
MPRA
Munich Personal RePEc Archive

The Semantic Web Paradigm for a
Real-Time Agent Control (Part I)

Vasile Mazilescu

Dunarea de Jos University Galati, Romania

17. February 2010

Online at http://mpra.ub.uni-muenchen.de/20759/
MPRA Paper No. 20759, posted 17. February 2010 23:46 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213915912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/20759/

The Semantic Web Paradigm for a Real-Time Agent Control (Part I)

Vasile MAZILESCU

Department of Accounting and Economic Informatics
University Dunărea de Jos of Galati

vasile.mazilescu@ugal.ro

Abstract. For the Semantic Web point of view, computers must have access to structured
collections of information and sets of inference rules that they can use to conduct automated
reasoning. Adding logic to the Web, the means to use rules to make inferences, choose
courses of action and answer questions, is the actual task for the distributed IT community.
The real power of Intelligent Web will be realized when people create many programs that
collect Web content from diverse sources, process the information and exchange the results
with other programs. The first part of this paper is an introductory of Semantic Web
properties, and summarises agent characteristics and their actual importance in digital
economy. The second part presents the predictability of a multiagent system used in a
learning process for a control problem.

Keywords: Semantic Web, agents, fuzzy knowledge, evolutionary computing
Jel code: C63, C 88

1. Introduction

When discussing the Semantic Web (SW), it is
important to get one thing clear from the start: this
is not a new version of the Internet. The SW
technologies will allow machines to make
inferences. Pioneering this new approach to the
Web is Tim Berners-Lee, the original worldwide
web inventor. With health care and economic
data, and databases of environmental information,
all marked up in machine-readable codes, the SW
could search for connections between where the
sick people live, and any contextual
environmental and economic information that
might have contributed to the illness. Researchers
are formulating projects that are likely to
transform everyday use of the web, and
potentially ways in which the internet can be used
for better educational effectiveness.
The amount of information available via networks
and databases has rapidly increased and continues
to increase. Existing search and retrieval engines
provide limited assistance to users in locating the
relevant information that they need. Autonomous,
intelligent agents may prove to be the needed item
in transforming passive search and retrieval
engines into active, personal assistants. Intelligent
agents can improve the performance of short-term
information retrieval in an existing search or
retrieval engine [1,3,4].
This first part of paper is divided in two sections:
section 2 is an introductory of SW properties, and
section 3 summarises agent characteristics and
their actual importance in digital economy.

2. On the Semantic Web

One of the projects that is developing involves the
integration of public transport information using
RDF. The project requires the integration of
timetable information and route plans, and would
also incorporate specific geographical information
recorded at specific points in time to provide
relevant travel information to the user as and
when required, rather than leaving the traveller to
consult a variety of timetable information from a
variety of sources. Additionally, RDF describes
objects and their relationships, rather than
documents and the way they are displayed. This
means it is easy to reuse information described in
RDF for different devices such as mobile phones,
and for presentation to people with different
capabilities, such as those with cognitive or visual
impairments. Using a similar framework, it is
possible to extrapolate that in the near future
schoolchildren will be able to extract far more
data from a networked computer or wireless
device, far more efficiently, to complete tasks.
Based on a few specific search terms, library
catalogues could be scanned automatically.
Students could also be directed to relevant
discussion lists and research groups, all in formats
and on platforms they are most comfortable with
or are most convenient.
Perhaps also relevant to the educational sector is
Internet Relay Chat (IRC), a tool used by the
Semantic Web development community to
manage distributed working. IRC is a chat
protocol where people can meet on channels and
talk to each other. The semantic web community

is enhancing this by writing robots that can help
to log the chat when members are away, and a
real-time chat-based tool that allows them to
create and annotate links on a web page by typing
in a chat room. Such tools have been used to
support development in a community that is
geographically and culturally widely distributed.
IRC tools' usefulness comes both from their
ability to enable many people to work together
and distribute information about their work while
separated in time and space, and also because they
enable real-time support and discussion from the
community. From an educational perspective,
these qualities suggest that IRC and related tools
could work well within education, for project
discussion, remote working, and collaborative
document creation. As demonstrated by the rising
popularity of video-conferencing, schools are
increasingly becoming interested in widening the
boundaries within which students work. The
incorporation of SW technologies could enable
them to work across distributed locations in
communities of learning and content creation
within and outside of the classroom confines.
Whether or not the SW as a concept remains
unclear, it is clear that a shake-up of the web is
required to make it more meaningful, respond
faster to questions, and join up disparate
information objects and sources automatically.
The SW is not a separate Web but an extension of
the current one, in which information is given
well-defined meaning, better enabling computers
and people to work in cooperation. The first steps
in weaving the SW into the structure of the
existing Web are already under way. In the near
future, these developments will usher in
significant new functionality as machines become
much better able to process and "understand" the
data that they merely display at present. The
essential property of the WWW is its universality.
The power of a hypertext link is that anything can
link to anything.
For the SW to function, computers must have
access to structured collections of information and
sets of inference rules that they can use to conduct
automated reasoning. Adding logic to the Web—
the means to use rules to make inferences, choose
courses of action and answer questions—is the
task before the SW community at the moment. A
mixture of mathematical and engineering
decisions complicate this task. The logic must be
powerful enough to describe complex properties
of objects but not so powerful that agents can be
tricked by being asked to consider a paradox.
Fortunately, a large majority of the information
we want to express is along the lines of "a hex-

