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Abstract

This paper de�nes a risk-stability index (RSI) that takes into account the extreme depen-

dence structure and the conditional probability of joint failure (CPJF) among risk factors in

a portfolio. In combination, both the RSI and CPJF provide a valuable tool for analyzing

risk from complementary perspectives; thereby allowing the measurement of (i) common

distress of risk factors in a portfolio, (ii) distress between speci�c risk factors, and (iii) dis-

tress to a portfolio related to a speci�c risk factor. With an application to a �nancial system

comprised of 18 banks from around the world, the results herein show that �nancial stability

must be viewed as a continuum, since risk varies from period to period. The risk-stability

index indicates that U.S. banks tend to cause the most stress to the global �nancial system

(as de�ned herein), followed by Asian and European banks. The results also show that Asian

banks seem to experience the most persistence of distress, followed by U.S. and European

banks. The panel VAR results show that monetary policy should "lean against the wind",

since it has a signi�cant e¤ect in reducing the (potential) instability of a �nancial system.
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1 Introduction

Banks are directly connected and are the most important �nancial intermediaries in an economy.

This might sound like an understatement, but it has taken a severe �nancial crisis for economists

and regulators to appreciate that it is true and that the malfunctioning of such connections can

have dire consequences for any �nancial system. For example, the asset side of a bank�s balance

sheet contains common exposures in the interbank deposit market. Therefore, large losses due to

exogenous causes, like a large company breaking an agreement to pay back its (syndicated) loan,

leads to a succession of events instantaneously distressing a substantial fraction of the banking

sector. Moreover, since banks perform related activities, they are also ultimately coupled due

to their common exposition vis-à-vis similar macro-risk drivers like the short-term interest rate

and cross-market rebalancing e¤ects. This means that the asset side of a banks�balance sheet

clings to the same risk factors albeit in di¤erent proportions, where the pressure to diversify risk

is the underlying motive for �risk-sharing�rather than �risk-concentration�. Paradoxically, while

diversi�cation reduces the frequency of individual bank failures (i.e. smaller shocks can be easily

borne by the system), it makes the banking system prone to systemic breakdowns in case of very

large (non-macro) shocks.

On the other hand, the liability-side of balance sheets is even more alike than the asset side,

since the liability side largely consists of bank deposits. Accordingly, short-term interest rate

movements encourage substitution between asset categories; and therefore, can quickly change

the size of deposits held by the public. Diamond and Dybvig (1983) point out that a vital role

of banks is to o¤er deposits that are more liquid than the assets under management. The main

reason banks create liquid deposits, when compared to the assets they hold, is for insurance

purposes; that is, they force depositors to share the risk of liquidating early, even if it is at a loss.

The Diamond and Dybvig (1983) model shows that o¤ering these demand deposits gives way to

�bank runs�if too many depositors withdraw; and for this reason, the values of bank portfolios

co-move (either through contagion following an idiosyncratic shock, or owing to a macroeconomic

shock such as tighter monetary policy). To solve the problems associated with a bank run, deposit

guarantee funds have been installed, and �nancial authorities have committed considerable e¤ort

to monitoring and regulating the banking industry, where in recent times there has been a trend

towards focusing on the macro-prudential perspective of banking regulation (see Aspachs et al.,

2007; Goodhart et al., 2005, 2006; Lehar, 2005). However, there remain important questions to

be answered vis-à-vis the stability of any �nancial system. As the current crisis has highlighted,

regulators and academics do not fully understand how risk is distributed within a �nancial system,

and there is "insu¢ cient" knowledge about the e¤ects and desirability of regulatory measures.

If we economists were able to know the risk exposure of di¤erent risk factors, then we would

be able to better assess the impact of adverse shocks to the system. However, we do not have an
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accepted quanti�cation or time-series for measuring �nancial stability. Despite this shortcoming,

what is most frequently employed as an alternative is an "after the fact" assessment of whether a

crisis has occurred. This dichotomous measure is then used to gauge whether common risk factors

preceded, perhaps even causing, such crises, and then to evaluate which o¢ cial responses have

best mitigated the crisis in question. However, such an approach is fraught with shortcomings.

Speci�cally, the de�ciency of having a continuous scale makes it unfeasible to calculate (i) the

relative riskiness of a system in non-crisis periods, and/or (ii) the strength of a crisis once it occurs,

with any accuracy. If the former could be quanti�ed, it may allow for early corrective action as the

menace of a systemic crisis increases. On the other hand, quanti�cation of the latter can smooth

the progress of decision making vis-à-vis the most suitable course of action to �ght the crisis. As

Segoviano and Goodhart (2009) state "a precondition for improving the analysis and management

of �nancial (banking) stability is to be able to construct a metric for it". Segoviano and Goodhart

(2009) do construct a metric for �nancial stability, which they call the PAO ("probability that at

least one bank becomes distressed"). However, the PAO only re�ects the probability of having at

least one extra distress, without specifying the size of the systemic impact. The �nancial stability

perspective taken herein is that multiple �nancial institutions (i.e. risk factors) "fail" due to a

common risk exposure.1 That is, when �nancial institutions are exposed to similar risks, multiple

institutions may be a¤ected when this risk materializes; often such crises are explained through

contagion e¤ects.

The well-being of the banking sector, as designated by the balance sheet items, is (arguably)

re�ected in credit default swap spreads, since CDS�s are a type of insurance against credit risk.2

However, it is worth pointing out that there are those who argue against the reliability of CDS

spreads as a trustworthy indicator of a �rms��nancial health. The main criticism being that CDS

spreads may overstate a �rm�s �fundamental�risk when: (i) the CDS market is illiquid, and (ii)

when the �nancial system is frothing with risk aversion. Even though these types of arguments

might be accurate, they can become self-ful�lling factors if they have a real e¤ect on the eagerness

of the market to �nance a particular �rm (Segoviano and Goodhart, 2009). Consequently, this

can lead to a real deterioration of a �rm�s �nancial health, as we have experienced throughout

the 2008-2009 �nancial crisis. Additionally, even though CDS spreads may overshoot, they do

not generally stay wide of the mark for long, where the direction of the move is by and large a

good distress signal (see Figures 1 and 2).

1See deBandt and Hartmann (2000) and Allen et al. (2009) for comprehensive surveys on systemic risk modeling.
2A CDS is similar to a put option written on a corporate bond, and like a put option, the buyer is protected

from losses incurred by a decline in the value of the bond stemming from a �credit event�. Accordingly, the CDS
spread can be viewed as a premium on the put option, where payment of the premium is spread over the term of
the contract. More speci�cally, CDS spreads are considered as determinants of default risk as well as liquidity risk
(Das and Hanouma, 2006; Hull et al., 2004). Moreover, a long stream of research, starting with Merton (1974),
has established a strong link between credit risk markets and equity markets.

3



Figure 1: Daily CDS Spreads (in basis points) of 8Major Asian Banks (February 12, 2003 - September
8, 2009)
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Figure 2: Daily CDS Spreads (in basis points) of 10 Major European and U.S. Banks (February 12,
2003 - September 8, 2009)
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Accordingly, the aim herein is to take advantage of the aforementioned properties of the bank-

ing sector in order to epitomize the likelihood for systemic risk. Moreover, this paper endeavors

at going further than the conventional "shock-transmission" approach, which is the epicenter of

many existing frameworks. As an alternative, the focus herein is on spotting and dealing with the

build-up of weaknesses preceding downward corrections in markets, problems with institutions,

or failures in �nancial infrastructure. The conjecture inherent in this approach is that the shocks

that may ultimately cause such adjustments are (usually) considered less relevant when viewed

in isolation, and therefore, are often overlooked. This also accords with the view that �nancial

stability is a continuum (Houben et al., 2004), in which "imbalances" may develop and then either

fritter away or build up to the point of moving any �nancial system away from stability.

The starting point in this approach is the stylized fact that the return series of �nancial

assets are fat-tailed distributed; therefore, the commonly maintained assumption that returns

are normally distributed leads to an underestimation of risk. Hence, given the focus on extreme

co-movements of risk, I will allow for fat-tails to capture the univariate risk properties. For

the multivariate analysis, the normal distribution based correlation concept is also of limited

value, since regular dependence and tail dependence are independent (see Garita and Zhou, 2009).

