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Abstract

In this paper we consider the estimation of a panel data regression model with spatial au-
toregressive disturbances, �xed e¤ects and unknown heteroskedasticity. Following the work
by Kelejian and Prucha (1999), Lee and Liu (2006a) and others, we adopt the Generalized
Method of Moments (GMM) and consider as moments a set linear quadratic conditions in the
disturbances. As in Lee and Liu (2006a), we assume that the inner matrices in the quadratic
forms have zero diagonal elements to robustify moments against unknown heteroskedastic-
ity. We derive the asymptotic distribution of the GMM estimator based on such conditions.
Hence, we carry out some Monte Carlo experiment to investigate the small sample properties
of GMM estimators based on various sets of moment conditions.

1 Introduction

GMM estimation of spatial regression models in a single cross sectional setting has been originally
advanced by Kelejian and Prucha (1999). They focused on a regression equation with spatial
autoregressive (SAR) disturbances, and suggested the use of three moment conditions that
exploit the properties of disturbances implied by a standard set of assumptions. Estimation
consists of solving a non-linear optimization problem, which yields a consistent estimator under
a number of regularity conditions.

Recently, considerable work has been carried out to extend the procedure advanced by
Kelejian and Prucha in various directions. Liu, Lee, and Bollinger (2006) and Lee and Liu
(2006a) suggested a set of moments that encompass Kelejian and Prucha conditions as special
cases. They considered a vector of linear and quadratic conditions in the error term, where the
matrices appearing in the linear and quadratic forms have bounded row and column norms (see
also Lee (2007)). Hence, they focused on the problem of selecting the matrices appearing in the
vector of linear and quadratic moment conditions, in order to obtain the lowest variance for the
GMM estimator. Lin and Lee (2005) also showed that these moments can be made robust against
unknown heteroskedasticity by imposing that the diagonal elements of inner matrices are zero.

�The authors acknowledge �nancial support from ESRC (Ref. no. RES-061-25-0317).
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Lee and Liu (2006b) have extended this framework to estimate the SAR model with higher-order
spatial lags. Kelejian and Prucha (2008) have generalized their original work to include spatial
lags in the dependent variable as well as allowing for heteroskedastic disturbances. This setting
has been extended by Kapoor, Kelejian, and Prucha (2007) to estimate a spatial panel regression
model with individual-speci�c error components. Druska and Horrace (2004) have introduced
the Keleijan and Prucha GMM within the framework of a panel with SAR disturbances, time
dummies and time-varying spatial weights, while Fingleton (2008b) and Fingleton (2008a) have
extended it to the case of a regression model with spatial moving average disturbances.

In this paper, we focus on the GMM estimation of a panel data regression model with �xed
e¤ects, unknown heteroskedasticity, and spatial autoregressive (SAR) errors. Quasi-maximum
likelihood (ML) estimation of a panel with �xed e¤ects and spatial lags both in the dependent
variable and in the disturbances, under homoskedastic errors, has been developed by Lee and
Yu (2008). The authors propose a transformation approach to eliminate the �xed e¤ects that
yields consistent estimators for regression parameters when either N or T are large. Yu, de Jong,
and Lee (2008) and Yu, de Jong, and Lee (2007) have investigated the properties of the quasi-
ML estimator of a spatial dynamic panel with �xed e¤ects, possibly non-stationarity. Mutl
and Pfa¤ermayr (2008) consider GMM estimation of �xed e¤ects vs random e¤ects spatial
panel speci�cations. Hence, they propose a spatial Hausman test that which compares the two
models, accounting for spatial autocorrelation in the disturbances.

Following the work by Lee and Liu (2006a) and Kelejian and Prucha (1999), in this paper we
adopt the GMM and consider as moments a set linear quadratic conditions in the disturbances.
To eliminate the individual e¤ects, we transform data by applying the demeaning operator. As
in Lee and Liu (2006a), we assume that the inner matrices in the quadratic forms have zero
diagonal elements to robustify moments against unknown heteroskedasticity. We show that
consistency and asymptotic normality of the parameters of the SAR process is achieved for N
and T going to in�nity, with no restrictions on the relative rate at which N and T increase. We
then perform a Monte Carlo exercise to compare the small sample properties of GMM estimators
based on di¤erent sets of moment conditions.

In the following, Section 2 sets out the framework of a regression model with SAR distur-
bances; Section 3 introduces the GMM estimator; Section 4 carries a small Monte Carlo exercise;
Section 5 concludes.

2 The framework

Consider the panel data regression model

yit = �i + �
0xit + uit; i = 1; :::; N; t = 1; :::; T (1)
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where �i are �xed parameters, and errors are assumed to follow the SAR process

uit = �

NX
j=1

sijujt + "it (2)

and sij is the (i; j)th element of an N �N spatial weights matrix, S. In matrix form,

y = (1T 
�) +X� + u; (3)

u = � (IT 
 S)u+ "; (4)

where y = (y01; :::;y
0
T )
0, X = (X01; :::;X

0
T )
0, u = (u01; :::;u

0
T )
0, and " = ("01; :::; "

0
T )
0 with

yt = (y1t; :::; yNt)
0,Xt = (x1t; :::;xNt)

0, ut = (u1t; :::; uNt)
0, and "t = ("1t; :::; "Nt)

0 : 1T is a
T -dimensional vector of ones and 
 is the Kronecker product. We make use of the following
assumptions:

Assumption 1: "it are independently distributed random variables with zero mean, variance
0 < E

�
"2it
�
= �2i � �2max < 1, and such that E j"itj4+� � K < 1 for some � > 0 and for

i = 1; :::; N ; t = 1; :::; T .
Assumption 2: Xt and "t0 are independently distributed for all t and t0. As N and/or T

go to in�nity, the matrix 1
NTX

0 (M
 IN )X! C, where C is a �nite, nonsingular matrix.
Assumption 3: The main diagonal elements of S are zero. The row and column norms of

the matrices S and (IN � �S)�1 are uniformly bounded.
Assumption 4: �0 2 [cl; cu], with �1 < cl; cu <1, and (IN � �S)�1 is non-singular for all

� 2 [cl; cu].

The existence of moments of order higher than four stated in Assumption 1 is needed for
applicability of the central limit theorem by Kelejian and Prucha (2001). Assumption 2 implies
strict exogeneity of regressors, while Assumption 4 allows rewriting equations (4) as:

u = (IT 
R) "; (5)

whereR = (IN � �S)�1. The OLS estimator applied to (1) yields the �xed e¤ects (FE) estimator
(or within estimator) of �

�̂ =
�
X0 (M
 IN )X

��1
X0 (M
 IN )y (6)

where M = IT � 10T1T =T is the matrix that converts yit and xit in deviations from their
individual-speci�c means. Under Assumptions 1-4 the above estimator is

p
NT -consistent. How-

ever, when � 6= 0 �̂ is in general not e¢ cient since the covariance of errors (4) is non-diagonal
and the elements along its main diagonal are not constant. E¢ cient estimation of the slope
coe¢ cients � can be achieved by estimating the parameters of equation (5) and then computing
the feasible �xed-e¤ects Generalized Least Squares (GLS) of the slope coe¢ cients (see Qian and
Schmidt (2003) on this). In this paper we are concerned with consistent estimation of �0 via
GMM. In the following, in order to distinguish the true parameters from other possible values
in the parameter space, we denote by �0, �0, and �

2
0i the true parameters, which generate an

observed sample.
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3 GMM estimation of SAR error models

