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ABSTRACT 
 

We consider mean-reverting stochastic processes and build self-consistent 
models for forward price dynamics and some applications in power industries. 
These models are built using the ideas and equations of stochastic differential 
geometry in order to close the system of equations for the forward prices and 
their volatility. Some analytical solutions are presented in the one factor case 
and for specific regular forward price/interest rates volatility. Those models will 
also play a role of initial conditions for a stochastic process describing forward 
price and interest rates volatility. 

Subsequently, the curved manifold of the internal space i.e. a discrete version of 
the bond term space (the space of bond maturing) is constructed. The dynamics 
of the point of this internal space that correspond to a portfolio of different 
bonds is studied. The analysis of the discount bond forward rate dynamics, for 
which we employed the Stratonovich approach, permitted us to calculate 
analytically the regular and the stochastic volatilities. We compare our results 
with those known from the literature. 
 
 
 
 
 
 
 
 
I. INTRODUCTION 
 

In this paper we give a self-consistent framework for describing and 
analyzing (evaluating) two different economic instruments that play a 
fundamental role in evaluating corresponding derivatives and hence in the risk 
management. Both have the term structure (mature at a definite time) and the 
first, discount bond interest rates, is going at finance market, the second, 
forward prices, at the commodity one. On the basis of stochastic differential 
geometry (DSG) equations that describe spot price/interest rate dynamics and 
long term dynamics (entire forward prices/interest rates curves) we construct 
mathematical models which turn out to be very similar.  
     Our study, at least in its economical part, has been influenced by works of 
various authors: Cortazar and Schwartz 1994, Schwartz 1997, Hillard and Reis 
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1998, Clewlow and Strickland 1999 to mention a few. Later we give more 
detailed references in due places.  
     The paper is organized as follows: In section II we give a very short 
introduction to the stochastic differential geometry, i.e. Brownian motion on 
curved manifolds (e.g., sphere), Makhankov 1995 and 1997, that allows us to 
take into account stochastic behavior of the forward prices/interest rates 
volatility and to close the system of equations. Section III presents the study of 
forward price dynamics and possible solutions for the forward price curve, its 
mean and volatility. Section IV is devoted to study of interest rates dynamics 
and some solutions. Finally, section V contains our conclusions. 
 
II. STOCHASTIC DIFFERENTIAL GEOMETRY 
 

Recent development in physics shows that all types of interactions admit 
geometrization. In the most transparent form it can be seen in the theory of the 
so-called (1+1) dimensional integrable systems, where in a consistent manner 
the relationship is established between geometry of the internal (isotopic) space 
and the type of interaction, see, e.g. Makhankov and Pashaev 1992. 

In general discrete form the stochastic equation governing forward 
prices/rates dynamics (instruments with an internal space) is as follows: 

 

1
( ) ( ) ( ) ( )

n
i i i

p
p

dX t f t t dW tσ
=

= + ∑                                                              (II-1) 
 

where ( )if t  is the price/rate drift, ( )i
p tσ  is the price/rate volatility and the index i 

spans the internal space (details will be discussed later on). 
 
From the other hand the equations of stochastic differential geometry that 

describe the Brownian motion (diffusion) on a curved space (manifold) in terms 
of Stratonovich differentials (see Stratonovich 1968) read, Kendal 1987, 
Makhankov 1997: 

                   
1

, 1

( ) ( )

         

n
i i q

q
q

m
i i j k
q jk q

j k

dX t dW t

d dX

=

=

= Σ

Σ = − Γ Σ

∑

∑
                              (II-2)  

Where iX  is an m-dim. vector (a point in an m-dim curved space), i
qΣ  is a 

matrix of rotating operator that may be constructed out of m vectors that set up 
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a natural frame on a patch of the bundle and i
jkΓ  are conexion coefficients 

(Christoffel’s symbols) through which a curvature of the space is given. The 
first equation describes an elementary shock a Brownian particle undergoes due 
to a collision with the stochastic background. 

If we assume the state space to be a Riemannian manifold, then the inverse 
of the Riemannian metric is given by  

 

             
ij i j

q q
q

g σ σ= ∑                                                                                               (II-3)         

such that 
 

                    jk k
ij ig g δ=  

 

Here we face two cases: 
1) the conexion is compatible with the metric, 
2) the conexion is “arbitrary”, and can be determined, e.g. by matching 

some Ito process governing the system. 
In the first case Γ the conexion is expressed in terms of the Riemannian 

metric ijg , Dubrovin et al, 1984 and we come to a closed system of stochastic 
differential equations describing a stochastic path on a Riemannian manifold. 