head bolt is a type of machine bolt," which is
readily written in existing languages with a little
extra vocabulary [4].
Two important technologies for developing the
SW are already in place: eXtensible Markup
Language (XML) and the Resource Description
Framework (RDF). XML lets everyone create
their own tags—hidden labels such as or that
annotate Web pages or sections of text on a page.
Scripts, or programs, can make use of these tags
in sophisticated ways, but the script writer has to
know what the page writer uses each tag for. In
short, XML allows users to add arbitrary structure
to their documents but says nothing about what
the structures mean. Meaning is expressed by
RDF, which encodes it in sets of triples, each
triple being rather like the subject, verb and object
of an elementary sentence. These triples can be
written using XML tags. In RDF, a document
makes assertions that particular things (people,
Web pages or whatever) have properties (such as
"is a sister of," "is the author of") with certain
values (another person, another Web page). This
structure turns out to be a natural way to describe
the vast majority of the data processed by
machines. Subject and object are each identified
by a Universal Resource Identifier (URI), just as
used in a link on a Web page. (URLs, Uniform
Resource Locators, are the most common type of
URI.) The verbs are also identified by URIs,
which enables anyone to define a new concept, a
new verb, just by defining a URI for it somewhere
on the Web.
A program that wants to combine information
across the two databases has to know that these
two terms are being used to mean the same thing.
This program must have a way to discover such
common meanings for whatever databases it
encounters. A solution to this problem is provided
by the third basic component of the SW,
collections of information called ontologies. An
ontology is a theory about the nature of existence,
of what types of things exist. Artificial
intelligence and Web researchers have adopted the
term and for them an ontology is a document or
file that formally defines the relations among
terms. The most typical kind of ontology for the
Web has a taxonomy and a set of inference rules.

3. An overview on agent technology

The real power of the SW will be realized when
people create many programs that collect Web
content from diverse sources, process the
information and exchange the results with other
programs. The effectiveness of such software

agents will increase exponentially as more
machine-readable Web content and automated
services (including other agents) become
available. The SW promotes this synergy: even
agents that were not expressly designed to work
together can transfer data among themselves when
the data come with semantics. An important facet
of agents' functioning will be the exchange of
"proofs" written in the SW's unifying language
(the language that expresses logical inferences
made using rules and information such as those
specified by ontologies).

Intelligent Agent. Computers need rules and
instructions. Computers are very good at
following rules. If we can explain our rules and
patterns to computers, then we can design systems
which can follow those rules. It is much more
difficult to teach them how to find a pattern, but,
within limited boundaries, one can teach
computers to identify patterns, extract rules, and
implement them. That is what intelligent agents
are — software programs that can identify
repetitive patterns of behavior, similarities
between events or things, and changes in patterns
over time. However, these programs are agents as
well. An agent in the legal sense is one
empowered to act on the behalf of another. Thus,
an intelligent agent is one which can learn the
patterns of behavior, or the rules regarding certain
actions and transactions, and then act
appropriately on behalf of its owner.

Definitions and Technologies. There are many
definitions of an intelligent agent, how many
agent systems exist. They are computer programs
with a knowledge base and set of rules. Therefore,
although many experts define intelligent agents
more widely, we will stick with our more
demanding definition. Most current researchers do
agree on the following facets:
1. Autonomy is the first and foremost common
criterion for agents. Autonomous agents use their
knowledge of their owner’s needs and interests to
undertake tasks that their owner does repeatedly.
The concept of proactiveness is closely related to
the concept of autonomy. It emphasizes that
agents do not simply act in response to their
environment. They exhibit goal-directed behavior
by taking the initiative. Proactiveness is usually
considered a key element of autonomy. An
operational definition for autonomy would be:
agents operate without the direct intervention of
humans or others and have some kind of control
over their actions and internal state.
2. Adaptiveness is the second common criterion
for an intelligent agent. Agents should be able to

learn as they react to or interact with their external
environment, so that their performance improves
over time. The external environment may include
the physical world, users (humans), other agents,
or the Internet. Adaptive agents are sometimes
called learning agents for this reason. Many
researchers and developers believe that systems
should adapt to people, instead of the other way
around. Since it would be impractical to assume
that we could predict all possible events in the
external environment and encode all the
knowledge about those events in advance, agents
need learning capabilities. How they react to new
circumstances can be programmed. What they
learn cannot. The qualities necessary for
adaptiveness are [4,5]:
• Reactivity: agents perceive their environment and
respond in a timely fashion to changes that occur in it.
• Social ability: agents interact with other agents (and
possibly humans) via some kind of agent-
communication language such as KQML, a high-level
language that agents can use to conduct conversations
and exchange meaningful messages. KQML
(Knowledge Query and Manipulation Language) is the
de facto standard agent communication language
nowadays.