3.1 Moment conditions

Following Kelejian and Prucha (1999), Lee and Liu (2006a), and others, for GMM estimation
we consider a set of r linear quadratic conditions in the error term. In a panel data setting, the
`th population moment condition is

M` (�) =
1

NT
E
�
" (�)0 (IT 
A`) " (�)

�
; ` = 1; 2; :::; r (7)

where
" (�) = [IT 
 (IN � �S)]u = [IT 
 (IN � �S)] [y � (1T 
�)�X�]

for any possible value of �. We adopt the convention that " (�0) = ". In (7),A` are non-stochastic
matrices with generic elements aij;`, and having bounded row and column norms. Following the
work by Lee and Liu (2006a), we assume that the matrices inside the quadratic form have zero
diagonal elements, namely aii;` = 0, for i = 1; :::; N and ` = 1; 2; :::; r, so that M` (�0) = 01.
As explained by Lee and Liu (2006a), this assumption makes the GMM procedure robust to
unknown heteroskedasticity. Further, this assumption in our speci�c framework is needed for
some of the theoretical results reported in the appendix. The empirical counterpart of (7) is

MNT;` (�) =
1

NT
"̂ (�)0 (IT 
A`) "̂ (�) ;

where
"̂ (�) = [IT 
 (IN � �S)] û = [M
 (IN � �S)]

�
y �X�̂

�
�̂ being the FE estimator (6). The following propositions hold.

Proposition 1 Under Assumptions 1-4 we have, for all � 2 [cl; cu],

1

NT

�
"̂ (�)0 (IT
A`) "̂t (�)� " (�)0 (IT
A`) " (�)

�
= Op

�
1

T
p
N

�
+Op

�
1

T

�
(8)

Further, at �0 we have

1

NT

�
"̂ (�0)

0 (IT
A`) "̂ (�0)� " (�0)0 (IT
A`) " (�0)
�
= Op

�
1

T
p
N

�
(9)

Proposition 2 Under Assumptions 1-4 we have, for all � 2 [cl; cu],

1

NT

�
" (�)0 (IT
A`) " (�)� E

�
" (�)0 (IT
A`) " (�)

��
= Op

�
1p
NT

�
: (10)

1See Lemma 4.
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The proofs of the above propositions are reported in the Appendix. Result (8) states that,
for any possible value of �, as N and T tend to in�nity, the `th empirical moment computed
using the estimated regression coe¢ cients converges in probability to the `th moment computed
using the true regression coe¢ cients. However, when � = �0, the Op(1=T ) rate of convergence
disappears, as shown by result (9). We remark that one essential assumption to obtain (9) is
that the the inner matrix, A`, has zero diagonal elements (see equation (29)). Under (10), as N
and/or T go to in�nity, the quadratic form in the errors converges in probability to its mean,
for any possible value of �. Similar results have been obtained by Lee and Liu (2006a) for the
single cross section case, with no individual �xed e¤ects.

3.2 Estimation

Let M (�) = [M1 (�) ; :::;Mr (�)]
0 be a vector containing r moments, and let MNT (�) =

[MNT;1 (�) ; :::;MNT;r (�)]
0 be the vector of the corresponding sample moments. Let

V (�0) = lim
N;T!1

E
�
NTMNT (�0)MNT (�0)

0� (11)

where �0 =
�
�0;�

2
01; :::; �

2
0N

�0. Given result (9) and Lemma 4 (see the Appendix), the above
matrix has generic (`; h)th element, v`h, given by

v`h =
1

N
Tr
�
�A`�Ah +�A`A

0
h�
�
: (12)

with � being a diagonal matrix with elements �201; :::; �
2
0N on the main diagonal. Under the

assumption of bounded row and column norms of the matrices A` and Ah, it is easily shown
that v`h = O (1). We take up the following assumptions needed for identi�cability of parameters:

Assumption 5: The matrix V (�0) is non-singular, i.e. we assume �r (V (�0)) � K > 0.

Assumption 6: There exists at least one moment condition, the `th, for which we have
either Tr

h
�A`S (IN � �0S)�1

i
6= 0, or Tr

h
�
�
(IN � �0S0)�1 S0A`S (IN � �0S)�1

�i
6= 0.

The GMM estimator �̂ of �0 is the solution to the following optimization problem

�̂ = argmin
�2[cl;cu]

�
MNT (�)

0QNTMNT (�)
	

(13)

where [cl; cu] is the parameter space (see Assumption 4), and QNT is a r � r, positive de�nite,
weighting matrix, such that

QNT
p!Q

The following theorem states that �̂ is consistent for �0 and establishes its asymptotic distribu-
tion.
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Theorem 3 Under Assumptions 1-6, �̂ in (13) is consistent for � as N and T going to in�nity.
Further, we have

p
NT

�
�̂ � �0

�
a� N

�
0;
�
d0Qd

��1
d0QVQd

�
d0Qd

��1� (14)

where d = d (�0) = p lim
N;T!1

E
h
@
@�MNT (�)

��
�=�0

i
.

The proof is reported in the Appendix (see Section 6.2). The e¢ cient GMM estimator can
be obtained by imposing, in (13), the optimal weighting matrix Q = Q� = V�1 (see Greene
(2008) on this). Notice that the `th element of d is (see Section 6.3)

d` =
1

N
Tr
�
�
�
A` +A

0
`

�
S (IN � �0S)�1

�
(15)

Since bothQ� and d depend on �0 and �20i, in practise, Q and d are evaluated at point estimates,

Q� = Q�
�
�̂
�
, and d = d

�
�̂
�
, where the elements in the matrix�may be consistently estimated

by

�̂2i =
1

T

TX
t=1

"̂2it; i = 1; :::; N: (16)

If A` does not depend on unknown parameters (for example, �0) we can compute �̂ in a single
step by minimizing (13). However, in general, A` (and hence also the optimal weighting matrix,
Q�NT ) may depend on unknown parameters, such as �0 or the measures of skewness and kurtosis
of the distribution of "it. In this case it is possible to apply an iterative two-stages procedure
described in the next section.

3.3 Choice of the inner matrices

We now consider the problem of selecting the inner matrices, A` for ` = 1; 2; :::; r for building
the moment conditions. Kelejian and Prucha (1999) and Kelejian and Prucha (2008) suggest2

A1;KP = S
0S� diag

�
S0S
�
; A2;KP = S (17)

When inner matrices A1;KP ,A2;KP are employed, the optimal weighting matrix in the mini-
mization problem (13) is (see Lemma 4)

Q�KP =
1

N

 
2Tr

h
(�S0S)2

i
Tr (�S0S�S+�S0SS0�)

Tr (�S0S�S+�S0SS0�) Tr (�S�S+�SS0�)

!
(18)

2Notice that we consider Kelejian and Prucha (1999) inner matrices in the form of deviations from their
diagonal elements.
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SinceQ�KP depends on the elements of�, estimation can proceed by adopting the following two-
stages iterative procedure. First, minimize (13) using as weighting matrix the identity matrix

Ir, and the OLS residuals, ûit to obtain an initial estimate, say �̂
(1)
. In the second stage, employ

�̂
(1)
to estimate errors "2it and �

2
0i using (16), and hence Q

� and use this in the minimization
problem (13). We can alternate back and forth between the estimation of � conditional upon a
weighting matrix Q� and the estimation of Q� conditional upon a value for �, until convergence
is obtained. Standard errors of the �nal estimate of the spatial parameter can be obtained by
formula (14).

