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Abstract 

 

There is an ongoing debate on how to identify monetary policy shocks in SVAR models. 

Graphical modelling exploits statistical properties of data for identification and offers a 

data based tool to shed light on the issue.  The information set of the monetary authorities, 

which is essential for the identification of the monetary shock seems to depend on 

availability of data in terms of higher frequency with respect to the policy instrument. 
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Introduction 

 

Studies utilising the structural vector-autoregression (SVAR) approach for the analysis of 

monetary policy, frequently assume that the monetary authority’s information set includes 

contemporaneous observations of goods market variables, that is, the policy instrument is 

endogenous to the contemporaneous value of such variables.  In addition, a block lower 

triangular structure based on a Cholesky decomposition is adopted to obtain identification 

(see Christiano et al. (2005), amongst others). A different perspective, for instance, is offered 

by Kim and Roubini (2000). They argue that the information set of the monetary authorities 

depends on availability of data in terms of higher frequency with respect to the policy 

instrument and adopt a structural decomposition, where the matrix of the contemporaneous 

relationships derived to obtain identification is sparse. 

Graphical Modelling (GM) is a relatively recent tool, which allows to obtain identification of 

SVARs, (see Oxley et al. (2009)). GM is a data oriented method based on the analysis of 

partial correlations among variables which give rise to a conditional independence graph 

(CIG). In a subsequent step, all the information embodied in the relationships among the 

random variables in the system is utilised in a systematic way in order to obtain 

identification. This procedure allows reducing the number of potential SVARs originating 

from a unique reduced form. 

The aim of the paper is to provide a data oriented perspective on the ongoing identification 

debate, which gives support to one of the main views existing in the literature. 

 

Graphical Modelling and SVAR 

 

In this section we will first illustrate the general ideas behind the GM approach for then 

describing its extension to the SVAR framework. 

The first step of the procedure is to compute the partial correlation between any two 

variables given all the remaining variables, which can be tested using appropriate statistics. 

This will give rise to the CIG as in Figure 1A, where random variables are represented by 

nodes and a significant partial correlation by a line called edge. In this case, for example, 

there is a significant partial correlation between A and B given C. 
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Figure 1: CIG and an hypothetical corresponding DAG 

 

 

In the linear least square context, the variables included in a CIG can be characterized by 

relationships in terms of linear predictability, obtaining a Directed Acyclic Graph (DAG). In 

the DAG in figure 1B, for example, A has predictive power on B. What we can observe is 

the CIG, where every edge can assume two possible directions, therefore there are 2
n
 

possible DAGs, where n is the number of edges. There are two statistically based general 

rules, which allow to reduce the number of potential DAGs. First, the moralization rule that 

considering for example the CIG in figure 1A, allows to exclude the DAG in Figure 1B, in 

which A and C have predictive power on B, since, statistically, a significant partial 

correlation between A and C should be observed in the CIG in figure 1A. Second, any DAG 

has to satisfy the principle of acyclicality, that allows to completely determine the 

distribution of a set of variables. Figure 2 shows a CIG with a corresponding DAG which 

can be excluded given its cyclicality. 

 

 

 

 

 

 

Figure 2 

 

In the process of obtaining plausible DAGs from an observed CIG, it might also be possible 

that some of the links captured by the CIG are due to moralization and hence must be 

eliminated in a corresponding DAG. Such demoralization process, in most cases, can be 

assessed by considering some quantitative rules. 

The SVAR can be represented by a DAG, where current and lagged variables are 

represented by nodes and dependence by arrows. The first step in specifying the SVAR, is to 

determine the lag order through the minimization of an order selection criteria such as the 

Akaike
 
(AIC), Hannan and Quinn (HIC) and Schwarz (SIC). 
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Once the lag order is determined, in order to construct the CIG among contemporaneous 

variables conditioned on all the remaining contemporaneous and lagged variables, we need 

to derive the sample partial correlation between the contemporaneous variables, calculated  

from the inverse Ŵ  of the sample covariance matrix V̂ of the whole set of variables as: 
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, where }{ , wtkx − is the whole set of variables excluding the two variables considered and 

where r and s index the variables tix ,  and tjx ,  in the matrices V̂  and Ŵ . 

The critical value utilised to test for the significance of the sample partial correlations is 

calculated by making use of the relationship between a regression t-value and the sample 

partial correlation. It is given by: 

 

 

 

, where v  are the residual degrees of freedom obtained as a regression of one variable on all 

the remaining variables and z represents a critical value at a chosen significance level of the 

standard normal distribution. Whenever a sample partial correlation is greater than the 

critical value, a link in the CIG is retained. Next, one considers all the admissible DAGs for 

an evaluation from a likelihood perspective. 