3. Collaborative behavior is the third commonly
criterion for intelligent agents. It builds upon the
concept of social ability mentioned above. Most
of today’s research concentrates on sets of agents
or multi-agent systems (MAS). Each agent is
given a discrete task. Sometimes they are parallel,
such as finding the same information in different
sources. They must work together to establish
which agent will carry out each task, and how
they will merge the information they collect for
presentation to the user. Agents should be able to
work in concert with other agents, possibly via an
agent-communication language, to achieve a
common goal. Agents may share knowledge and
learning experiences in the problem solver
process. This concept is important because a large
portion of agent research is historically rooted in
distributed artificial intelligence, that emphasizes
task decomposition and distribution and
collaboration among agents.
4. Mobility. This concept refers to the ability of
agents to migrate in a self-directed way from one
host to another on a network, such as the WWW,
in order to perform their assigned duties. The
duties may include gathering information at each
host or balancing workload or traffic on the
network, as will be presented in the second part of
this article. Clearly it can be considered as an
extension to the original concept of autonomy.
Currently we are interested in building intelligent

agents using machine learning techniques.
Intelligent agents can either learn from the explicit
training examples provided by the developers or
from interactions with other agents, human or
computer. They change or adapt their behaviour,
based on the examples and the interactions.

The agent functionality. Any of several
technologies can design intelligent agents. All of
them use some combination of statistical
operations, artificial intelligence, machine
learning, inference, neural networks, and
information technologies. Agent systems are not
plug and play. They need to be trained or taught.
Most require examples of right answers or rules
for appropriate behaviour. Typically, an agent
system is implemented in several stages. First, one
develops rules or training data. Once the agent
system performs satisfactorily on the training
data, it is ready to work on test data to make sure
that it can extend what it has learned to unknown
materials. A last step, but a continuing one, at
least in theory, is to evaluate performance at
several intervals. Agents should learn over time,
and their performance should improve as they
adapt to the user’s needs, as well as to the kinds of
information they navigate.

The Reasoning Technique. Of all the
technologies used to build intelligent agents, the
easiest to understand is rule-based reasoning, the
basis for inference engines. Anyone who has ever
set up an e-mail filter knows about setting up
rules. These are usually some form of IF...THEN
statements. Users can specify the rules or the
agent systems can supply the rules, after training.
Agents use the set of rules to decide which action
or actions they should take. The problem with this
approach is that the user needs to recognize the
opportunity for employing an agent, take the
initiative in programming the rules, endow the
agent with explicit knowledge specified in an
abstract language, and maintain the rules over
time, as habits or events change. IBM’s RAISE
(Reusable Agent Intelligence Software
Environment) is an example of rule-based
reasoning. RAISE is the inference engine of
IBM’s Agent Building Environment (ABE)
developer’s toolkit. It can perform information
flow functions: finding, searching, filtering,
categorizing, storing, routing, and/or selectively
disseminating information items. Prototype
applications for RAISE include e-commerce
shopping, customer service support, workflow on
the Web and in Lotus Notes, news, and e-mail.
One problem with rule-based systems is that users
must keep them up to date manually. These

systems cannot change by themselves. A second
problem is that complex sets of rules may develop
conflicting rules that the agent can’t resolve. One
can build knowledge bases based on a specific
subject area or domain. These then serve as the
basis for some inference mechanisms, including
the rule-based reasoning techniques mentioned
above. The major problem with such systems is
that they require a large amount of work from the
knowledge engineers. Furthermore, the
knowledge of the agent is fixed and cannot be
customized to the habits of individual users. In
highly personalized applications the knowledge
engineer cannot possibly anticipate the best aid
for each user in each situation. The agents would
have to modify their own behavior and extend
their own knowledge, instead of relying on users
to constantly modify, and possibly mess up, the
rule bases and knowledge bases. Learning refers
to this modification of behavior as a result of
experience. That is the next step.

Statistical Analysis. The simplest learning
technique that an intelligent agent can use is
statistical analysis. It can determine the temporal
or non-temporal correlation among events of
interest. Charles River Analytics’ Open Sesame
and General Magic’s Magic Cap are two such
examples. The former periodically scans and
analyzes the logs of user actions to find repeated
sequences of actions. The latter recognizes
frequently contacted people by their first names.
EVA (evolving agent) technology uses statistical
analysis to find terms that co-occur and should be
added to a query.