We notice that, if it is reasonable to assume homoskedasticity, i.e. �20i = �
2
0 for i = 1; :::; N ,

then (18) reduces to

Q�KP =
�40
N

 
2Tr

h
(S0S)2

i
2Tr

�
S0S2

�
2Tr

�
S0S2

�
Tr
�
S2 + SS0

� !

and �40 enters in Q
�KP only as a scale factor. In this case, �̂ can be computed in a single step,

since Q�KP does not involve estimation of unknown parameters.
In the context of a simple regression model with homoskedastic, spatial autoregressive errors,

(Liu, Lee, and Bollinger 2006) suggests to base GMM estimation of � on an empirical moment
having the following inner matrix:

AL = H0 �
1

N
Tr (H0) IN �

�4 � 3
�4 � 1

�
diag (H0)�

1

N
Tr (H0) IN

�
; (19)

with H0 = (IN � �0S)�1 S; and �4 = �04=�40 being the kurtosis parameters of the distribution
of "it. Under the homoskedasticity assumption, the author shows that employing the above
matrix leads to a GMM estimator with minimal variance. Since using the above matrix requires
estimating �0, �, and �4, estimation may proceed by adopting the iterative two-stages estimation
procedure outlined above. In the �rst step an initial guess of �0 and �4 need to be formulated
and used to build AL.

Other moment conditions can be obtained by looking at the properties of (4). For example,
the following inner matrices can be suggested:

A1 = R
0
0S
0SR0 � diag

�
�R00S

0SR0
�
; A2 = R

0
0SR0 � diag

�
�R00SR0

�
; (20)

A3 = R
0
0S
0S� diag

�
�R00S

0S
�
; A4 = R

0
0S� diag

�
�R00S

�
: (21)

where R0 = (IN � �0S)�1. Moment based on A1 exploits the variance of the spatial lag
(IT 
 S)u. MomentsA2;A3 are based on the covariance of u with (IT 
 S)u and (IT 
 S) ", re-
spectively. Finally, A4 arises when looking at the covariance between the spatial lags (IT 
 S)u
and (IT 
 S) ". The above inner matrices depend on �0, that needs to be estimated in a �rst
step. We notice that, under �0 = 0, A1 would be identical to A3 and A1;KP , while A2 would
coincide with A4 and A2;KP .
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Before concluding, we remark that in principle any matrix having bounded row and colum
norms can be selected for building the moment conditions. However, as will we see in the next
section, the choice of inner matrices do have an impact on the small sample properties of the
GMM estimator.

In the following, we assess and compare the performance of GMM estimators based on
conditions that use as inner matrices (17), (19) or (20)-(21) by the means of Monte Carlo
experiments.

4 Monte Carlo experiments

4.1 The design

We consider the following data generating process:

yit = �i + �1x1;it + �2x2;it + uit; i = 1; :::; N ;T = 1; :::; T

uit = �

NX
j=1

sijujt + "it

where we assume �i = IIDN(1; 1); �1 = �2 = 1 and

x`;it = �ix`;it�1 + �`it; i = 1; :::; N; t = �49; :::; 1; :::; T; ` = 1; 2; x`;i�50 = 0;
�`;it � IIDN(0; 1� �2i ); :�i � U(0:5; 0:95):

Errors "it are generated under two alternative schemes: (i) normal errors, "it � IIDN(0; �2i );
(ii) chi-squared errors, "it � IID

�
�21 � 1

�
=
p
2, with �2i � �22=2. The values of x`;it and uit are

drawn for each i and t, and at each replication, while �i and �2i are kept �xed across replications.
The �rst 50 observations are discarded to avoid possible initial value e¤ect. We carry out our
experiments for N;T = 20; 50; 100, and T = 20; 50; 100. The matrix S has elements sii = 0,
and sij = 1 if units i and j are adjacent and sij = 0 otherwise, for i 6= j. In a �rst set of
experiments we assume S is a regular lattice, and cross section units are arranged so that the
pth order neighbours of the ith cross section unit can be de�ned as the (i� p)th and (i+ p)th
units. In our experiments, we try with p = 1 and p = 2. We de�ne S in a circular world, where
the �rst observation is adjacent to the last observation, and express it in row-standardized form.
In a second set of experiments, we use real-world spatial weights matrices that describe the
spatial arrangement of three subsets of English local authorities3: the �rst subset contains 13
contiguous authorities4; the second subset is made of 33 contiguous authorities5; the third subset
has all English local authorities, except the Isle of Scilly, for a total of 149 cross section units.

3See .http://geodacenter.asu.edu/. In constructing spatial weights matrices for the English local authorities,
we used a rook contiguity criterion.

4This set includes all local authorities of inner London.
5This set includes the all authorities of greater London.
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Table 1: Properties of spatial weights matrices adopted in Monte Carlo experiments

Spatial
weights

N % non-zero links kSNkC
Regular lattices; p = 1

S20 20 10.00 2
S50 50 4.00 2
S100 100 2.00 2

Regular lattices; p = 2
S20 20 20.00 4
S50 50 8.00 4
S100 100 4.00 4

Irregular lattices
S13 13 25.00 13
S33 33 14.84 7
S149 149 3.41 8

The purpose of using such real-world spatial weights matrices is to investigate the properties of
GMM estimators when there exists an irregular spatial arrangement of units, a situation often
encountered in empirical work.

The connectedness characteristics of the spatial weights in unstandardized form used in our
experiments, in terms of percent of non-zero elements and maximum number of neighbours,
are given in Table 1. We notice that the regular lattices are always sparser than their irregular
counterparts for similar sample size. The sparseness of the spatial weights matrix adopted in the
analysis is an important factor in determining the extent to which the central limit theorems on
dependent spatial processes hold, and hence is likely a¤ect the performance of our estimators.
In our simulation exercise all weights matrices are used in row-standardized form.

We experimented with � = �0:8, �0:3, 0:0, 0:3, 0:8, and provide results for the following
estimators of �:

1. GMM estimator using Kelejian and Prucha inner matrices (17), �̂
KP
:

2. GMM estimator using Lee inner matrix (19), �̂
L
:

3. GMM estimator based on inner matrices (20), �̂
(1)
:

4. GMM estimator based on inner matrices (21), �̂
(2)
:

5. GMM estimator based on an inner matrix with zero diagonal elements, and all remaining

entries equal to 1=N , �̂
(3)
:

9



6. Quasi-maximum likelihood (quasi-ML) estimator, in a model with �xed e¤ects and un-
known heteroskedasticity6, �̂ML.

By the means of the above Monte Carlo experiments, we wish to investigate a number of

issues. First, we wish to assess the small sample properties of �̂
KP

and �̂
L
, also in comparison

with the quasi-maximum likelihood estimators in a panel data context with �xed e¤ects and

unknown heteroskedasticity. Second, we want to investigate the performance of �̂
(1)
and �̂

(2)
,

also in comparison with �̂
KP

and �̂
L
. A further aim of these experiments is to explore the

properties of a GMM estimator based on a inner matrix with all entries equal to 1=N (namely,

�̂
(3)
). Such matrix assigns equal weights to all cross products appearing in the quadratic form

as opposed to other matrices that give more importance to cross products of close observations.

Estimation of � is performed on residuals û = (M
 IN )
�
y � �̂1x1 � �̂2x2

�
; where �̂1 and

�̂2 are FE estimates of �1 and �2. We assess the performance of estimators of � by computing
their bias, RMSE, size and power. In computing size and power, we adopt a signi�cance level
of 5 per cent. The number of replications is 1; 000.