In the second case

1 ( )
2

i i i i i q
q q q

q
dX d f dt dWσ σ σ= + ≡ + ∑

  

, in order to close our system of equations we match the 
drift term of the Ito process for the forward price/interest rates (II-1) with the 
drift term in SDG eqns. (II-2). Then the SDG equations will describe the 
forward price/interest rates dynamics as a Brownian motion in a curved space 
with the curvature defined by their drift. Rewriting eq. (II-2) in Ito 
representation one obtains 

 

                                                       (II-4) 
 

with the drift term due to the second eq. (II-2) being 
 

               
, , ,

1 1
2 2

i k i j i k j
q k j q k j

j k q k j
f gσ σ= − Γ = − Γ∑ ∑

                                               (II-5)  
 

In order to use SDG equations (II-2), equations (II-4) and (II-1) have to be 
identical, i.e. ,i i i i

q qf f σ σ= =

   whence 
 

            
,

1( )
2

i i k j
k j

k j
f t g= − Γ∑                                                                       (II-5a) 

or 
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2 ( )i i

k j k jg f t
m

Γ −                                                                             (II-6)  
   

This gives us the relationship between the conexion Γ , the drift ( )if t  of the 
forward price/interest rate and the volatility structure i

qσ  through the space 
metric i jg . 

If the drift only depends on the geometrical part 
 
             ( ) ( )i i

qf t f σ=             
 

the system of stochastic differential equations (II-2) becomes closed and self-
consistent.   

It is well known from differential geometry that one of the most important 
characteristics of a manifold is its conexion curvature tensor  

 

           i i i i p i p
jkl k jl l jk pk jl pl jkR− = ∂ Γ − ∂ Γ + Γ Γ − Γ Γ                             

 

Namely this tensor defines invariant geometrical properties of a manifold and 
vanishes in the Euclidean case:  0i

jklR = . A nonzero conexion yet does not 
imply a curved space (it could be related to fictitious-inertial forces) and a 
nonzero curvature tensor surely does, implying essential drift presence in the 
system studied. Sometimes instead of the curvature tensor i

jklR  it is easier to 
calculate the so-called scalar curvature 
 

                  
, ,

il i
jil

i j l
R g R= ∑   

that gives us a clear understanding of the state space nature as well.  More 
comprehensive review on these issues is given in Annex 1. 
       
III. FORWARD PRICES AND THEIR MODELING 
 
Definition1. A forward contract is a particularly simple derivative and is an 
agreement to buy (a long position) or to sell (a short one) an asset at a certain 
future time (maturity date T) for a certain price (the delivery price K).     
At time the contract is initiated the delivery price should be such that the 
contract value for both parties is zero. The contract is obligatory. 
 Definition 2. The forward price F(t,T) for a certain contract is defined as the 
delivery price which would make the contract have zero value. 
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The forward price and the delivery price are equal at the time the contract is 
entered into. As time passes, they go apart since pre-specified initially delivery 
price is constant. Therefore we can think of the forward price as the delivery 
price at current time t. 

There is a very well-known formula relating the forward price and the spot 
price, Hull 1993 

 

             
( )( )( , ) ( )          r u y T tF t T S t e + − −=                                               (III-1) 

 

where  r  is a risk-less interest rate, u is a storage rate and  y  a convenience 
yield. Both the storage rate and especially the convenience yield are usually 
unknown functions and the convenience yield can be a stochastic process.  

Following Cortazar & Schwartz 1994, we will describe the dynamics of the 
forward price by the equation 
 

                      
1

( , ) ( , ) ( )       
n

p
p

p

dF t T t T dW t
F =

= Σ∑                                               (III-2) 
 

where ( , )p t TΣ  is the volatility corresponding to a p-th random factor described 
by the Wiener generator ( )pdW t . So model (III-2) describes the n-factor 
dynamics of the forward curve F(t,T). 
     We assume that interest rates are deterministic and future prices are equal to 
forward prices (see, e.g. Hull 1993). In (III-2) we have n independent sources of 
uncertainty

2

0 0
1

1( , ) (0, ) ex p ( , ) ( , ) ( )    
2

n t t i
i i

i
F t T F T T d T dWτ τ τ τ

=

  = − Σ + Σ    
∑ ∫ ∫

 that drive the evolution of the forward curve F(t,T). 
     By integrating (III-2) we have (using Ito’s lemma) 
 

                     (III-3)     

 
Then for the spot price by definition, S(t) = F(t,t), and we have by setting  T = t  
 

2

0 0
1

1( ) (0, ) ex p ( , ) ( , ) ( )
2

n t t i
i i

i
S t F t t d t dWτ τ τ τ

=

  = − Σ + Σ    
∑ ∫ ∫                               (III-4)                

  

It means that the natural logarithm of the spot price (as well as the forward 
price) is normally distributed at time T given the forward price initially at time 
zero such that 
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By differentiating (III-4) over t we have got the stochastic differential equation 
for the spot price 
 

1 0 0

1

( , ) ( , )( ) ln (0, ) ( , ) ( )
( )

( , ) ( )                                                

t tn
ii i

i
i

n
i

i
i

t tdS t F t t d dW dt
S t t t t

t t dW t

τ ττ τ τ
=

=

  ∂Σ ∂Σ∂ = − Σ −  ∂ ∂ ∂   

+ Σ

∑ ∫ ∫

∑
                  (III-5)       