Fuzzy Agents. When an agent needs to reason
with imprecise or incomplete information, or the
domain variables are expressible using linguistic
variables, such as the words or adjectives we use
to describe our world, fuzzy logic is a useful tool.
Fuzzy logic is a form of logic used in some expert
systems in which variables can have degrees of
truthfulness or falsehood represented by a range
of values between 1 (true) and 0 (false). Using
fuzzy logic, we can design decision support or
crisis management systems that offer a range of
alternative actions to solve a problem [1,3,6]. A
fuzzy system, based on fuzzy logic, is a collection
of membership functions and rules that are used to
reason about data. It resembles human decision
making from uncertain and approximate
information. It can be applied to systems whose
information is inherently fuzzy to diagnose the
problem, and find some fuzzy solutions. In fuzzy
systems knowledge can be expressed using
linguistic variables that are described by fuzzy

sets. Fuzzy Systems usually consist of four
components (as is presented in figure, a classic
fuzzy inference system):
1. Fuzzification Interface: maps crisp input

values into Fuzzy sets (linguistic values).
2. Fuzzy Inference engine: receives inputs and

evaluates all the rules to determine their
truth-value. The two main steps in the
inference process are aggregation and
composition. Aggregation is the process of
computing for the values of the IF

(antecedent) part of the rules, while
composition is the process of computing for
the values of the THEN (consequent) part of
the rules.

3. Fuzzy rule base: A collection of Fuzzy If-Then
rules.

4. Defuzzification Interface: maps Fuzzy sets to
a crisp output value. There are different
methods of doing so, such as: Centroid,
Bisector, Middle Of Max, and more.

Neural Networks Neural networks consist of a
set of interconnected nodes, like a web. Each node
has a weight assigned to it. Like brains, neural
nets need training by experience. Training sets of
data, in the case of an information system, consist
of two parts: the set of training data and the
“right” answers extracted from that data. The
neural net keeps trying connections until it gets
the answer right. Neural nets are tricky.
They need training with large amounts of data in
order to develop the right patterns. They can
perform non-linear mappings between their input
and output patterns. The most popular type of
neural networks are three-layer, feed-forward
neural networks, which consists of an input layer,
an output layer, and a hidden layer. Each of these
layers consists of one or more processing units (or
neurons). Each unit in a given layer connects with
all the units in the neighboring layers, but not with
those in the same layer.
Each unit receives inputs from the units one layer
below it and sends outputs to the units one layer
above it. Each connection is associated with a
weight, which, conceptually, represents the
strength of the connection between this pair of
units. Given a set of weights, the entire network
can be thought of as a mapping from a set of input
vectors to a set of output vectors. If we embed
such a neural network in an information agent, the
input vector could represent a set of query terms,
while the output vector could indicate the
“relevance” of the input vector to a certain
information need.
Neural networks handle unstructured data or noisy
data effectively. These are often difficult to
process using rigid reasoning techniques. In agent
systems, they can identify sequences of user
actions, like statistical analysis, and train agents to
automatically assign documents or Web pages to
pre-defined categories.

Evolutionary Computing To expand the learning
horizon and to create more intelligent agents, one
needs a learning algorithm, such as a genetic
algorithm, that can operate at a higher level and
view things from an inter-agent perspective. By
approaching the learning algorithm from two
different levels — the local level of individual
agents and the global level of inter-agent
operation — we can ensure the optimization of
each agent from local knowledge, while genetic
algorithms will act as a driving force to evolve the
agents collectively based on global knowledge.
The goal is to construct a new generation of
agents that benefit from the learning experiences
of individual parent agents and the collective
learning experiences of previous generations. The
most popular examples of evolutionary computing
are genetic algorithms. They work by maintaining
a population of possible solutions (chromosomes,
or agents in our case).
Successive evaluations of the performance of the
agents determine which unfit set of agents to
terminate, and which fittest set of agents to
recombine to produce (or reproduce) possibly
better agents.

References

1. Knapik M., Johnson J., Developing Intelligent
Agents for Distributed Systems, McGraw Hill,
1998.

2. Wooldridge M., Jennings N.R., 1995. Proceedings
of ECAI Workshop on Agent Theories,
Architectures and Languages, pp. 1-32.

3. An introduction to ontologies: www. Semantic
Web.org/knowmarkup.html

4. Simple HTML Ontology Extensions Frequently
Asked Questions (SHOE FAQ):
www.cs.umd.edu/projects/plus/SHOE/faq.html

5. DARPA Agent Markup Language (DAML) home
page: www.daml.org/