4.2 Results

Monte Carlo results for estimators of � are given in Table 2-5. For �̂
L
, �̂

(1)
, �̂

(2)
, and �̂

(3)
we

report the estimates obtained adopting as weighting matrix in (13) both the optimal weighting
matrix and the identity matrix, Ir. To save space, we only report results for for � = 0:0; 0:3; 0:8
and for p = 1. Further, in the case of non-normal errors and real-world matrices we only report
the estimates obtained adopting the optimal weighting matrix. Finally, when using real-world
matrices we only show results for � = 0:3. Other results are available upon request.

As expected, the bias and RMSE of �̂
KP

decrease as N and/or T get large, for all values

of �. The empirical rejection rates corresponding to �̂
KP

are close to the nominal 5 per cent
level for � = 0:0; 0:3, and for all T greater than 10. Conversely, they slightly deviate from the
theoretical 5 per cent level when T = 10 and N is equal or smaller than 50. When � = 0:8,

�̂
KP

has the correct size only for large N and T , while for other combinations of N and T the
empirical rejection frequencies are slightly larger than the nominal 5 per cent level. We observe
that, for a given pair of N and T , larger absolute values of � are associated to a smaller RMSE

and a higher power of �̂
KP
. According to Arraiz, Drukker, Kelejian, and Prucha (2008), an

explanation for this result is that a larger � in absolute value increases the variability of the
term (IN 
 S)u in (4), and hence increases the precision of the GMM estimator.

A similar pattern can be observed for the GMM estimator based on other sets of conditions

(i.e., for �̂
L
, �̂
(1)
, �̂
(2)
, and �̂

(3)
). However, some di¤erences in the performance of these estimators

can be noted. First, we observe that the estimator �̂
L
(i.e., the GMM estimator based on

6The derivation of the information matrix used for computing the standard errors of ML estimates is available
upon request.
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conditions with inner matrix (19)) performs overall better respect to other GMM estimators,
using either I3 or Q� as weighting matrix. In particular, the bias and RMSE of �̂2;GMM are

lower than those for �̂
KP
, �̂

(1)
, �̂

(2)
, and �̂

(3)
, for all values of �, while the rejection rates are

very close to 5 per cent. This �nding corroborates the theoretical results obtained by Liu, Lee,

and Bollinger (2006) on the best GMM estimator. The performance of GMM estimators �̂
(1)

and �̂
(2)
is similar to that of �̂KP , using either I3 or Q� as weighting matrix, and for normal

or non-normal errors. Finally, �̂
(3)
performs quite well, its bias and RMSE are only slightly

above that of �̂
L
. To conclude, the quasi-ML estimator shows little bias and RMSE, but it is

characterized by high rejection rates when T is small, especially for high values of � and for
non-normal errors.

5 Conclusions

In this paper we have focused on GMM estimation of a spatial panel with �xed e¤ects and
unknown heteroskedasticity. We have considered as moments a set linear quadratic conditions
applied to residuals transformed by the demeaning operator. To robustify moments against
unknown heteroskedasticity we have set to zero the diagonal elements of inner matrices, as in
Lee and Liu (2006a). We show that consistency and asymptotic normality of the parameters of
the SAR process is achieved for N and T going to in�nity, with no restrictions on the relative
rate at which N and T rise. Our Monte Carlo exercise shows that the GMM estimator has good
small sample properties, when compared to the performance of the quasi-ML, especially when
T is relatively small, and when the spatial parameter is close to 1.
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6 Appendix

Lemma 4 Let A;B be two non-stochastic matrices with bounded row and column norms. We
have:

E

�
1

NT
"0 (IT 
A) "

�
=
1

N
Tr (�A) ; (22)

V ar

�
1

NT
"0 (IT 
A) "

�
=

1

N2T

NX
i=1

a2ii
�
E
�
"4it
�
� 3�4i

�
+

1

N2T
Tr
h
(�A)2 +�AA0�

i
; (23)

Cov

�
1

NT
"0 (IT 
A) ";

1

NT
"0 (IT 
B) "

�
=

1

N2T

NX
i=1

biiaii
�
E
�
"4it
�
� 3�4i

�
+

1

N2T
Tr
�
�A�B+�AB0�

�
: (24)

If A;B have zero diagonal elements then

E

�
1

NT
"0 (IT 
A) "

�
= 0;

V ar

�
1

NT
"0 (IT 
A) "

�
=

1

N2T
Tr
h
(�A)2 +�AA0�

i
;

Cov

�
1

NT
"0 (IT 
A) ";

1

NT
"0 (IT 
B) "

�
=

1

N2T
Tr
�
�A�B+�AB0�

�
:

Proof. See Ullah (2004).

6.0.1 Proof of Proposition 1

We now sketch the proof of proposition 1, and refer to Kelejian and Prucha (2008), Lee and Liu
(2006a), Lee (2007), and Kelejian and Prucha (1999) for further details on the convergence of
quadratic forms. First, consider

"̂ (�) = [M
 (IN � �S)]
�
y �X�̂

�
= [M
 (IN � �S)]

h
X
�
� � �̂

�
+ (IN � �0S)�1 "

i
= [M
 (IN � �S)]X

�
� � �̂

�
+
h
M
 (IN � �S) (IN � �0S)�1

i
":

Noting that (IN � �S) (IN � �0S)�1 can be also written as

(IN � �S) (IN � �0S)�1 = (IN � �0S+ �0S� �S) (IN � �0S)�1

= (IN � �0S) (IN � �0S)�1 + (�0 � �)S (IN � �0S)�1

= IN + (�0 � �)S (IN � �0S)�1 ;
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we can rewrite " (�) and "̂ (�) as follows

" (�) =
h
IT 


�
IN + (�0 � �)S (IN � �0S)�1

�i
" = [IT 
P (�)] "

"̂ (�) = [M
 (IN � �S)]X
�
� � �̂

�
+ [M
P (�)] "

where
P (�) = IN + (� � �0)S (IN � �0S)�1 : (25)

To prove (8), note that

1

NT
"̂ (�)0 (IT
A`) "̂ (�) =

1

NT

�
� � �̂

�0
X0
�
M
 (IN � �S)0A` (IN � �S)

�
X
�
� � �̂

�
+
2

NT

�
� � �̂

�0
X0
�
M
 (IN � �S) 0A`P (�)

�
"

+"0
�
M
P (�)0A`P (�)

�
"

=
1

NT

�
� � �̂

�0
X0 (M
B`)X

�
� � �̂

�
+

2

NT

�
� � �̂

�0
X0 (M
C`) "

+"0 (M
D`) ":

where B` = (IN � �S)0A` (IN � �S), C` = (IN � �S)0A`P (�), and D` = P (�)
0A`P (�). Under

Assumptions 3-4 B`;C`; andD` have row and column norms that are uniformly bounded. Given
the

p
NT -consistency of �̂ we obtain

1

NT

�
� � �̂

�0
X0 (M
B`)X

�
� � �̂

�
� K

NT

�
� � �̂

�0
X0 (M
 IN )X

�
� � �̂

�
= Op

�
1

NT

�
;

2

NT

�
� � �̂

�0
X0 (M
C`) " =

1

NT

NX
i=1

NX
j=1

c`;ij

�
� � �̂

�0
X0iM"j = Op

�
1

NT

�
:

Further, we have

1

NT
"0 (M
D`) " =

1

NT
"0 (IT 
D`) "�

1

NT
"0
�
ii0

T

D`

�
" (26)

The second term in (26) has mean

E

�
1

NT
"0
�
ii0

T

D`

�
"