For these and the above-mentioned reasons, the research herein will calculate the conditional

probability of joint failure (CPJF) and a risk-stability index (RSI) derived from multivariate

extreme value theory (mEVT ), which quanti�es systemic risk in a �nancial system.3

This index is based on forward-looking price information stemming from credit default swap

(CDS) spreads, which are easily available in real time and on a daily basis; moreover, it is also

economically instinctive, since it is comparable to a notional premium (i.e. to a risk-weighted

deposit insurance plan that protects against harsh losses in the banking system). This new index

also has the property that it increases when the conditional probability of joint failure and the

dependence structure increase. In other words, higher systemic risk (i.e. an increase in the risk-

stability index) re�ects an elevated sensitivity by market participants vis-à-vis higher failure risk,

as well as their view that the conditional probability of joint failure is higher. In addition, the

risk-stability index reveals the importance of di¤erent risk factors (e.g. banks) in causing systemic

risk, where the potential for a systemic breakdown of the �nancial system can be either weak or

strong (see de Vries, 2005), depending on whether the "conditional probability of joint failure"

fades away or remains asymptotically (see Garita and Zhou, 2009). Accordingly, the international

monetary and �nancial system can be described as being relatively stable in the former case, while

in the latter case it is more fragile.4

3Chen Zhou, of De Nederlansche Bank, deserves most credit for the construction of this index, although any
errors remain mine.

4It is imperative to point out that random variables are asymptotically independent or asymptotically dependent
despite their correlation. Moreover, the dependency of random variables, if they are asymptotically independent,
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By applying a multivariate extreme value theory (mEVT ) methodology to a portfolio com-

posed of 18 banks from around the world during period February 12, 2003 until September 8,

2009, the results obtained in this paper show that extreme dependence in non-crisis times can be
higher than during crisis times, and that risk varies from period to period; this supports the idea

that �nancial stability must be viewed as a continuum. The results also indicate that, bilaterally,

banks are highly interlinked both within and across borders; however, as previously mentioned,

this interlinkage varies from period to period. The results stemming from the risk-stability index

show that U.S. banks tend to cause the most stress to the global �nancial system (as de�ned

herein), followed by Asian and European banks. When it comes to contagion or "domino-e¤ects",

U.S. banks seem to be the most contagious, followed by Asian banks, and then by European

banks. The persistence of distress is also an important variable that must be taken into account

when analyzing �nancial stability; accordingly, the results herein show that Asian banks seem to

experience the most persistence of distress, followed by U.S. banks, which are in turn followed by

European banks. The panel VAR results show that monetary policy can help reduce instability

in the �nancial system.

The remainder of the paper will evolve as follows: Section 2 will discuss measures of depen-

dence and introduce the concepts of "conditional probability of joint failure" (CPJF) and the

risk-stability index (RSI). Section 3 provides empirical results for the CPJF through a distress

dependence matrix, while section 4 provides the estimates for the risk-stability index. Section 5

looks at "domino-e¤ects" and at the directionality of contagion. Section 6 takes advantage of the

time-series properties of the Risk-Stability Index, and estimates a panel VAR. Lastly, section 7

concludes.

2 Measures of Dependence

In order to understand the dependence between two normally distributed random variables, it is

su¢ cient to know the mean, variance and correlation coe¢ cient. However, the correlation coe¢ -

cient is not a useful statistic for �nancial data for various reasons. First, economists are interested

in the risk-return trade-o¤ for which the correlation measure is only an intermediate step; that is,

the correlation coe¢ cient measures dependence during normal times, and it is largely dominated

by the moderate observations rather than the extreme observations. Boyer et al. (1997) show that

even if the normal distribution is applicable, verifying "the market speak" of increased-correlations

during crisis times, can be illusory at best. To make the point more precise, Forbes and Rigobon

(2002) show that even after adjusting for heteroskedastic biases (i.e. increases in variance), "there

was virtually no increase in unconditional correlation coe¢ cients" during times of crisis. Second,

will eventually die out as the credit spreads become extreme.
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the de�nition of the correlation coe¢ cient depends on the assumption of �nite variance; however,

the distribution of �nancial data (e.g. asset returns) is not multivariate normally distributed,

that is, the tails of the return distributions are "fat". Thirdly, the multivariate normal-based

correlation does not measure very well the extreme dependence of �nancial data; therefore, what

is required is a measure for the tail dependence.5

2.1 Univariate EVT and Value-at-Risk (VaR)

Univariate extreme value theory makes assumptions on the tail of the distribution function, where

we only consider the heavy-tail case. Let X denote the loss generated from a certain risk factor;

for example, if R is the return of a certain asset then we can take X = �R. Also, denote F as

the distribution function of X, and suppose that X follows a heavy-tailed distribution; that is we

have that

lim
t!1

1� F (tx)
1� F (t) = x

�� (1)

where � > 0 is the tail index. This implies that 1� F (t) = t��l(t), where l(t) is a slowly varying
function de�ned as

lim
t!1

l(tx)

l(t)
= 1

In the narrow case where l(t) is almost a constant (i.e. l(t)! A as t!1), then the tail of the
distribution function of X has the following representation

P (X � x) = Ax��[1 + o(1)]

as x!1. This simply means that the tail distribution ofX is approximately Pareto distributed.6

Denote V aR(�) as the Value-at-Risk of X at tail probability level �; that is, P (X > V aR(�)) = �.

From the EVT setup, we have that

� = (V aR(�))��l(V aR(�))

which implies

V aR(�) =

�
a(�)

�

�1=�
(2)

5There exist a few indicators that capture tail-dependence stemming from multivariate extreme value analysis
(see Embrechts et al., 2000; Hartman et al., 2004); most are based on Huang (1992).

6See Hyung and de Vries (2002, 2005) for a similar setup.
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where a(�) = l(V aR(�)) is called the scale function. It can be veri�ed that a(�) is a slowly varying

function as � ! 0. Thus, for small �, a(�) can be regarded as a constant function.7 In order to

estimate the V aR, it is necessary to estimate the tail index �, in addition to the scale function a.

Suppose we have a sample of observations X1; X2; :::; Xn. By ranking them, we get the ordered

statistics Xn;1 � Xn;2 � ::: � Xn;n. Hill (1975) proposed an estimator (now known as the Hill

estimator) to estimate the tail index � as follows

b�H =  1
k

kX
i=1

logXn;n�1+1 � logXn;n�k

!�1
where k = k(n) is a suitable intermediate sequence such that k(n) ! 1 and k(n)=n ! 0 as

n ! 1. From the Hill estimator, we observe that only k high-ordered statistics are used for

estimation. Applying (2) with � = k=n, we get

V aR(k=n) =

�
a(k=n)

k=n

�1=�
Since a remains at a constant level when � approaches zero, for small �, a(�) can be well approx-

imated by a(k=n), and together with (2) we have

V aR(�)

V aR(k=n)
�
�
k=n

�

�1=�
Notice that the non-parametric estimation of V aR(k=n) is Xn;n�k. This allows us to attain a

suitable estimator of V aR(�) as

[V aR(�) =
�
k=n

�

�1=b�
Xn;n�k

It is worth pointing out that the de�nition of V aR is exactly the same as the quantile of a certain

distribution function.8 In the case a(�) � A, where A is the scale, we then have an estimator for
A as

bA = b�(k=n) = k

n

�
[V aR(k=n

�b�
=
k

n
(Xn;n�k)

b�
We can link the V aR estimator to the estimator of the scale A as follows

[V aR(�) =

 bA
�

!1=b�
7In case l(t) � A, we get a(�) � A, as � ! 0.
8Weissman (1978) was the �rst to propose this as a quantile estimator.
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Hence the estimation of V aR is determined by the estimations on the tail index � and the scale

function a(k=n). This can be viewed as a solution from the Pareto approximation:

� = P (X > V aR(�)) � A(V aR(�))��

Within the univariate EVT setup, the tail index plays a more prominent role for the analysis of

extreme risks, although both the tail index and the scale function (or scale parameter) play a role

in V aR evaluation. Suppose we have two risk factors X and Y with tail indices �1 and �2, and

scale functions �1(�) and �2(�), respectively. If �1 > �2, then 1=�2 � 1=�1 > 0. Hence, we have
that

lim
�!0

V aRX(�)

V aRY (�)
= lim

�!0
�1=�2�1=�1

a1(�)
1=�1

a2(�)1=�2
= 0

Here it is assumed that a1(�)1=�1

a2(�)1=�2
is a slowly varying function as � ! 0. This implies that X is

less risky that Y . In other words, the risk factor with higher tail index exhibits less risk at the

extremes. In the case the tail indices are equal, we have �1 = �2 = �, which implies that

lim
�!0

V aRX(�)

V aRY (�)
= lim

�!0

�
a1(�)

a2(�)

�1=�
Thus comparing the scale functions is important for the comparison of the V aRs. Following Zhou

(2009), I herewith present two properties of the scale function under the assumption of equal tail

indices. Given that the tail indices for X and Y are �, as � ! 0:

1. acX(�) � c�aX(�), for all c > 0;

2. aX+Y (�) � aX(�) + aY (�), if X and Y are independent.

