargaining sessions, where efficiencies are increasing from left to right 

in both figures.  Efficiencies vary considerably both within and across treatments.  For example, 

the minimum efficiency in the Optimal Fee treatment is greater than the maximum efficiency in 

any other treatment environment.  While it is tempting to declare that observed efficiencies admit 
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a monotone ordering by treatment, the variability of efficiencies in the Chat treatment suggests 

the need for more analysis. 

Reading too much into patterns based on limited numbers of observations is always 

dangerous, and the prudent question is whether observed relationships can be explained as more 

than chance variation.  The remainder of this section discusses what inferences these data provide 

about the relative merits of the considered solutions to a common-pool resource problem with 

sequential extraction. 

 

Result 1:  Average efficiency in the baseline environment is slightly greater than would be 

expected under purely selfish behavior. 

 

The selfish prediction for this experiment has the first three farmers consuming four units 

of water each, leaving no residual irrigation for the downstream farmers who have more 

productive fields.  Across the baseline environment (rounds 1-3) this allocation corresponds to an 

average “selfish efficiency” of 74.33%.  Casual inspection of Figures 1-3 suggests that observed 

efficiencies are slightly greater than the selfish prediction. This conclusion is supported by 

statistical inference, as we are firmly able to reject the claim that the average baseline efficiency 

(pooled over all 25 sessions) equals the selfish prediction at any reasonable level of 

significance.12

Of course, rejection of equality does not imply a large inequality, and a 10% confidence 

interval places the average baseline efficiency only between 76.1 and 78.0%.13  Thus, while we 

are confident that average baseline environment efficiency exceeds the selfish prediction, the 

difference is evidently small. 

 

Result 2:  All non-baseline treatment environments provide efficiency gains over the baseline 

environment. 

  

Every potential solution to the common-pool resource problem studied in this paper is 

                                                           
12  Student's t-test provides a p-values of less than 0.0001. 
13  Interval constructed by the usual inversion of the t test. 

9 



meant to improve upon the efficiency of the status quo baseline environment.  To test the merits 

of each solution, we explore within-session efficiency gains between baseline and treatment 

environments.  This amounts to calculating the difference between baseline and treatment 

efficiencies for each session, and then comparing the average differences to zero by treatment 

type.14

 In testing the one-sided alternative that average efficiency is greater under the treatment 

environment than it is under the baseline environment, we find compelling evidence that each 

non-baseline treatment does in fact improve upon the average baseline efficiency.  One-sided 

exact p-values for each treatment are provided in Table 2; these correspond to a one-sided 

application of Wilcoxon’s signed-rank test. 

 

Table 2: P-values from One-Sided Tests that Average Efficiency Gain Exceeds Zero 

Treatment p-value 
Baseline 0.59380 
Chat 0.03125 
Bargaining 0.03125 
Auction 0.03125 
Optimal Fee 0.03125 

  

 Individual tests conform to a priori expectations, finding strong evidence of efficiency 

gains under every non-baseline treatment.  For its part, the repeated baseline treatment shows no 

evidence of an efficiency gain, which helps to mitigate concerns that repeated play or sequence 

effects may be driving experimental results. 

When performing many simultaneous tests, there is always a concern that some rejections 

may result from random variation alone.15  Thus, when attempting to draw inferences from the 

combined results of many individual tests, it is sometimes prudent to check whether conclusions 

differ under stronger rejection rules than simple per-test rejections.  A common technique is to 

use a test which controls of the family-wise error rate, defined as the probability of even a single 

                                                           
14  Within-session comparisons exploit pairing of baseline and treatment environments within each session to help 
mitigate the consequences of potentially unobserved heterogeneity. 
15  For example, consider running 20 statistically independent tests at the 0.05 level, and suppose all null hypotheses 
are in fact true.  Since the probability of a false rejection is 5% in each individual test, we can expect one false 
rejection out of the 20 tests performed.  In fact, the probability of at least one false rejection is 1 – (0.95)20, or 64%. 
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false rejection among k simultaneous tests.16  For these data, a joint test of all non-baseline 

treatment environments leads to the same conclusion---that all non-baseline treatments lead to 

efficiency gains over the baseline---at the family-wise 0.1 level.17

 Having determined that all examined solutions increase efficiency over the baseline, the 

next logical question is how much of an improvement each solution affords.  To address this 

question, Figure 4 illustrates 95% confidence intervals for average efficiency gains under each 

treatment environment.18

 