�
=

1

NT
E

0@ NX
i=1

NX
j=1

d`;ij"i
ii0

T
"j

1A =
1

NT

NX
i=1

d`;iiE

�
"i
ii0

T
"i

�

� �2max
NT

NX
i=1

d`;ii = O

�
1

T

�
;
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and variance

V ar

�
1

NT
"0
�
ii0

T

D`

�
"

�
=

1

(NT )2
E

0@ NX
i=1

NX
j=1

NX
h=1

NX
k=1

d`;ijd`;hk"
0
i

ii0

T
"j"

0
h

ii0

T
"k

1A
=

1

(NT )2

NX
i=1

NX
j=1

E

�
d`;iid`;jj"

0
i

ii0

T
"i"

0
j

ii0

T
"j + d

2
`;ij"

0
i

ii0

T
"j"

0
j

ii0

T
"i

�

� �2max

(NT )2

NX
i=1

NX
j=1

�
d`;iid`;jj + d

2
`;ij

�
= O

�
1

NT 2

�
: (27)

It follows that
1

NT
"̂ (�)0 (IT
A`) "̂ (�) =

1

NT
" (�)0 (IT
A`) " (�) +Op

�
1

T
p
N

�
+Op

�
1

T

�
;

which proves (8). To prove (9), notice that, at �0,

1

NT
"0 (M
D`) " =

1

NT
"0 (M
A`) " =

1

NT
"0 (IT 
A`) "�

1

NT
"0
�
ii0

T

A`

�
": (28)

Given that the elements a`;ii are zero by assumptions, the latter term in (28) satis�es

1

NT
E

�
"0
�
ii0

T

A`

�
"

�
=

1

NT

NX
i=1

a`;iiE

�
"i
ii0

T
"i

�
= 0; (29)

while its variance is O
�

1
NT 2

�
, as shown in (27). This proves (9).

6.1 Proof of Proposition 2

Consider the quadratic form
1

NT
" (�)0 (IT 
A`) " (�) =

1

NT
"0
�
IT 
P (�)0A`P (�)

�
" (30)

where P (�) is given by (25), and has uniformly bounded row and column norms. The mean of
(30) satis�es (see Lemma 4)

E

�
1

NT
"0
�
IT 
P (�)0A`P (�)

�
"

�
=
1

N
Tr
�
�P (�)0A`P (�)

�
= O(1)

LetW` = P (�)
0A`P (�) with elements wij;`, the variance of (30) satis�es

V ar

�
1

NT
"0
�
IT 
P (�)0A`P (�)

�
"

�
=

1

N2T

NX
i=1

w2ii;`
�
E
�
"4it
�
� 3�4i

�
+

1

N2T
Tr
h
(�W`)

2 +�W`W
0
`�
i
= O

�
1

NT

�
which proves (10).

15



6.2 Proof of Theorem 3

6.2.1 Consistency

We now sketch the proof of consistency of �̂. See Kelejian and Prucha (2008), Lee and Liu
(2006a), Lee (2007), and Kelejian and Prucha (1999) for further details on consistency of GMM
estimators of spatial models. Consider the following functions

R (�) = MNT (�)
0QNTMNT (�)

Z (�) = M (�)0QM (�)

Consistency of GMM estimator can be showed by proving the following two conditions:

1. Identi�cation uniqueness: for all N;T , and for K > 0

inf
�:k���0k2�K

jZ (�)� Z (�0)j > 0

2. Uniform convergence:
lim

N;T!1
sup

�2[cl;cu]
jR (�)� Z (�)j = 0

To prove point 1, �rst note that, for k� � �0k2 � K > 0, under the identi�cability condition
provided in Assumption 6 we have

M` (�)�M` (�0) =
1

NT
E
�
"0
�
IT 
P (�)0A`P (�)

�
"
�
� 1

NT
E
�
"0 (IT 
A`) "

�
=

2 (� � �0)
NT

E
n
"0
h
IT 


�
A`S (IN � �0S)�1

�i
"
o

+(� � �0)2E
n
"0
h
IT 


��
IN � �0S0

��1
S0A`S (IN � �0S)�1

�io
"

=
2 (� � �0)

N
�20Tr

h
�A`S (IN � �0S)�1

i
+(� � �0)2 Tr

h�
�
�
IN � �0S0

��1
S0A`S (IN � �0S)�1

�i
6= 0:

Consider Z (�)� Z (�0). Adding and subtracting the termM (�)0QM (�0) we obtain

jZ (�)� Z (�0)j =
��M (�)0Q [M (�)�M (�0)]� [M (�0)�M (�)]0QM (�0)

��
=

��[M (�)�M (�0)]
0Q [M (�)�M (�0)]

�� > 0;
given that jM (�)�M (�0)j > 0. Point 2 follows from the fact that, from (8) and (10),
MNT (�)�M (�)

p! 0, as N and T !1, for all � 2 [cl; cu].
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6.2.2 Asymptotic normality

We now prove the asymptotic normality of the GMM estimator. Let

qNT (�) =MNT (�̂)
0QNTMNT (�̂) (31)

The minimisation of (31) with respect to � implies its �rst derivative at �̂ is zero

0 =
@qN (�)

@�
j�=�̂= 2

�
@MNT (�)

@�0
j�=�̂

�0
QNTMNT (�̂): (32)

where @MNT (�)
@� has elements given by (15). Consider the mean value expansion of MNT (�̂)

around �0

MNT (�̂) =MNT (�0) +
@MNT (�)

@�0
j�=��

�
�̂ � �0

�
; (33)

where �� lies between �̂ and �0. Substituting (33) in (32) we obtain

0 =

�
@MNT (�)

@�
j�=�̂

�0
QNTMNT (�0) +

�
@MNT (�)

@�
j�=�̂

�0
QNT

@MNT (�)

@�
j�=��

�
�̂ � �0

�
:

Solving for
�
�̂ � �0

�
and multiplying by

p
NT yields

p
NT

�
�̂ � �0

�
= �

��
@MNT (�)

@�
j�=�̂

�0
QNT

@MNT (�)

@�
j�=��

��1�
@MN (�)

@�
j�=�̂

�0
QNT

p
NTMNT (�0):

Observe that, given the consistency of �̂, as N and T tend to in�nity we have��
@MNT (�)

@�
j�=�̂

�0
QNT

@MNT (�)

@�
j�=��

��1�
@MNT (�)

@�
j�=�̂

�0
QNT

p!
�
d0Qd

��1
d0Q:

Further, from result (9), the term
p
NTMNT (�0) converges to a vector of quadratic forms, with

generic element 1p
NT
" (�0)

0 (IT
A`) " (�0) as N and T go to in�nity, and having V (�0) (see
(11)) as covariance matrix. Since the hypotheses of Theorem 1 in Kelejian and Prucha (2001)
(p. 227), and of Theorem A1 in Kelejian and Prucha (2008) (p. 25) are satis�ed for the elements
1p
NT
" (�0)

0 (IT
A`) " (�0), the following result holds:

V (�0)
�1=2

hp
NT �MNT (�0)

i
a� N(0; Ir); as (N;T )!1

Hence, we obtain

p
NT

�
�̂ � �0

�
a� N

�
0;
�
d0Qd

��1
d0QVQd

�
d0Qd

��1�
:
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6.3 The elements of d

We now derive the elements of the vector d, introduced in Theorem 3. First notice that

@

@�
" (�) =

�
IT 
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@�

�
IN + (�0 � �)S (IN � �0S)�1

��
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1
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and the `th element of d is
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Table 2: Small sample properties of GMM and ML estimators. Q=Qstar. normal errors, p=1
�0= 0:0