Often, different competing SVARs may be likelihood equivalent, i.e. they may yield the 

same information criterion. Hence, in order to determine the contemporaneous relationships 

needed for identification, the partial correlation between contemporaneous and lagged 

variables are also computed, using only lagged values with significant partial correlation. In 

this circumstance it is possible to obtain an evaluation of the contemporaneous relationships 

based on information criterion.  

In order to obtain identification of the structural shocks, we assume that the correlation 

matrix of the residuals, in the SVAR chosen, is diagonal. A first diagnostic check is to 

inspect the significance of such correlations. Moreover, as this procedure typically imposes 

over-identifying restrictions, a 2χ  likelihood-ratio test may be conducted as well.  
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The Empirical Analysis 

 

The solution of a Dynamic Stochastic General Equilibrium (DSGE) model can be 

approximated by a restricted VAR. It seems natural to utilise, in an unrestricted VAR, the 

same variables generally utilised in a DSGE model. A commodity price index is also added 

to solve the price puzzle.  

We therefore consider the log of real GDP, the producer price index (all commodities), the 

implicit GDP deflator and the federal funds rate, utilising quarterly US data over the period 

1959:1-2006:4, extracted from the FRED’s database of the Federal Reserve Bank of St. 

Louis. All data except the federal funds rate are seasonally adjusted. 

As a robustness check, we analyse two different versions of the model. The first version just 

includes variable levels, as in Christiano et al. (2005). In the second version a deterministic 

trend is added, as in Bernanke (1986), amongst  others. All variables have been tested for 

unit roots and cointegration with unrestricted coefficient and restricted trend. The variables 

are all integrated of order 1 and indicate the presence of one cointegrated vector, therefore, 

identification based on levels would also be valid in case we consider the trends as stochastic.  

In both models AIC indicates a lag order of 4, while SIC and HIC suggest 2 lags.  We prefer 

to use 4 lags, since the consequences of overestimation of the order are less serious than 

underestimation, see Kilian (2001). In order to construct the CIG, we compute the partial 

correlations between variables at 10% significance level. Both models show the same 

connections and give rise to the CIG in figure 3. 

 

 

 

Figure 3: CIG deriving from both models  

  

The interest rate (Rt) is connected to output (Yt) and commodity price (CPt), and there is a 

further connection between CPt and the price level (Pt). We need to establish to which 

variable the interest rate is endogenous, if any, and the direction in the relationship between 

CPt and Pt. We have 2
3
 possible SVAR. They are shown in figure 4.   
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Figure 4: DAGS deriving from the CIG in figure 3 

 

DAGS (A), (E), (G), and (H) can be excluded following the moralization rule. We need to 

evaluate the four remaining potential SVARs. Table 2 shows AIC, HIC and SIC of the four 

remaining SVARs, for the model in levels and with deterministic trend. The 

contemporaneous relationship indicated in the DAG (C) are, for both models, the best 

performing from a likelihood perspective.  

 

MODEL AIC HIC SIC 

B 646.47 675.32 717.67 

C 623.78 652.63 694.98 

D 628.76 657.61 699.96 

F 640.15 669.00 711.36 

model in levels 

 

Table 3: Information Criteria of the possible SVAR 

  

Rt is solely endogenous to CPt. and has a contemporaneous effect on Yt, which is a 

economically plausible at quarterly frequency and a common assumption in DSGE models. 

Pt drives CPt and is economically plausible, if we think that Pt can be a proxy of the unit 

costs which impact on CPt. These results indicate that the monetary authority’s decision may 

MODEL AIC HIC SIC 

  B 639.26 668.11 710.47 

C 614.95 643.80 686.15 

D 621.82 650.67 693.02 

F 631.20 660.04 702.40 

model with deterministic trend 
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not depend on contemporaneous output and GDP deflator. Moreover, the information set of 

the monetary authority seems to be conditioned by the availability of data in terms of 

frequency, given that the producer price index is available at monthly frequency, while GDP 

and GDP deflator are available at quarterly frequency with a delay. Results also indicate that 

the Cholesky decomposition, where every variable is connected to all the other variables, 

may not be appropriate for identification. 

Table 4 shows the correlation of the structural errors for model (C), with a critical value at 

5% equal approximately to 0.146. They are all statistically not different from zero. 

 

    

 

 

 

 

Table 4: Correlation between structural errors. 

 

We also fail, as expected, to reject the likelihood-ratio test for the three over-identifying 

restrictions with a p-value equal to 0.39 for the model in levels and 0.19 for the model with 

deterministic trend.  

 

Conclusions 

 

Our results appear to be more in line with Kim and Roubini (2000), than with alternative 

views. It is our hope that this paper also shows that GM, when integrated with economic 

priors, can represent a valid identifying scheme. 
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