 
Figure 4. 95% Confidence Intervals for Average Efficiency Gain by Treatment 

 

 Confidence intervals for the average efficiency gain under each solution vary 

considerably in both breadth and location.  It is interesting that a 95% confidence interval on the  

optimal fee solution includes as much as a 25% average efficiency gain over the baseline 

environment—corresponding to approximately 100% efficiency under this solution.  Outcomes 

under the chat treatment are sufficiently variable that a 95% confidence interval contains both 

zero efficiency gains, and gains of nearly 20%. Clearly, we cannot use these data to speak with 

much precision about the average efficiency gain resulting from non-binding communication.  

This is not terribly surprising: chat logs reveal that some groups manage to establish loose 
                                                           
16   Note that this is a very conservative test that is appropriate when a false rejection of the null can have serious 
consequences, e.g. when it means administering a drug when it actually has no beneficial effect. 
17  The reported rejection corresponds to a sequential Bonferroni-type test described by Hochberg (1988). 
18  Confidence intervals are constructed by inversion of Wilcoxon's signed-rank test.  Note that these confidence 
intervals are analogous to two-sided tests, while the hypotheses tested above are one-sided. 
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behavioral norms or some degree of social responsibility, while other groups fail to establish 

such norms, and chat devolves into a series of complaints and frustrations.   

 

Result 3:   Average efficiencies differ between some treatment environments. 

 

 Given that all the solutions considered in this paper do increase allocative efficiency to 

varying degrees, the next logical inquiry is whether we can say anything about which ones work 

better than others.  To address this question, we rely on between-session variation in comparing 

average efficiencies across our various treatment environments.  At the most fundamental level, 

the question is whether we can be certain of any difference between treatments in the first place.  

Casual inspection of Figure 4 strongly suggests we can, and formal statistical tests agree: we 

reject the possibility that efficiency gains are equal across treatments at every reasonable level of 

significance.19

 Of course, the interesting question is not whether the treatment effects of the various 

solutions differ, but how they differ.  To address this point, we conduct a multiple comparisons 

test of all pair-wise contrasts between treatments using the Wilcoxon-Mann-Whitney test.20  

Table 3 summarizes inferences gained from each comparison: reported p-values are exact. 

 

Table 3: P-values from Two-Sided Tests of Common Location. 

Comparison p-value 
Bargaining vs Chat 1.00000 
Chat vs Auction 0.09524 
Bargaining vs Auction 0.00794 
Auction vs Optimal Fee 0.00794 
Chat vs Optimal Fee 0.00794 
Bargaining vs Optimal Fee 0.00794 

  
 

                                                           
19  Kruskal-Wallis tests for equality of location yield asymptotic p-values of less than 0.005 whether or not the 
repeated baseline treatment is included in the comparison. 
20  The intuition behind this test is easily illustrated.  For example, if all 5 observations under one treatment are lower 
than all 5 observations under another, then of the “10 take 5” = 252 ways of permuting these numbers, only 2 of 
these (all 5 greater under one treatment and all 5 less under one treatment) are as extreme or more extreme that what 
was observed.  Under the null, the chances of this are 2/252 = 0.00794, as shown by the bottom 4 rows of Table 3. 
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 Specific conclusions drawn from this family of tests are provided in the next three results.  

As noted previously, the more statistical tests one conducts, the more false rejections one can be 

expected to produce.  This is never a problem on a per-comparison basis, but it can sometimes 

muddy conclusions drawn from looking comprehensively at the results of a family of tests.  For 

completeness, we comment on how conclusions differ under the stronger requirement of 

controlling the family-wise error rate, where appropriate. 