N T �̂
KP

�̂
L

�̂
(1)

�̂
(2)

�̂
(3)

�̂ML �̂
KP

�̂
L

�̂
(1)

�̂
(2)

�̂
(3)

�̂ML

Bias RMSE
20 10 0.08 0.11 0.09 0.08 0.09 0.03 7.36 7.36 7.43 7.39 7.39 3.97
20 20 0.07 0.08 0.07 0.07 0.07 0.06 5.22 5.22 5.24 5.23 5.25 2.21
20 50 0.13 0.14 0.13 0.13 0.14 0.01 3.20 3.19 3.20 3.20 3.19 1.08
50 10 -0.06 -0.05 -0.07 -0.06 -0.06 -0.11 4.90 4.89 4.92 4.91 4.91 3.55
50 20 -0.11 -0.11 -0.11 -0.11 -0.11 0.02 3.34 3.34 3.35 3.34 3.34 2.30
50 50 -0.01 -0.01 -0.01 -0.01 -0.01 0.05 2.03 2.03 2.03 2.03 2.03 1.38
100 10 0.09 0.08 0.09 0.09 0.08 0.09 3.27 3.28 3.28 3.28 3.27 2.49
100 20 0.00 0.00 0.00 0.00 0.00 0.01 2.21 2.21 2.21 2.21 2.21 1.54
100 50 0.06 0.06 0.06 0.06 0.06 0.03 1.37 1.36 1.37 1.37 1.37 0.97

Size Power
20 10 7.60 7.20 7.60 7.60 6.60 14.40 31.80 32.40 33.00 32.00 32.80 83.00
20 20 6.40 6.20 6.40 6.40 6.40 8.40 54.40 53.80 54.40 54.40 53.80 98.60
20 50 5.60 6.00 5.80 5.60 6.00 7.80 89.60 90.00 89.60 89.60 90.00 100.0
50 10 7.20 7.20 7.20 7.20 7.20 15.40 60.00 59.60 59.80 60.00 59.80 89.40
50 20 5.60 5.60 5.60 5.60 6.00 8.60 87.60 87.80 87.60 87.60 87.60 99.00
50 50 5.80 5.80 5.80 5.80 5.80 8.00 100.0 100.0 100.0 100.0 100.0 100.0
100 10 5.80 5.60 5.80 5.80 5.60 14.80 87.80 87.60 87.60 87.80 87.60 99.40
100 20 6.20 6.20 6.20 6.20 6.00 7.60 99.60 99.60 99.60 99.60 99.60 100.0
100 50 5.20 5.20 5.20 5.20 5.40 6.60 100.0 100.0 100.0 100.0 100.0 100.0

�0= 0:3
Bias RMSE

20 10 -0.46 -0.44 -0.14 -0.30 -0.39 -0.60 6.90 6.86 6.93 6.90 6.92 3.88
20 20 -0.27 -0.25 -0.10 -0.18 -0.15 -0.31 4.86 4.84 4.86 4.85 4.92 2.16
20 50 -0.02 0.00 0.05 0.02 0.05 -0.16 2.92 2.91 2.92 2.91 2.97 1.06
50 10 -0.33 -0.34 -0.21 -0.27 -0.26 -0.36 4.54 4.55 4.55 4.54 4.58 3.33
50 20 -0.22 -0.23 -0.17 -0.20 -0.20 -0.10 3.10 3.10 3.10 3.10 3.13 2.16
50 50 -0.06 -0.06 -0.04 -0.05 -0.04 0.00 1.87 1.87 1.87 1.87 1.90 1.27
100 10 -0.02 -0.03 0.03 0.01 -0.02 -0.03 3.07 3.07 3.07 3.06 3.06 2.32
100 20 -0.05 -0.05 -0.03 -0.04 -0.04 -0.06 2.05 2.05 2.06 2.05 2.06 1.40
100 50 0.03 0.03 0.04 0.03 0.04 0.00 1.25 1.25 1.25 1.25 1.27 0.89

Size Power
20 10 7.80 7.80 8.40 8.20 8.00 14.60 35.20 35.00 37.60 36.00 35.40 79.20
20 20 7.00 6.80 6.40 6.60 6.60 6.80 56.80 56.40 59.00 58.00 57.80 97.60
20 50 5.60 5.80 6.00 5.80 6.20 7.60 92.40 92.80 92.60 92.60 92.20 100.0
50 10 7.80 7.40 7.40 7.40 7.00 15.40 63.20 63.00 64.40 63.60 63.40 91.60
50 20 6.40 6.60 6.40 6.40 5.60 8.60 90.00 89.60 90.00 90.00 90.60 99.40
50 50 5.60 5.20 5.60 5.40 6.00 7.00 100.0 100.0 100.0 100.0 100.0 100.0
100 10 6.40 6.60 6.60 6.60 5.40 15.00 90.40 90.40 90.80 90.80 89.80 99.40
100 20 5.40 6.00 6.00 5.80 5.80 7.00 100.0 100.0 100.0 100.0 100.0 100.0
100 50 4.80 4.60 4.80 4.80 5.60 7.20 100.0 100.0 100.0 100.0 100.0 100.0

�0= 0:8
Bias RMSE

20 10 -1.48 -1.54 -1.08 -1.29 -1.91 -1.84 3.78 3.74 3.65 3.66 4.43 3.58
20 20 -0.80 -0.82 -0.57 -0.69 -0.93 -1.07 2.49 2.41 2.34 2.35 2.88 1.90
20 50 -0.26 -0.27 -0.18 -0.22 -0.30 -0.45 1.37 1.30 1.28 1.28 1.59 0.86
50 10 -0.76 -0.77 -0.59 -0.69 -0.87 -0.37 2.35 2.32 2.28 2.29 2.63 5.07
50 20 -0.38 -0.37 -0.29 -0.34 -0.46 -0.30 1.53 1.47 1.45 1.46 1.73 2.10
50 50 -0.14 -0.15 -0.11 -0.13 -0.16 -0.14 0.88 0.86 0.85 0.86 1.00 0.61
100 10 -0.29 -0.29 -0.20 -0.25 -0.38 -0.31 1.53 1.47 1.45 1.45 1.67 2.02
100 20 -0.17 -0.16 -0.12 -0.10 -0.21 -0.22 1.00 0.96 0.96 1.28 1.09 0.71
100 50 -0.05 -0.06 -0.04 -0.05 -0.05 -0.09 0.59 0.58 0.58 0.58 0.66 0.41

Size Power
20 10 8.40 8.00 8.80 8.00 9.60 17.80 73.00 75.60 75.00 72.80 61.80 88.80
20 20 7.80 7.80 7.20 7.80 7.40 13.20 95.00 97.00 96.80 96.00 91.40 99.40
20 50 5.20 5.00 4.40 4.20 6.20 9.20 100.0 100.0 100.0 100.0 100.0 100.0
50 10 8.60 9.00 8.60 8.00 9.00 21.00 98.20 98.60 98.20 98.20 95.20 99.80
50 20 7.00 7.00 6.40 6.80 6.40 11.80 100.0 100.0 100.0 100.0 99.60 100.0
50 50 5.60 5.40 5.00 5.00 5.80 5.60 100.0 100.0 100.0 100.0 100.0 100.0
100 10 7.60 7.40 7.00 6.80 6.80 18.00 100.0 100.0 100.0 100.0 100.0 100.0
100 20 6.40 6.00 6.60 6.20 6.40 10.00 100.0 100.0 100.0 100.0 100.0 100.0
100 50 5.00 5.00 5.00 5.20 5.40 8.00 100.0 100.0 100.0 100.0 100.0 100.0