The second property follows from Feller�s convolution theorem (see Feller, 1971, section VIII.8).

Parallel to this, when we have the scale parameters AX and AY , we then have that:

1. AcX � c�AX , for all c > 0;

2. AX+Y � AX + AY , if X and Y are independent.

2.2 Multivariate EVT: tail dependence

Multivariate EVT (mEVT ) takes into account more than the tail behavior of each individual risk

factor, since it also looks at the extreme co-movements among them. Moreover, this approach

makes it possible to �nd (possible) contagion e¤ects stemming from "distress" in one risk factor

vis-à-vis other risk factors in a system. As an example of a two-dimensional case, assume a
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system of two banks, with loss returns X and Y . Following de Haan and Ferreira (2006), the

two-dimensional EVT assumes that there exists a G(x; y) such that

G(x; y) = lim
�!0

P (X > V aRx(�) � x; or Y > V aRy(�) � y)
�

(3)

we can express the marginal tail indices as follows:

if y = +1; then G(x;+1) = lim
�!0

P (X > V aRx(�) � x)
�

= lim
�!0

P (X > V aRx(�) � x)
P (X > V aRx(�))

= x��1

if x = +1; then G(+1; y) = lim
�!0

P (Y > V aRy(�) � y)
�

= lim
�!0

P (Y > V aRy(�) � y)
P (Y > V aRy(�))

= y��2

by using these marginal tail indices, we can remove the marginal information by simply changing

x into x�
1
�1 and y into y�

1
�2 , yielding

G(x; y) = lim
�!0

P (X > V aRx(�) � x�
1
�1 ; or Y > V aRy(�) � y�

1
�2 )

�
(4)

Notice that V aRx(x�) � V aRx(�) � x�
1
�1 and V aRy(y�) � V aRy(�) � y�

1
�1 , which allows us to

write (3) as follows:

lim
�!0

P (X > V aRx(x�); or Y > V aRy(y�))

�
= L(x; y) = L(1; 1) for x = y = 1 (5)

Through (5) we can notice that the marginal information, which is summarized by the tail indices

�1; �2, has no in�uence on L(x; y). In other words, the two-dimensional EVT condition models the

marginals through one-dimensional EVT and it models the tail dependence through the L(x; y)

function. As noted by de Haan and Ferreira (2006), 1 � L(1; 1) � 2. A value for L(1; 1) equal

to 1 indicates complete tail dependence. If L(1; 1) equals 2, then it indicates tail independence.

In the case there is an interest in looking at a multidimensional setting (e.g. the e¤ects of one

bank�s failure on the rest of the �nancial system), as is the case in this paper, then equation (5)

can be modi�ed accordingly. Let X = (X1; :::; Xd) denote the losses of d individual risk factors

(e.g. banks). Each risk factor Xi follows the univariate EVT setup with its own tail index �i and

scale function ai(t). Therefore, for any x1; x2; :::; xd > 0, as � ! 0, we have:

P (X1 > V aR1(x1�); or X2 > V aR2(x2�); or; :::; or Xd > V aRd(xd�))

�
= L(x1; x2; :::; xd) (6)
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However, this time around the values will be delimited between 1 and the number of risk factors

d. The estimation procedure follows Huang (1992).

2.3 Conditional Probability of Joint Failure

A special measure of two-dimensional tail dependence is the "conditional probability of joint

failure" (CPJF). This measure is de�ned as in Garita and Zhou (2009) as follows: given that at

least one risk-factor "fails", the CPJF is de�ned as the conditional probability that the other risk-

factor will also "fail". Let X = (X1; X2; :::; Xd) represent the losses of d�number of individual
risk factors, then, the corresponding V aR (value at risk) at probability level � of any two variables

are V aRi(�) and V aRj(�). We then de�ne:

CPJF i;j= lim
�!0

P (X i> V aRi(�) and Xj> V aRj(�)jX i> V aRi(�) or Xj> V aRj(�)) (7)

which can be rewritten as

CPJFij = E[�j� � 1]� 1 (8)

where

E[�j� � 1] = lim
�!0

P (Xi > V aRi(�)) + P (Xj > V aRj(�))

1� P (Xi � V aRi(�); Xj � V aRj(�))
(9)

is the dependence measure introduced by Embrechts et al. (2000), and �rst applied by Hartman

et al. (2004). Under the mEVT framework, the limit in (7) and (9) exists (see de Haan and

Ferreira, 2006, Ch. 7). Clearly, a higher CPJF between two risk-factors indicates that a "failure"

of these two institutions is more likely to occur at the same time. Moreover, the CPJFs between

risk-factors may vary, which highlights the di¤erent linkages during crisis periods. In the two-

dimensional case, the CPJF can be written as

CPJF = lim
�!0

P (X1 and X2)

P (X1 or X2)

= lim
�!0

P (X1) + P (X2)� P (X1 or X2)

P (X1 or X2)

= lim
�!0

� + � � L(1; 1) � �
L(1; 1) � �

=
2

L(1; 1)
� 1 (10)
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2.4 Risk-Stability Index

Building on the mEVT framework previously discussed, I construct a risk-stability index (RSI).9

This index makes it possible to quantify the e¤ect that a "failure" of any risk factor (e.g. bank)

can have on an entire �nancial system, be it economy-wide or world-wide. In other words, the

risk-stability index gives an estimation of the number of risk-factors that would "fail", given that

a speci�c risk-factor "fails". This index, therefore, allows any economist to pin-point which risk-

factor failure will have the most adverse e¤ect on a �nancial system. For expositional purposes

on the construction of the RSI, assume that the �nancial system consists of three banks. From

equation (6) we know that

P (X1 > V aR1(x1�); or X2 > V aR2(x2�); or X3 > V aR3(x3�))

�
= L(x1; x2; x3)

For bank Xi, the RSI is de�ned as:

RSI = lim
�!0

E(number of crises in X2 and X3 j X1 is in crisis) (11)

Denote Ii = 1fXi > V aRi(�)g as Xi being in crisis, for i = 1; 2; 3. Using this to rewrite (11), we

obtain:

RSI1 = lim
�!0

E(I2 + I3 j I1 = 1) (12)

Note that the above expression can be rewritten as the sum of two expectations as follows:

E(I2 j I1 = 1) + E(I3 j I1 = 1) (13)

Rewriting (13) in terms of probabilities, and by using (10) we get:

RSI1 = lim
�!0

P (I2 = 1 & I1 = 1)
P (I1 = 1)

+
P (I3 = 1 & I1 = 1)

P (I1 = 1)

= lim
�!0

2� � P (I2 = 1 or I1 = 1)
�

+
2� � P (I3 = 1 or I1 = 1)

�
(14)

By using equation (6) in the above expression, it is easy to show that:

RSI1 = 2 � (d� 1)�
X
i6=j

Li;j(1; 1) (15)

or in our three-bank example:

9This index can easily be applied to any asset return. For example, it can be used to analyze exchange rates as
in Garita-Zhou (2009a,b).
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RSI1 = 2� L(1; 1; 0) + 2� L(1; 0; 1)
= 4� L(1; 1; 0)� L(1; 0; 1)

A risk-stability index (equation 15) close to d� 1 means that risk-factor i has a high in�uence on
the �nancial system, while an RSI close to 0 implies a negligible in�uence of risk-factor i on the

�nancial system. In other words, the higher the index, the higher the instability of the �nancial

system.