  

Result 4: The optimal fee treatment yields higher average efficiency than any other treatment 

environment. 

 

 In terms of simply increasing efficiency over the status quo, the optimal fee solution is a 

clear winner.  This conclusion stands whether or not one chooses to take the more conservative 

approach of controlling the family-wise error rates.21  The observation of nearly 100% efficiency 

in this treatment is, of course, consistent with economic theory. Since the price of irrigation is 

fixed at a level that causes all farmers to internalize the social opportunity cost of the water, even 

a small dose of individual rationality should suffice to affect a socially optimal allocation. 

Unfortunately, the practicality of this solution to the common-pool resource problem is 

limited.  There is no reason to expect an optimal fee would be obvious in a typical policy-making 

setting, particularly when users have incentives to report valuations selectively and to lobby for 

lower fees.  Because a fee-based solution could fail quite miserably if the fee were set at the 

wrong price, difficulty in determining the proper fee may translate into a great decrease in 

practical efficacy in many settings. 

 

Result 5:  The Auction treatment yields higher average efficiency than either the Chat or 

Bargaining environments.  

 

 Because an auction solution uses a market mechanism to “discover” the optimal fee, it is 

not surprising that it should closely follow the optimal fee treatment in terms of average 

                                                           
21  The Optimal Fee treatment is concluded to provide higher average efficiency than any other non-baseline 
treatment when using the Hochberg algorithm to control the family-wise error rate at the 0.025 level. 
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efficiency.  Efficiency of the auction treatment clearly surpasses that of the bargaining 

environment, and superiority of the auction over the chat environment is also evident, albeit with 

a less impressive p-value.  We draw the same conclusion when controlling family-wise error 

rates at the 0.2 level, but fail to reject that average efficiency is the same under chat and auction 

treatments at lower levels of the family-wise error rate.22

 

Result 6:  There is little evidence that bilateral bargaining results in a greater average efficiency 

than simply allowing participants to communicate in a non-binding way. 

 

 Because externalities are fundamentally problems of property rights, the Coase theorem 

argues that private bargaining in the context of well-defined property rights should result in 

socially optimal allocations.  By contrast, allowing farmers to engage in non-binding 

communication without the ability to make and enforce contracts provides no theoretical 

argument for an efficiency gain over selfish behavior.  While we would have expected the 

bargaining treatment environment to exhibit greater average efficiency than the chat treatment, 

the data fail to support this claim. 

 One possible explanation for the dismal performance of private bargaining is the 

potentially serious obstacle of transactions costs, which are assumed away in the Coase theorem.  

Although property rights are well defined and there are no explicit transactions costs in this 

treatment, a downstream farmer has to make multiple contracts with upstream farmers in order to 

insure water availability.  With no centralized coordinator, the difficulty of forming an 

appropriate menu of contracts can represent a substantial implicit transactions cost.23  There is 

also a free-riding problem, since various farmers may benefit from contracts to which they are 

                                                           
22   The auction treatment environment is concluded to provide higher average efficiency than either the bargaining 
or chat treatments when using the Hochberg (1988) algorithm to control the family-wise error rate at the 0.2 level.  
At lower levels, there is not sufficient evidence to statistically distinguish the auction and chat environments.  
Although 0.2 is higher than contemporary standards of “statistical significance” as applied to individual hypothesis 
tests, it is reasonable among tests controlling the family-wise error rate.  Intuitively, rejection at this level 
corresponds to allowing for no more than a 20% chance of experiencing even a single false rejection among all six 
comparisons conducted in Table 3. 
23 A strikingly similar result is found in a network formation experiment. Connecting to the network is a contribution 
to the public good. If each player (node) connected to its nearest neighbor(s), players would enjoy higher earnings. If 
all players didn’t connect, the players that had connected would suffer a loss. The coordination problem created 
enough of a barrier that no “chain networks” could form in the laboratory (Deck and Johnson, 2001).  
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not a party: in the words of an ID 6 participant during the chat phase of bargaining, “I would sign 

with you player 1 [ID 1], but the water doesn’t seem to get to me anyway.”   