Table 3: Small sample properties of GMM and ML estimators. Q = I, normal errors, p=1
N T �̂

L
�̂
(1)

�̂
(2)

�̂
L

�̂
(1)

�̂
(2)

�0= 0:0
Bias RMSE

20 20 0.35 0.64 0.41 7.88 9.11 8.10
20 50 0.14 0.20 0.15 5.44 6.00 5.54
20 100 0.18 0.23 0.19 3.36 3.75 3.45
50 20 -0.01 0.06 0.01 5.23 5.85 5.37
50 50 -0.09 -0.03 -0.09 3.49 3.91 3.58
50 100 -0.03 -0.06 -0.04 2.21 2.47 2.28
100 20 0.15 0.21 0.17 3.52 3.98 3.63
100 50 -0.06 -0.08 -0.06 2.42 2.80 2.51
100 100 0.03 -0.01 0.02 1.47 1.70 1.51

Size Power
20 20 9.60 13.00 10.60 33.00 35.00 34.00
20 50 8.00 11.40 9.20 55.60 57.20 56.60
20 100 7.60 9.40 7.80 89.60 86.60 89.20
50 20 9.40 14.00 10.60 61.20 60.40 60.00
50 50 6.40 10.20 7.20 88.00 85.40 87.00
50 100 7.80 11.40 8.40 99.80 98.60 99.60
100 20 7.80 12.60 9.40 86.20 84.00 86.00
100 50 8.20 11.00 8.00 98.80 97.40 98.00
100 100 7.00 10.40 7.40 100.0 100.0 100.0

�0= 0:3
Bias RMSE

20 20 -0.14 0.17 -0.07 7.34 8.55 7.52
20 50 -0.09 -0.02 -0.08 5.09 5.60 5.19
20 100 0.09 0.14 0.10 3.14 3.51 3.21
50 20 -0.20 -0.11 -0.17 4.90 5.49 5.03
50 50 -0.17 -0.11 -0.17 3.27 3.70 3.36
50 100 -0.05 -0.08 -0.06 2.07 2.32 2.13
100 20 0.05 0.11 0.06 3.27 3.69 3.37
100 50 -0.08 -0.09 -0.09 2.25 2.59 2.33
100 100 0.01 -0.02 0.00 1.36 1.58 1.41

Size Power
20 20 10.00 12.40 10.80 36.40 37.40 38.00
20 50 8.00 10.40 8.80 59.80 58.00 59.40
20 100 8.00 9.40 8.20 92.60 89.80 91.80
50 20 9.00 12.40 10.00 65.20 62.20 64.20
50 50 7.20 9.60 8.40 89.00 87.20 88.20
50 100 7.60 11.00 8.40 100.0 99.20 100.0
100 20 7.80 11.40 8.80 89.20 86.20 89.00
100 50 8.40 10.40 8.80 99.40 98.40 99.40
100 100 6.80 9.20 7.40 100.0 100.0 100.0

�0= 0:8
Bias RMSE

20 20 -1.93 -1.88 -1.86 4.72 5.31 4.76
20 50 -1.03 -0.96 -1.00 2.91 3.22 2.92
20 100 -0.25 -0.21 -0.24 1.67 1.82 1.65
50 20 -0.79 -0.75 -0.76 2.62 3.08 2.65
50 50 -0.52 -0.52 -0.50 1.78 2.05 1.79
50 100 -0.20 -0.23 -0.20 1.09 1.28 1.11
100 20 -0.47 -0.48 -0.46 1.79 2.08 1.82
100 50 -0.28 -0.29 -0.27 1.19 1.39 1.20
100 100 -0.11 -0.13 -0.12 0.74 0.85 0.75

Size Power
20 20 16.20 18.80 16.60 66.40 64.80 66.80
20 50 12.80 13.40 11.80 94.20 92.80 93.40
20 100 12.00 12.20 10.80 100.0 100.0 100.0
50 20 14.20 15.20 14.00 96.60 94.40 96.40
50 50 13.40 15.60 12.40 100.0 99.20 100.0
50 100 11.20 14.40 11.60 100.0 100.0 100.0
100 20 12.60 15.80 12.60 100.0 99.20 100.0
100 50 10.80 13.20 11.40 100.0 100.0 100.0
100 100 12.20 14.40 13.00 100.0 100.0 100.0



Table 4: Small sample properties of GMM and ML estimators. Q = QStar, non-normal errors,
p=1

N T �̂
KP

�̂
L

�̂
(1)

�̂
(2)

�̂
(3)

�̂ML �̂
KP

�̂
L

�̂
(1)

�̂
(2)

�̂
(3)

�̂ML

�0= 0:0
Bias RMSE

20 10 0.04 0.00 0.04 0.04 0.01 0.21 7.49 7.45 7.57 7.53 7.43 6.64
20 20 -0.29 -0.29 -0.29 -0.29 -0.28 -0.31 5.21 5.20 5.23 5.22 5.21 4.78
20 50 0.12 0.12 0.12 0.12 0.12 0.10 3.37 3.37 3.37 3.37 3.38 3.23
50 10 0.00 0.01 0.00 0.00 0.00 0.05 4.59 4.58 4.61 4.60 4.59 3.91
50 20 -0.15 -0.16 -0.15 -0.15 -0.16 -0.10 3.17 3.17 3.18 3.18 3.17 2.98
50 50 -0.08 -0.08 -0.08 -0.08 -0.08 -0.06 1.99 1.98 1.99 1.99 1.98 1.86
100 10 -0.08 -0.08 -0.08 -0.08 -0.08 0.03 3.26 3.25 3.26 3.26 3.25 2.66
100 20 -0.13 -0.13 -0.13 -0.13 -0.13 -0.19 2.19 2.19 2.19 2.19 2.18 2.08
100 50 -0.03 -0.03 -0.03 -0.03 -0.03 0.02 1.41 1.42 1.41 1.41 1.42 1.37

Size Power
20 10 8.20 7.60 8.40 8.40 7.60 13.60 33.60 33.60 33.80 33.60 33.60 48.60
20 20 7.00 7.20 7.00 7.00 7.20 7.20 50.40 50.20 50.40 50.40 49.80 62.60
20 50 7.40 7.60 7.40 7.40 7.60 7.40 88.40 88.20 88.40 88.40 88.40 90.40
50 10 6.80 6.40 7.00 6.80 6.60 12.80 61.20 61.60 61.40 61.40 61.80 83.00
50 20 4.60 4.60 4.60 4.60 4.80 7.60 89.40 89.20 89.40 89.40 89.00 94.40
50 50 4.80 4.60 4.80 4.80 4.60 4.40 100.0 100.0 100.0 100.0 100.0 100.0
100 10 6.00 6.00 6.00 6.00 5.80 10.40 89.20 89.20 89.00 89.20 89.40 98.40
100 20 4.20 4.00 4.20 4.20 3.80 6.20 99.40 99.40 99.40 99.40 99.40 99.20
100 50 5.20 5.00 5.20 5.20 5.60 5.40 100.0 100.0 100.0 100.0 100.0 100.0