2.5 Data

Choosing the data is more often than not a subjective approach, since one has to choose between

having a maximum number of risk-factors, and having a maximum amount of (time) observations.

The analysis to follow is based on 18 major banks (8 Asian banks, 7 European banks, and 3 U.S.

banks), for which the decision to include these banks was made on the amount of observations.

Accordingly, the daily CDS spreads (denominated in US dollars for South Korean and U.S. banks,

in Euros for European banks, and in Japanese Yen for Japanese banks, all at 5-year maturity)

range from February 12, 2003 until September 8, 2009, and are obtained from Markit. According

to Markit, the spreads do not represent any actual spreads at which a security has been traded,

nor do they represent any o¤er to buy or sell such securities at those spreads. However, each

contributor to Markit provides data from their o¢ cial books and from feeds to automated trading

systems, and other pricing sources on a daily basis. The data that Markit receives undergoes a

rigorous cleaning process where they test for "stale, �at curves, outliers and inconsistent data";

thereby, ensuring that the data meets the highest standard and reliability. In order to show the

evolution of "(in)stability" over time, a 200-day sub-sample moving (weekly) window is used to

construct a time-series for both the CPJF and the Risk-Stability Index. The choice of a 200-day

sub-sample window simply relates to the fact that this is, in my opinion, the minimum amount of

observations required to calculate the tail-index and the extreme dependence structure (the L(1; 1)

function); while at the same time, it allows the construction of a longer time-series. This time-

series will also be employed in a panel VAR (see section 6) to uncover feedback e¤ects between

the �nancial sector and the economy.

3 Distress Dependence Matrix and CPJF

Before proceeding with the analysis, it is imperative to calculate the number of high-ordered

statistics k, by using an estimator for L(1; 1) and plotting the results of L(1; 1) for di¤erent k and

13



for all the bilateral relationships. This is the same technique as for choosing the tail-index with a

Hill-plot, in which we have a trade-o¤ between "too small" or "too large" k. If k is "too small",

then we choose too few observations and the variance of the estimator is large. If on the other

hand, k is "too large", then we are incorporating "non-extreme" observations (i.e. observations

from the middle of the distribution), and therefore we would impose a bias to our estimator. The

solution to this trade-o¤ is to make a "Hill-plot" (see Hill, 1975), and to let the tail speak for

itself. The solution to this trade-o¤ for each bilateral relationship yields a k = 20, which implies

a quantile of � = k
n
= 10% (these results are available upon request)10.

As is well known, assessing the exact point in time when "liquidity risk" turns to "solvency

risk", is di¢ cult at best, and disentangling these risks is a complex issue. Additionally, note that

more often than not, CDS not only cover the event of default of an underlying asset, but they also

cover a wider set of "credit events" (e.g. downgrades). I consider the combined e¤ects of these

factors, which are inherent in CDS spreads, to encapsulate "distress" or "failure" risk (i.e. large

losses and the possible default of a speci�c bank). Thus, the de�nition of "distress" or "failure"

risk used in this paper is broader than "default", "credit", or "liquidity" risks.11

As shown in section 2:3, I measure systemic risk in a bivariate setting through the conditional

probability of joint failure (CPJF). The CPJF always lies between 0 and 1. If it is zero, then

the probability of joint failure is negligible; however, if it is one, then the "failure" of a risk

factor in a portfolio will always go hand in hand with the downfall of the other risk factor.

An important point to keep in mind before proceeding, is that conditional probabilities do not

necessarily imply causation. However, this set of bilateral conditional probabilities of joint failure

do provide important insights into the interlinkages and the likelihood of contagion between banks

in a portfolio (i.e. in a �nancial system). For each 200-day period under analysis, I estimate the

bilateral conditional probability of joint failure for each pair of banks in the portfolio.

3.1 Common Distress in "Local" Banking Systems

These results indicate that banks within a particular geographical jurisdiction are highly inter-

linked, with distress in one bank clearly associated with a high conditional probability of joint

failure elsewhere in the "local" system. Moreover, the degree of extreme dependence varies from

period to period as illustrated by Figures 3 and 4, which present the detailed bilateral intercon-

nections between 7 major South Korean banks and between 3 major U.S. banks, respectively.12

10In my opinion, the fact that we do not need to impose any structure on the tail or on the distribution, is one
of the great advantages of extreme value theory. In other words, just let the tail speak for itself!
11In other words, "failure" is used extremely loosly, and at its most basic level, it should be interpreted as "if a

bank sneezes, will the system catch a cold".
12We must keep in mind that the CPJF�s as presented herein do not necessarily imply causation; nonetheless,

they do provide key insights into the interlinkages and the likelihood of contagion between banks, be it between
"local" banks and/or across borders.
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Figure 3: Conditional Probability of Joint Failure between 7 Major South Korean Banks. (the dashed
vertical gray line indicates when Lehman Brothers �led for bankruptcy).

0
.2

.4
.6

.8
1

C
P

JF

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

Hana

0
.2

.4
.6

.8
1

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

Kookmin

0
.2

.4
.6

.8
1

C
P

JF

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

Shinhan

0
.2

.4
.6

.8
1

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

Woori

0
.2

.4
.6

.8
1

C
P

JF

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

IBK
0

.2
.4

.6
.8

1

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

KDB

0
.2

.4
.6

.8
1

C
P

JF

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

Kexim

For South Korean banks, Figure 3 indicates that the most current bout of bilateral distress

began as early as March of 2007, following a relatively calm 6-month period; the average CPJF

among Korean banks before March 2007 was 0:40, while it was 0:50 after March 2007. The �gure

also indicates that the bankruptcy of Lehman Brothers did not seem to create any "extra" distress

to the bilateral relationships among Korean banks, but clearly more research is needed in this

area. As far as U.S. banks, Figure 4 shows a similar pattern as for South Korean Banks; however,

bilateral distress began to surface as early as February 2006 for U.S. banks. For the most recent

period, we can notice a marked decrease in the CPJFs, which are now lower than they were in

late 2005. The last point worth emphasizing is that the bankruptcy of Lehman Brothers did not

seem to create any "additional" distress to the bilateral relationships between Bank of America,

Citi, and JPMorgan; however, it does appear that the bilateral stress in �nancial system is what

led to Lehman�s demise.
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Figure 4: Conditional Probability of Joint Failure between 3 Major U.S. Banks (the dashed vertical
gray line indicates when Lehman Brothers �led for bankruptcy).
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3.2 Global (in)Dependence - Distress Between Speci�c Banks

In the previous section we saw that bilateral stress of "local" banks can be quite high. However,

another aspect of �nancial stability that is of outmost importance are the contagion spillovers

across borders. Therefore, in order to gain insight into cross-border e¤ects, the CPJF�s are

calculated for 3 major U.S. banks (Bank of America, Citi, and JPMorgan), 7 major European

banks (UBS and CreditSuisse from Switzerland; Société Générale and BNP Paribas from France;

Deutsche Bank from Germany; ING from the Netherlands; and HSBC from the UK), and 8 major

Asian banks (Mizuho from Japan; and Hana, Kookmin, Shinhan, Woori, IBK, KDB, and Kexim

from South Korea).

As Figures 5, 6, and 7 underscore, banks around the world are highly interconnected (albeit to

a lower degree than within economies - see Table 1); however, the results con�rm once again that

the degree of bilateral distress varies from period to period. The relationship between Korean

and U.S. banks is quite interesting, since there are clearly two periods of high bilateral distress:

one period between November 2005 and May 2007 (average CPJF = 0:21), and the other period
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Figure 5: Conditional Probability of Joint Failure between Korean and U.S. Banks (the dashed vertical
gray line indicates when Lehman Brothers �led for bankruptcy).