IV. Conclusion 

 This paper was inspired by the rich array of commons problems studied by Elinor Ostrom 

and her collaborators.  One lesson of these field studies is that there is not necessarily a “tragedy” 

in common-pool resource environments.  The laboratory results reported here are intended to 

compare various solutions to a commons problem in the context of a sequential structure that 

arises naturally in settings with a unidirectional flow.  Results suggest that the commons problem 

of inefficient resource allocations can be mitigated by the introduction of proper social 

institutions or government intervention. 

In the setting we investigate, there exists a unique optimal fee, the imposition of which 

causes full internalization of all usage externalities.  Unsurprisingly, experimental results show 

exogenous imposition of this fee corresponds to nearly 100%, efficiency.  A solution relying on a 

uniform price auction for water permits is not as efficient, but the difference appears relatively 

small.  The advantage of an auction approach solution is that the usage fee is endogenously 

discovered, which is of great practical importance when the optimal fee is not generally known a 

priori.   

When property rights are well defined and contracts are binding the Coase Theorem 

suggests that private bargaining should result in optimal allocations, at least in the absence of 

significant transactions costs.  The bargaining treatment of the experiment implements binding 

bilateral contracts without explicit negotiation costs.  Because contracts are constrained to be 

bilateral, however, participants may have to arrange sequences of contracts in order to ensure 

water flow to the fertile downstream fields; this source of complexity may represent an implicit 

transactions cost.  Moreover, there is a free-riding problem in the sense that participants located 

between two parties to a contract may take the water that the upstream person agrees not to use.  

In this setting, we find bargaining has no more effect than a somewhat mild social-pressure 

treatment that permits participants to talk to each other in a chat room and observe others’ 

decisions (the bargaining treatment also permitted a chat phase and social observation). 

An interesting extension may be to revise the bargaining environment to allow for direct, 

bilateral trade of water units.  For example, instead of contracting to reduce an upstream user’s 

total water usage, a downstream user might simply “buy” a unit of water from the upstream 
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user—circumventing both contractual complexity and free-riding problems.  While this 

alternative specification seems likely to achieve greater average efficiency, its practical relevance 

is unclear.    

It is well known from Ostrom’s original studies (and a large subsequent literature on 

voluntary contributions with punishments) that direct punishment opportunities can often solve a 

commons problem.  An alternative extension of our experiment would be to determine whether 

there is also a political solution in which participants vote on irrigation restrictions or usage fees, 

with fee revenues being distributed to participants in some manner.   
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Appendix: Data on Average Efficiencies by Session 

 
Session Name Avg. Efficiency: 

Rounds 1-3 
Avg. Efficiency: 

Rounds 4-6 
Treatment 
Rounds 4-6 

wex21 74.290 76.912 Chat 
wex22 77.726 79.209 Chat 
wep11 77.723 92.595 Chat 
wep30 77.423 95.752 Chat 
wex2 76.678 88.616 Chat 
wex16 80.852 90.604 Bargaining 
wex17 76.450 87.743 Bargaining 
wex18 78.248 88.867 Bargaining 
wex19 74.190 86.293 Bargaining 
wex20 75.289 87.575 Bargaining 
wep10 74.190 91.718 Auction 
wep17 76.504 97.349 Auction 
wep18 84.597 95.267 Auction 
wex1 75.289 97.301 Auction 
wex3 77.492 92.852 Auction 
wex6 76.279 98.018 Optimal Fee 
wex7 75.408 99.456 Optimal Fee 
wex8 76.797 98.582 Optimal Fee 
wex9 74.190 00.000 Optimal Fee 
wex10 74.190 98.342 Optimal Fee 
wex11 79.635 75.670 Baseline 
wex12 76.971 76.996 Baseline 
wex13 79.809 77.754 Baseline 
wex14 74.190 75.670 Baseline 
wex15 76.975 80.535 Baseline 
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