�0= 0:3
Bias RMSE

20 10 -0.46 -0.57 -0.20 -0.33 -0.46 -0.37 6.87 6.83 6.93 6.90 6.94 6.07
20 20 -0.53 -0.57 -0.39 -0.46 -0.48 -0.59 4.72 4.74 4.72 4.72 4.85 4.39
20 50 -0.01 -0.02 0.05 0.02 0.02 -0.05 3.11 3.10 3.11 3.10 3.14 2.97
50 10 -0.22 -0.25 -0.12 -0.17 -0.19 -0.20 4.28 4.26 4.28 4.28 4.28 3.65
50 20 -0.22 -0.23 -0.16 -0.19 -0.24 -0.19 2.91 2.91 2.92 2.91 2.96 2.74
50 50 -0.11 -0.12 -0.09 -0.10 -0.11 -0.09 1.82 1.81 1.82 1.81 1.85 1.70
100 10 -0.14 -0.15 -0.08 -0.11 -0.16 -0.08 3.00 2.99 3.00 2.99 3.03 2.46
100 20 -0.12 -0.12 -0.09 -0.10 -0.16 -0.20 2.00 2.00 2.00 2.00 2.04 1.92
100 50 -0.05 -0.06 -0.04 -0.05 -0.04 -0.02 1.30 1.30 1.30 1.30 1.32 1.26

Size Power
20 10 7.60 7.20 8.20 7.60 7.40 14.00 36.40 35.00 37.40 37.00 35.60 51.00
20 20 6.20 5.80 6.00 6.00 7.20 7.40 53.80 53.20 54.60 53.60 53.40 65.40
20 50 7.80 7.80 8.00 8.00 7.60 7.20 90.20 90.00 90.40 90.40 89.80 92.40
50 10 6.00 6.00 6.40 6.20 6.20 12.20 66.60 66.80 67.80 67.40 65.20 85.20
50 20 4.60 4.60 4.60 4.60 4.80 7.20 93.40 93.40 93.80 93.60 92.00 96.40
50 50 5.20 5.00 5.00 5.20 4.60 4.40 100.0 100.0 100.0 100.0 100.0 100.0
100 10 5.40 5.20 5.60 5.40 6.00 11.60 91.40 91.20 91.80 91.60 91.00 98.80
100 20 4.40 4.80 4.60 4.60 3.80 6.20 99.40 99.40 99.40 99.40 99.40 99.60
100 50 4.40 4.40 4.40 4.40 5.20 4.40 100.0 100.0 100.0 100.0 100.0 100.0

�0= 0:8
Bias RMSE

20 10 -1.48 -1.64 -1.21 -1.39 -1.90 -1.69 3.67 3.67 3.55 3.58 4.34 3.63
20 20 -0.86 -0.91 -0.69 -0.80 -1.04 -0.99 2.39 2.36 2.28 2.31 2.76 2.29
20 50 -0.26 -0.29 -0.19 -0.24 -0.31 -0.33 1.47 1.40 1.39 1.39 1.67 1.36
50 10 -0.66 -0.71 -0.53 -0.62 -0.81 -0.76 2.18 2.13 2.09 2.11 2.42 2.02
50 20 -0.34 -0.35 -0.25 -0.30 -0.49 -0.38 1.41 1.40 1.39 1.39 1.64 1.34
50 50 -0.14 -0.16 -0.13 -0.14 -0.18 -0.14 0.85 0.83 0.83 0.83 0.98 0.79
100 10 -0.30 -0.31 -0.20 -0.26 -0.45 -0.37 1.44 1.37 1.36 1.36 1.65 1.26
100 20 -0.15 -0.15 -0.10 -0.13 -0.28 -0.22 0.96 0.94 0.93 0.93 1.11 0.91
100 50 -0.13 -0.13 -0.08 -0.11 -0.25 -0.21 0.94 0.93 0.92 0.92 1.08 0.90

Size Power
20 10 6.80 7.60 8.40 8.00 8.80 18.20 72.20 73.80 76.60 75.40 61.40 82.60
20 20 6.60 5.60 5.40 5.40 8.60 10.20 95.80 97.20 97.40 97.40 92.80 99.00
20 50 7.60 7.40 8.20 7.40 8.40 6.20 100.0 100.0 100.0 100.0 100.0 100.0
50 10 6.80 8.20 7.60 7.60 7.60 15.60 98.60 99.00 99.00 99.00 95.60 100.0
50 20 5.00 5.80 5.80 5.60 6.40 8.80 100.0 100.0 100.0 100.0 100.0 100.0
50 50 5.00 4.40 4.80 4.40 5.00 4.80 100.0 100.0 100.0 100.0 100.0 100.0
100 10 5.60 5.40 5.80 5.40 6.20 14.00 100.0 100.0 100.0 100.0 100.0 100.0
100 20 4.80 4.20 4.40 4.60 4.60 7.20 100.0 100.0 100.0 100.0 100.0 100.0
100 50 4.80 4.40 4.60 4.80 4.20 7.40 100.0 100.0 100.0 100.0 100.0 100.0



Table 5: Small sample properties of GMM and ML estimators. Use of real-world matrices
Q = Q, � = 0:3, normal errors, p=1

�̂
KP

�̂
L

�̂
(1)

�̂
(2)

�̂
(3)

�̂ML �̂
KP

�̂
L

�̂
(1)

�̂
(2)

�̂
(3)

�̂ML
N T Bias RMSE
12 10 -1.19 -1.40 -0.84 -0.42 -1.18 -0.90 9.50 9.47 9.64 9.58 9.47 8.45
12 20 -0.60 -0.68 -0.44 -0.30 -0.54 -0.51 6.86 6.85 6.89 6.86 6.87 5.55
12 50 -0.38 -0.42 -0.30 -0.24 -0.36 -0.21 3.93 3.92 3.94 3.95 3.97 3.17
32 10 -0.22 -0.50 0.00 0.19 -0.36 -0.64 7.29 7.30 7.34 7.34 7.42 4.68
32 20 -0.52 -0.64 -0.40 -0.34 -0.53 -0.29 5.15 5.16 5.16 5.14 5.24 2.99
32 50 -0.18 -0.21 -0.12 -0.10 -0.17 -0.13 2.97 2.98 2.98 2.98 2.99 1.70
148 10 -0.11 -0.19 -0.08 -0.03 -0.15 -0.15 3.56 3.54 3.55 3.55 3.55 2.33
148 20 0.02 -0.01 0.04 0.06 0.02 -0.04 2.42 2.43 2.42 2.42 2.43 1.52
148 50 -0.06 -0.09 -0.06 -0.05 -0.06 -0.11 1.67 1.68 1.67 1.67 1.67 1.06

Size Power
12 10 7.60 7.20 8.40 9.00 7.60 13.00 23.20 21.60 23.60 25.60 23.00 35.40
12 20 6.40 6.40 7.20 7.00 6.20 7.40 37.00 37.60 39.00 39.40 37.20 51.60
12 50 5.60 6.00 5.60 5.60 5.60 5.20 67.40 67.80 68.00 68.60 68.00 87.40
32 10 6.60 6.80 7.00 7.80 8.20 10.60 34.40 32.80 35.20 36.00 34.20 66.80
32 20 6.00 6.40 6.20 6.00 6.80 8.00 51.60 50.00 52.60 53.00 50.20 91.40
32 50 4.60 4.60 4.80 4.60 3.80 6.80 89.80 89.20 89.40 90.00 89.60 100.0
148 10 5.40 5.00 5.60 5.40 5.40 14.80 80.60 80.00 81.00 81.00 80.00 99.60
148 20 5.60 5.60 5.80 5.60 5.60 7.80 97.40 97.20 97.40 97.40 97.40 100.0
148 50 4.80 5.20 5.20 5.20 5.20 7.60 99.60 99.60 99.60 99.60 99.60 100.0