0
.2

.4
.6

.8
1

C
P

JF

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

Hana
Kookmin
Shinhan
Woori
IBK
KDB
Kexim

Bank of America

0
.2

.4
.6

.8
1

C
P

JF

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

Hana
Kookmin
Shinhan
Woori
IBK
KDB
Kexim

Citi

0
.2

.4
.6

.8
1

C
P

JF

Oct05 Jan06 Apr06 Jul06 Oct06 Jan07 Apr07 Jul07 Oct07 Jan08 Apr08 Jul08 Oct08 Jan09 Apr09 Jul09 Oct09

Hana
Kookmin
Shinhan
Woori
IBK
KDB
Kexim
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between November 2007 and June 2009 (average CPJF = 0:30); with a relatively calm interlude

in-between (a similar pattern appears between European and U.S. banks, and between European

and Korean banks). As it is by now well known, during the 2005� 2006 period, the US economy
was hit by various shocks relating to credit markets. More speci�cally, during the fall of 2005, the

booming housing market slowed down abruptly, with median prices nationwide dropping by over

3% from the fourth quarter of 2005 to the �rst quarter of 2006; and by the summer of 2006, the

US home construction index dropped by over 40%, as of mid-August 2006, compared to a year

earlier. By the fall of 2007, home sales in the US continued to fall, marking the steepest decline

since 1989. By the �rst quarter of 2007 the Case-Schiller housing price index recorded the �rst

year-over-year decline in house prices since 1991, leading to a collapse of the subprime mortgage

industry, to a surge in foreclosure activity (see FDIC, 2007), and rising interest rates threaten to

depress prices further as problems in the subprime market spread to the near-prime and prime

mortgage markets (New York Times July 25, 2007). This period of distress clearly emerges in
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Figures 5, 6, and 7. As previously mentioned, the second period of high distress among banks

started in the fall of 2007, reaching its zenith almost a year and a half later when the onset of

the current �nancial crisis was well under way. The relatively calm period in between seems to

be related to the perception of market participants that "things cannot get any worse"; after all,

it was during the summer of 2007 that the Dow Jones Industrial Average closed above 14,000 for

the �rst time in its history.

Figure 6: Conditional Probability of Joint Failure between European and U.S. Banks (the dashed
vertical gray line indicates when Lehman Brothers �led for bankruptcy).
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Links between European and U.S. banks also show a tendency to oscillate period by period, but

also to increase as the crisis progressed. In the summer and fall of 2007, which is when subprime

mortgage backed securities were discovered in European banks, the most distressed relationships

in the summer of 2007 are between JPMorgan-Credit Suisse (average CPJF = 0:35) and between

JPMorgan-UBS (average CPJF = 0:31); while the most distressed relationships in the fall of 2007

are between Citi-Credit Suisse (average CPJF = 0:44) and Citi-UBS (average CPJF = 0:36).

The aforementioned bilateral distress between European and U.S. banks also seems to have
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Figure 7: Conditional Probability of Joint Failure between Korean and European Banks (based on
Daily CDS Spreads - in basis points).
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been "exported", albeit apparently with a lag, to the relationship between European and Korean

banks (see Figure 7); where, by and large, the CPJF increases dramatically during the �rst quarter

of 2008. Nonetheless, there are some notable exceptions like the relationship between ING and

Shinhan bank, which experienced high bilateral distress in April 2007 (CPJF = 0:67) and in

October 2007 (CPJF = 0:67). Another notable relationship is between Kexim-Société Générale

in March 2007 (CPJF = 0:54) and between Kexim-ING in October 2007 (CPJF = 0:54).

Table 1, which gives the average conditional probability of joint failure between banks within

and across borders, highlights four main points: (1) "risks" vary by geographical region; (2) within

border bilateral distress is higher than across borders on average (see numbers in red); (3) regional

cross-border contagion is also relatively high, but not as high as within borders (see numbers in

blue); and (4) global contagion is present and clearly an issue (see numbers in black). These

results indicate that �nancial stability must be managed inside-out (within borders �rst), but

that international coordination is extremely important.
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Table 1: Average CPJF Between Banks Within and Across Regions between November 2007 and
September 2009

Asian Banks Korean Banks E.U. Banks U.S. Banks
Asian Banks 0.47 0.48 0.27 0.29
Korean Banks 0.48 0.51 0.27 0.30
E.U. Banks 0.27 0.27 0.34 0.29
U.S. Banks 0.29 0.30 0.29 0.57

4 Distress to Financial System Linked to a Speci�c Bank

As explained in section 2:4, the risk-stability index makes it possible to quantify the immediate

e¤ect that a "failure" of any risk factor (e.g. bank) can have on an entire �nancial system, be it

economy-wide or world-wide. In simple terms, the risk-stability index gives an estimation of the

number of risk-factors that would "catch a cold", given that a speci�c risk-factor "sneezes". This

index, therefore, allows any economist and/or regulator to pin-point which risk-factor "failure"

will have the most adverse e¤ect on a �nancial system. A risk-stability index (equation 15) close

to d� 1 means that risk-factor i has a high in�uence on the �nancial system, while an RSI close
to 0 implies a negligible e¤ect of risk-factor i on a portfolio (or any �nancial system); therefore,

the higher the index, the higher the instability of a portfolio.

An immediate result that stands out, especially by looking at Figure 8, is the similarity between

this �gure and the CPJF graphs. Clearly, the CPJF�s and the RSI move in tandem, indicating

that as bilateral distress starts to build-up, so does the risk to the �nancial system (but also, as the

�nancial system starts to experience increased levels of distress, so do the bilateral relationships).

The results also show that, on average, U.S. banks tend to cause the most stress to the global

�nancial system (as de�ned herein), which a¤ect almost 40% of the banks (i.e. over 6 banks are

a¤ected by each U.S. bank). U.S. banks are followed by Asian (mainly South Korean banks)

and European banks, with an infection rate of 34% and 32% respectively. However, looking at

averages masks the fact that risk varies from period to period, but also that �nancial instability

can arise from anywhere, irrespective of geographical location. For example, during the 200 day

period ending on the spring of 2006, the RSI indicates that Kookmin, HSBC, Société Générale,

JPMorgan, BNP Paribas, and Deutsche Bank each a¤ected over 13 other banks in the system;

the RSI also shows that Credit Suisse was the "safest" bank during this period by a¤ecting "only"

8 other banks. However, by the summer-fall of 2008 things were quite di¤erent, since it was Citi,

UBS, Kexim, and KDB who had infected over 14 banks; moreover, during this period Credit

Suisse had become quite risky, a¤ecting over 13 banks (the safest banks during this period were

ING and Mizuho, each distressing "only" 9 banks).

20



Figure 8: Risk Stability Index (daily) Time-Series for 18 Major Banks by Region.
0

5
10

15
20 Hana Kookmin Shinhan Woori

IBK KDB Kexim Mizuho

Asia Lehman Brothers Bankruptcy

0
5

10
15

20 UBS ING DeutscheBank CreditSuisse

HSBC SocGen BNP Paribas

Europe Lehman Brothers Bankruptcy

0
5

10
15

20

Oct 
03

Ja
n 0

4

Apr 
04

Ju
l 0

4

Oct 
04

Ja
n 0

5

Apr 
05

Ju
l 0

5

Oct 
05

Ja
n 0

6

Apr 
06

Ju
l 0

6

Oct 
06

Ja
n 0

7

Apr 
07

Ju
l 0

7

Oct 
07

Ja
n 0

8

Apr 
08

Ju
l 0

8

Oct 
08

Ja
n 0

9

Apr 
09

Ju
l 0

9

Oct 
09

BoA Citi JPMorgan

U.S. Lehman Brothers Bankruptcy

5 Directionality of Contagion and Persistence

Another aspect of �nancial stability that we economists are particularly interested in, is the

directionality of contagion and the persistence of distress. Accordingly, this section aims at

uncovering the aforementioned issues by employing, for tractability purposes, 8 periods of 200

non-overlapping days. The results of this particular excercise are presented through the distress

dependence matrices (DDM�s) found in Tables 4 through 10 (see appendix A). These DDM�s show

the bilateral conditional probabilities of joint failure of the bank in the column, given that the

bank in the row "fails" one period before13; moreover, the DDM�s show how the directionality of

contagion has evolved through time from bank to bank, and from region to region. Therefore,

for ease of understanding, depending on one�s particular interest, the DDM�s can be broken down

into four quadrants as follows:

� quadrant 1 = how Korean banks a¤ect other banks in Japan, Europe and the U.S.;

� quadrant 2 = how Korean banks a¤ect each other;
13It is worth re-emphasizing that "failure" is used extremely loosly, and at its most basic level, it should be

interpreted as "if a bank sneezes, will the system catch a cold".
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� quadrant 3 = how Japanese, European, and U.S. banks a¤ect South Korean banks;

� quadrant 4 = how Japanese, European, and U.S. banks a¤ect each other.

The decomposition of the DDM�s into these four quadrants allows us to observe that the degree

of contagion within and across-borders varies by period, which is also underscored by Figure 9;

this so-called "domino-e¤ect" is best illustrated through Figure 9, which shows the risk-stability

index of this exercise.14 The �gure shows how many banks will "fail", given that bank "i" "failed"

one period before (the dependence structure, the L(1; 1) results, used to construct the RSI are

available upon request; however, they can easily be constructed from the distres dependence

matrices as follows L(1; 1) = 2
CPJF+1

). For example, in section 3 we uncovered that Citi was

one of the banks, in this portfolio, that experienced elevated levels of bilateral stress during the

summer of 2008 (with an average CPJF of 0:76%). Figure 9 indicates is that in the 3rd, and 4th

quarters of 2008 and/or in the 1st quarter of 2009, at least 4 other banks su¤ered distress due to

the fact that Citi experienced distress one period before.

As displayed in Figure 9, the RSI shows that throughout the entire period of analysis (ranging

from 2003 until 2009), U.S. banks seem to be the most contagious one period after experiencing

distress, on average infecting about 23% of all banks in this portfolio; U.S. banks are followed

by Asian and European banks with 21% and 17% respectively. Moreover, we notice from Figure

9 that Bank of America, BNP Paribas, Citi, and Société Générale all show a higher propensity

to a¤ect the �nancial system as time goes by, while CreditSuisse has shown a lower propensity

to a¤ect the �nancial system. Clearly, banks a¤ect a system with a lag; however, what is most

interesting, is that they do so at irregular intervals, which implies that the system is constanly

under stress, where the source of the stress varies from period to period.

Tables 4 through 10 also allows us to gauge the persistence of distress for bank i in the

portfolio; where persistence is quanti�ed by the diagonal of the distress dependence matrices.

These diagonals show that, on average, Asian banks tend to experience the most persistence of

distress with a 15% conditional probability of joint failure at time t, given that the same Asian

bank experienced distress at t � 1 (South Korean banks experience a 14% CPJF). Asian banks

are followed by U.S. banks with a 13% CPJF and by European banks with an 11% CPJF, on

average. Individually, the Japanese bank Mizuho tends to experience the most distress persistence

(CPJF = 22%), followed by Bank of America and Hana Bank of South Korea, both with a

CPJF of 0:20%. Other notables are HSBC (CPJF = 18%) and Woori Bank of South Korea

(CPJF = 17%). At the lower end of persistence is the Swiss bank UBS with a CPJF of 4%.

14The x-axis of Figure 9 is coded as follows: 1 = Feb 12, 2003 to Nov 18, 2003; 2 = Nov 19, 2003 to Aug 24,
2004; 3 = Aug 25, 2004 to May 31, 2005; 4 = June 1, 2005 to Mar 6, 2006; 5 = Mar 7, 2006 to Dec 12, 2006; 6 =
Dec 13, 2006 to Sept 18, 2007; 7 = Sept 19, 2007 to June 24, 2008; 8 = June 25, 2008 to Mar 31, 2009.

22



Figure 9: Directionality of Contagion (the �gure shows the consequences to the banking system
conditional on a speci�c bank "failing" one period before. For example, 1-2 (on the x-axis) shows the
repercussion to the system in period 2, given that bank i "fails" in period 1).
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6 VAR Analysis

This section implements a panel-data vector autoregression methodology (see Holtz-Eakin et al.,

1988; Love and Ziccino, 2006) in order to uncover the feedback e¤ect from the banking system

to the rest of the economy. This procedure merges the traditional VAR and panel-data method-

ologies, by allowing for endogeneity and for unobserved individual heterogeneity. However, when

applying the VAR approach to panel data, it is crucial that the underlying structure be the same

for each cross-sectional unit (Love and Ziccino, 2006). Since this constraint is likely to be violated

in practice, one way to overcome the restriction is to allow for �individual heterogeneity�; that is

by introducing �xed e¤ects in the levels of the variables. However, due to the lags of the depen-

dent variables, the �xed e¤ects are correlated with the regressors; therefore, the usual approach

of �mean di¤erencing�would create biased coe¢ cients. Therefore, in order to avoid this problem,

the panel VAR methodology uses forward mean-di¤erencing, also known as the "Helmert proce-
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dure" (see Arrellano and Bover, 1995; Love and Ziccino, 2006). This transformation preserves

the orthogonality between the transformed variables and the lagged regressors; thereby allowing

the use of the lagged regressors as instruments and the estimation of the coe¢ cients through a

system GMM.

The impulse-response functions describe the reaction of one variable to the innovations in

another variable in the system, while holding all other shocks equal to zero. However, since the

actual variance�covariance matrix of the errors is unlikely to be diagonal, to isolate shocks to one

of the variables in the system it is necessary to decompose the residuals in a such a way that

they become orthogonal. The usual convention is to adopt a particular ordering and allocate

any correlation between the residuals of any two elements to the variable that comes �rst in the

ordering.15 The identifying assumption is that the variables that come earlier in the ordering a¤ect

the following variables contemporaneously, as well as with a lag, while the variables that come

later a¤ect the previous variables only with a lag. In other words, the variables that appear earlier

in the system are more exogenous, and the ones that appear later are more endogenous.16 Finally,

to analyze the impulse-response functions we need an estimate of their con�dence intervals. Since

the matrix of impulse-response functions is constructed from the estimated VAR coe¢ cients, their

standard errors need to be taken into account. Accordingly, the standard errors of the impulse

response functions and the con�dence intervals are generated through Monte Carlo simulations.

The panel VAR will employ the risk-stability index time-series (see Figure 8), and the following

�nancial market variables: the short rate (e¤ective federal funds rate), the term spread (di¤erence

between the 10-year and 3-month Treasury constant maturity rates), the market return (returns

on the S&P500), and the VIX, which is the implied market volatility (see Figure 11 in appendix

B for a graphical representation of the aforementioned variables). The number of lags in the panel

VAR system, which equals 8 weeks, is selected through the Schwarz Information Criteria.

The results found in Figure 10 and Table 11 indicate that the risk-stability index and the

returns to the S&P500 are negatively and signi�cantly correlated. This result is intuitive, since the

deterioration of the general market (i.e. lower market returns) increases the sensitivity of market

participants vis-à-vis higher failure risk, as well as their view that the conditional probability of

joint failure is higher. The risk-stability index is also negatively and signi�cantly associated with

the federal funds rate and the term-spread (de�ned as the di¤erence between the 10�year and
3�month treasury constant maturity rate). This seems to suggest that when monetary policy is
"accommodative", most banks move together more closely vis-à-vis credit markets. By contrast,

when monetary policy is tightened, banks can be a¤ected di¤erently, depending on their liquidity

15The procedure is known as the Choleski decomposition of the variance�covariance matrix of residuals, and is
equivalent to transforming the system into a �recursive�VAR (see Hamilton, 1994).
16Formally, if variable x appears earlier in the system than variable y, then x is weakly exogenous with respect

to y in the short run.
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positions. As is well known, the VAR framework allows for a feedback e¤ect from the banking

system to the macro-economy and the general �nancial market. This feedback e¤ect shows that

an increase in the risk-stability index negatively a¤ects interest rates and the returns to the

S&P500. Interestingly, the former result suggests that interest rate policy may be a¤ected by

�nancial stability concerns in practice. As a �nal point, the positive correlation between the

risk-stability index and the VIX index is well-matched with market participants�perception that

VIX is the "fear index".

Figure 10: Impulse-Responses of a one standard deviation shock for 8-lag Panel VAR (errors are 5%
on each side generated by Monte Carlo with 1000 replications). RSI = risk-stability index; FFR =
e¤ective federal funds fate; T.Spread = di¤erence between 10 year and 3 month treasury constant
maturity Rate; SP500 ret = returns on the SP500; VIX = implied volatility of the market.
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The variance decomposition (Table 2) con�rms the above-mentioned results. More speci�-

cally, interest rates explain more of the risk-stability index variation (about 30%) than any other
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variable, especially at longer time horizons. Moreover, the risk-stability index explains about 18%

of the variation in the returns on the S&P500; however, the S&P500 returns only marginally

explain the variation of the RSI. Last but not least, the RSI does have a signi�cant explanatory

power of the VIX, especially at longer horizons.

Table 2: Variance Decomposition - variation in the row variable explained by column variable
Step-Ahead RSI FFR T.Spread SP500ret VIX

RSI 10 0.493 0.227 0.214 0.015 0.049
FFR 10 0.026 0.591 0.258 0.019 0.104
T.Spread 10 0.083 0.446 0.439 0.012 0.018
SP500ret 10 0.184 0.135 0.526 0.120 0.032
VIX 10 0.061 0.182 0.173 0.118 0.464
RSI 20 0.341 0.342 0.253 0.016 0.046
FFR 20 0.090 0.555 0.169 0.064 0.121
T.Spread 20 0.123 0.413 0.429 0.016 0.017
SP500ret 20 0.184 0.137 0.531 0.113 0.033
VIX 20 0.218 0.152 0.209 0.140 0.280
RSI 30 0.272 0.384 0.273 0.025 0.045
FFR 30 0.103 0.571 0.109 0.086 0.129
T.Spread 30 0.101 0.463 0.375 0.026 0.032
SP500ret 30 0.181 0.142 0.529 0.114 0.033
VIX 30 0.163 0.268 0.228 0.124 0.216

Note: RSI = Risk Stability Index; FFR = E¤ective Fed Funds Rate;
T. Spread = Di¤. between 10 year and 3 month treasury constant maturity

rate; VIX = implied volatility of the market.

7 Conclusion

It is a stylized fact in international (�nance) macroeconomics that most �nancial data are "fat-

tailed" (i.e. not normally distributed). This means that extreme co-movements tend to arise

more regularly than predicted on the basis of the normal distribution. Accordingly, this paper

has proposed an easy and novel methodology for computing systemic risk caused by risk factors

in a portfolio or system; moreover, this methodology can be easily applied to any risk factor or

asset return. This novel approach takes advantage of a multivariate extreme value setup and the

concomitant extreme dependence structure to construct the conditional probability of joint failure

(CPJF) and a risk-stability index (RSI), which are in turn applied to 18 Asian, European, and

U.S. banks. This new risk-stability index o¤ers good insight into (1) the sensitivity of market

participants vis-à-vis higher failure risk, since it is higher when the conditional probability of joint
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failure is higher or when the exposure to common risk factors increases; and (2) on the level of a

risk-based deposit indemnity plan that safeguards against severe losses in a portfolio or �nancial

(banking) system.

The results obtained in this paper show that extreme dependence varies from period to period,

thus supporting the idea that �nancial stability is a continuum. The results also indicate that

banks are highly interlinked both within and across borders; however, as previously mentioned,

this interlinkage varies from period to period. The results stemming from the risk-stability index

show that, on average, U.S. banks tend to cause the most stress to the global �nancial system

(as de�ned herein), followed by Asian and European banks. When it comes to contagion or

"domino-e¤ects", U.S. banks seem to be the most contagious, followed by Asian banks, and then

by European banks. The persistence of distress is also an important variable that must be take

into account when analyzing �nancial stability; accordingly, the results show that Asian banks

(mainly South Korean banks) seem to experience the most persistence of distress, followed by

U.S. banks, which are in turn followed by European banks.

Interestingly, the (daily time-series of) the risk-stability index does not corroborate the idea

that the "failure" of Lehman Brothers caused any additional distress to the �nancial system (as

de�ned herein). However, the results highlighted in this paper clearly indicate that the decision of

central banks from around the world not to let any other �nancial institution "fail" was the right

decision, since "domino-e¤ects" appear to be long-lived, and severe; thereby impacting not only

domestic markets, but also �nancial systems from around the world. Another aspect that has been

much talked about by economists and regulators is that regulation must be aimed at institutions

that are "too big to fail". However, while not directly tested, the results herein indicate that "too

big to fail" does not seem to be a major factor in explaining instability of a �nancial system. What

does seem to be of more importance is whether �nancial institutions are "too interconnected to

fail"; but this is something that future research will have to uncover.

The panel-data vector autoregression results indicate that the risk-stability index is negatively

and signi�cantly associated with the federal funds rate and the term-spread (de�ned as the dif-

ference between the 10�year and 3�month treasury constant maturity rate). This suggests that
when monetary policy is "accommodative", most banks move together more closely. By contrast,

when monetary policy is tightened, banks can be a¤ected di¤erently, depending on their liquidity

positions. The VAR results also show that the risk-stability index and the returns to the S&P500

are negatively and signi�cantly correlated. This result is intuitive, since the deterioration of the

general market (i.e. lower market returns) increases the sensitivity of market participants vis-à-vis

higher failure risk, as well as their view that the conditional probability of joint failure is higher.

As is well known, the VAR framework allows for a feedback e¤ect from the banking system to

the macro-economy and the general �nancial market. This feedback e¤ect shows that an increase
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in the risk-stability index negatively a¤ects interest rates and the returns to the S&P500. Inter-

estingly, the former result suggests that interest rate policy may be a¤ected by �nancial stability

concerns in practice. As a �nal point, the positive correlation between the risk-stability index and

the VIX index is well-matched with market participants�perception that VIX is the "fear index".

The macro-prudential view, which elicits explicit supervision of "asset prices" and the stability

of the �nancial system, has by now gained wide acceptance among economists. Nonetheless,

implementing macro-prudential regulation depends, largely, on the operational feasibility. Despite

this �obstacle�, the research herein o¤ers a good foundation and a useful starting point towards

understanding the rapport between �nancial (in)stability, monetary policy, and the real economy.

The results herein indicate that the monitoring of �nancial stability within and between economies

should be a counter-cyclical continuous process; and that this analysis must be wide-ranging,

probing all risk-factors that in�uence the �nancial system. Furthermore, it should be intended at

the early detection of �nancial vulnerabilities, which can arise (from) anywhere and at any time,

as this paper has underscored.
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Appendix A - Descriptive Statistics and Directionality of

Contagion Matrices

Table 3: Descriptive Statistics of CDS Spreads (in bps) for 18 Major Banks

N Mean SD Skew. Kurt. Min Max
Hana 1714 116.47 137.23 2.15 7.35 13.3 863
Kookmin 1715 108.53 125.94 2.20 7.88 12.4 857.4
Shinhan 1710 115.77 136.54 2.15 7.34 13.7 852.9
Woori 1702 129.46 147.80 2.05 6.99 12.3 881.7
IBK 1715 101.73 125.66 2.27 8.09 12.6 848.1
KDB 1715 96.31 118.87 2.40 8.94 12.3 841.4
Kexim 1715 94.89 117.57 2.41 8.95 11.9 832.2
UBS 1715 47.81 70.55 1.98 6.44 4.2 357.2
BoA 1715 54.88 70.19 2.14 7.44 8.1 400.3
Mizuho 1632 45.66 41.33 1.21 3.51 5.8 177.9
Creditsuisse 1715 46.49 49.17 1.76 5.50 9 261.4
ING 1707 40.07 41.40 1.61 4.60 4.4 196.8
HSBC 1715 35.37 39.94 1.76 5.42 5 202.4
Citi 1715 79.78 126.60 2.33 8.05 6.5 638.3
SocGen 1715 33.34 37.22 1.30 3.20 5.8 155.3
JPMorgan 1715 48.74 41.67 1.59 4.85 10.9 227.3
BNP Paribas 1715 26.21 26.76 1.46 4.19 5.4 136.3
Deutsche Bank 1715 40.39 40.28 1.40 3.67 8.9 174.9
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Appendix B - VAR Time-Series and VAR Results

Figure 11: Financial Market Factors - Time-series of e¤ective federal funds rate, term spread (di¤er-
ence between 10 year and 3 month treasury constant maturity rate), SP500 (daily) returns, and the
VIX (the implied market volatility).

0
1

2
3

4
5

6

Nov 03 Sep 04 Jul 05 May 06 Mar 07 Jan 08 Nov 08 Sep 09

Effective Federal Funds Rate (FF)

­1
0

1
2

3
4

Nov 03 Sep 04 Jul 05 May 06 Mar 07 Jan 08 Nov 08 Sep 09

Term Spread

­1
0

­5
0

5
10

Nov 03 Sep 04 Jul 05 May 06 Mar 07 Jan 08 Nov 08 Sep 09

S&P 500 (daily) Returns

0
20

40
60

80

Nov 03 Sep 04 Jul 05 May 06 Mar 07 Jan 08 Nov 08 Sep 09

Implied Market Volatility (VIX)

40



Table 11: Results of Panel VAR with 8-lags (No. of Obs. = 3690; No. of Banks = 18)
RSI Fed Funds Rate Term Spread SP500ret VIX

RSIt�1 1.51 (49.60) ��� 0.09 (3.89) ��� -0.02 (1.94) � -0.35 (-4.75) ��� 0.09 (1.09)
FFRt�1 -2.36 (-3.82) ��� 0.68 (13.01) ��� -1.36 (-5.76)��� -10.09 (-5.63) ��� -0.37 (-0.20)
T.Spreadt�1 -1.05 (-5.75) ��� -0.32 (-13.91)��� 0.57 (6.88) ��� -4.12 (-7.79) ��� 1.39 (2.48) ���

SP500rett�1 0.11 (7.27) ��� -0.01 (-6.68) ��� -0.02 (-2.29)�� 0.03 (0.76) -0.56 (-12.54)���

VIXt�1 0.05 (0.007) -0.07 (-8.29) ��� 0.02 (5.05) ��� -0.09 (-4.17) ��� 0.85 (34.93) ���

RSIt�2 -0.72 (-17.77)��� -0.01 (-4.34) ��� 0.01 (1.02) 0.07 (0.73) -0.53 (-4.84) ���

FFRt�2 -0.04 (-0.18) 0.02 (0.79) -0.41 (-3.97)��� -5.17 (-7.43) ��� -4.55 (-5.45) ���

T.Spreadt�2 0.36 (1.60) 0.26 (10.50) ��� -0.44 (-4.13)��� -1.88 (-2.75) ��� -2.46 (-3.50) ���

SP500rett�2 -0.10 (-6.11) ��� 0.01 (0.77) -0.03 (-4.22)��� -0.29 (-6.29) ��� -0.16 (-2.84) ���

VIXt�2 -0.03 (-2.59) ��� 0.07 (6.34) ��� -0.03 (-6.67)��� -0.07 (-2.64) ��� -0.05 (-1.77) �

RSIt�3 0.07 (1.87) � 0.02 (0.52) -0.02 (-1.30) 0.11 (1.11) 0.58 (5.50) ���

FFRt�3 -0.79 (-3.51) ��� 0.07 (2.56) �� -0.31 (-3.16)��� 2.52 (3.70) ��� -4.72 (-5.32) ���

T.Spreadt�3 0.04 (0.19) -0.07 (-2.43) �� -0.16 (-1.57)� 1.60 (2.33) ��� 4.69 (5.86) ���

SP500rett�3 -0.01 (-0.65) 0.03 (1.79) � 0.06 (0.90) -0.44 (-10.07)��� -0.81 (-15.07)���

VIXt�3 -0.02 (-2.02) �� -0.01 (-7.59) ��� 0.01 (2.73) ��� 0.08 (3.07) ��� 0.07 (2.01) ��

RSIt�4 -0.03 (-0.78) 0.02 (5.69) ��� 0.04 (0.03) -0.29 (-2.88) ��� -0.01 (-0.17)
FFRt�4 -0.07 (-0.31) -0.11 (-3.92) ��� -0.05 (-0.50) -1.88 (-2.79) ��� -0.89 (-1.40)
T.Spreadt�4 -1.31 (-6.75) ��� 0.09 (3.44) ��� 0.12 (1.24) -0.78 (-1.26) -7.77 (-11.54)���

SP500rett�4 0.07 (0.55) -0.01 (-5.37) ��� 0.02 (3.06) ��� -0.21 (-4.60) ��� -0.49 (-9.77) ���

VIXt�4 -0.03 (-3.63) ��� 0.01 (1.12) -0.01 (-2.83)��� 0.08 (2.98) ��� -0.05 (-0.16)
RSIt�5 0.18 (-4.44) ��� -0.02 (-7.09) ��� 0.04 (2.69) ��� 0.47 (4.38) ��� 0.02 (0.23)
FFRt�5 -0.81 (-3.29) ��� 0.14 (4.17) ��� -0.45 (-4.53)��� -2.40 (-3.86) ��� 2.31 (3.12) ���

T.Spreadt�5 1.23 (6.38) ��� -0.08 (-3.69) ��� -0.05 (-0.54) 0.34 (0.58) 4.33 (6.62) ���

SP500rett�5 -0.07 (-4.08) ��� 0.06 (4.19) ��� -0.01 (-2.34)�� 0.06 (1.35) 0.10 (1.91) �

VIXt�5 -0.02 (-1.78) � 0.06 (6.10) ��� -0.04 (-1.09) -0.35 (-12.46)��� 0.07 (2.77) ���

RSIt�6 -0.20 (-5.40) ��� 0.05 (1.56) -0.01 (-1.14) -0.22 (-2.36) �� -0.31 (-2.91) ���

FFRt�6 -0.06 (-0.28) 0.08 (3.24) ��� 0.19 (2.07) �� 2.29 (3.83) ��� 0.61 (0.84)
T.Spreadt�6 -1.67 (-7.44) ��� 0.01 (0.64) -0.16 (-1.56) -0.96 (-1.33) -2.65 (-3.73) ���

SP500rett�6 -0.14 (-9.75) ��� 0.02 (13.26) ��� -0.02 (-0.40) 0.01 (0.18) -0.25 (-5.40) ���

VIXt�6 0.06 (5.39) ��� -0.06 (-5.92) ��� -0.02 (-0.42) 0.23 (6.88) ��� -0.12 (-4.17) ���

RSIt�7 0.12 (3.37) ��� 0.01 (3.13) ��� -0.03 (-2.80)��� -0.02 (-0.29) 0.23 (2.48) ��

FFRt�7 0.06 (0.26) 0.06 (2.24) �� 0.06 (0.66) -1.63 (-2.58) ��� -1.81 (-2.30) ��

T.Spreadt�7 0.93 (4.14) ��� 0.06 (2.71) ��� -0.06 (-0.57) 0.64 (0.84) -2.60 (-3.82) ���

SP500rett�7 0.01 (0.83) -0.03 (-1.67) � 0.03 (4.86) ��� 0.23 (4.39) ��� -0.09 (-2.09) ��

VIXt�7 -0.03 (-2.72) ��� 0.05 (5.37) ��� -0.01 (-2.29)�� -0.12 (-4.25) ��� -0.17 (-5.88) ���

RSIt�8 -0.04 (-2.04) �� -0.06 (-3.82) ��� 0.02 (3.65) ��� 0.01 (0.33) -0.07 (-1.45)
FFRt�8 2.61 (-5.94) ��� -0.09 (-2.50) �� 1.10 (6.61) ��� 8.52 (7.01) ��� 6.83 (5.31) ���

T.Spreadt�8 -0.32 (-1.19) -0.13 (-5.86) ��� -0.38 (-3.57)��� -4.45 (-5.64) ��� 2.42 (2.79) ���

SP500rett�8 -0.06 (-4.03) ��� 0.01 (0.85) 0.06 (0.84) 0.02 (0.59) -0.14 (-2.99) ���

VIXt�8 -0.45 (-0.05) -0.04 (-4.72) ��� -0.07 (-2.08)�� -0.07 (-3.52) ��� 0.08 (3.01) ���

Note: RSI = Risk Stability Index; FFR = E¤ective Fed Funds Rate; T. Spread = Di¤. between 10 year and 3
month treasury constant maturity rate; VIX = implied volatility of SP500. Heteroskedasticity adjusted

t-statistics in parentheses;.���, ��, � indicate signi�cance at the 1%, 5%, and 10% respectively.
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