 
     The term in the curled parentheses can be interpreted as an equivalent to the 
sum of the deterministic risk-less rate of interest r(t) and a convenience yield 
y(t) which in general should be stochastic. Many well-known models are 
special cases of this general approach.  
     Now it’s well known that the volatilities in (III-2) are stochastic processes 
themselves. What kind of stochastic processes they could be? To answer this 
question we resort to the stochastic differential geometry, Makhankov 1995, 
1997 described above. As a result, we obtain a self-consistent model described 
by the system of stochastic equations. To solve them we have to specify initial 
conditions: (0, ), (0)F T S  and (0, )i TΣ . 
Ergo, the dynamics of the forward price logarithm is given by the equation 
 

      2

1 1

1ln ( ( , )) ( , ) ( , ) ( )  
2

n n
q

q q
q q

d F t T t T d t t T d W t
= =

= − Σ + Σ∑ ∑                 (III-6)   

in Ito differentials. If we assume the internal term space of the model being 
discrete (what is true in reality) we have got  
 

                      ( , ) ( , ) ( )kF t T F t kT F t= =  
 

Now denoting 
                        ( ) ln ( )  k kX t F t=                                                               (III-7) 
 

we come to the equation 
 

 
2

1 1

1( ) ( ) ( ),    (1,..., )  
2

n n
i i i q

q q
q q

dX t t dt dW t i m
= =

= − Σ + Σ ∈∑ ∑             (III-8)      
 

written in Ito differentials.  

2 2

1 10 0

1ln (( )) {ln ( (0, )) ( , ) }, ( , ) }
2

T Tn n

i i
i i

S T N F T T d T dτ τ τ τ
= =

 
≈ − Σ Σ 

 
∑ ∑∫ ∫
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    If we wish that the dynamical model of forward price should correspond to 
the pure Brownian motion in the curved manifold we have to equate eq. (III-7) 
to the first equation of system (II-1) also written in the Ito differentials  
 

1 , , 1

1 1( ) ( ) ( ) ( )
2 2

n n
i i i q i k j i q

q q jk q q q
q j k q q

dX t d dW t dt dW t
= =

= Σ + Σ = − Γ Σ Σ + Σ∑ ∑ ∑  

                                                                                                                      (III-9)      
Then we have the equation for self-consistency of the model 
 

       
2

1 ,
( )  

n n m
i i k j
q jk q q

q q j k
t dt dt

=

Σ = Γ Σ Σ∑ ∑∑                                                        (III-10)   
 

Resolving this equation with respect to  

                                      ,
i i j
k q j k qA = Γ Σ  

we obtain 

                                ,
i i i
k q q kA δ= Σ  

 

Substituting this equation into the second one of (II-1) we come to the equation 
 

               
1

( ) ( )  
n

i i i q
p p q

q
d t dW t

=

Σ = −Σ Σ∑                                               (III-11) 

    
Now our system is closed and self-consistent since the curvature of the term 
space is defined by the “force term”  (the trend) in the equation for the price 
dynamics.   

So we have to solve the following system of equations 

                            

1

1

( ) ( )

( ) ( )

n
i i q

q
q

n
i i i q
p p q

k

dX t dW t

d t dW t

=

=

= Σ

Σ = −Σ Σ

∑

∑
 

 

that in Ito differentials read 
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2

1 1

2

1( ) ( ) ( )
2

= ( )        

n n
i i i q

q q
q q

n n
i i i i i p
q q p q p

p p

dX t t dt dW t

d dt dW

= =

= − Σ + Σ

Σ Σ Σ − Σ Σ

∑ ∑

∑ ∑
                         (III-12)         

 

From the first equation of (III-12) we infer that X has a Gaussian distribution. 
What about the volatility?  
 
III.1 ONE - FACTOR REDUCTIONS OF THE MODEL.  
 

Let us consider a one-factor reduction of the model. It makes sense since as 
is well-known some, may be even many power markets as well as financial 
ones show almost one-factor behavior: principal component analysis gives from 
80% to even 90% of the total contribution to the main component according to 
Clewlow & Strickland (1999), Wilmott (2001).  
 

 So, one factor: pdW dW=  and  i YΣ =  then 
 

              3 2      dY Y dt Y dW= −                                                             (III-13)       
 

and the Fokker-Planck (FP) equation for the transition probability ρ  reads 

              
3 41( )    

2t y yy yρ ρ∂ = ∂ − + ∂                                                     (III-14)   
  

Let us consider stationary solutions of (III-14). Then we have 

                            
3 41( )  =0

2y yy y ρ∂ − + ∂
 

with a solution 

                  3      cy a
y

ρ +
=                                                                          (III-15)       

 Let us consider the related Stratonovich process 

                        
                                         

n
i i i p
q q p

p
d dWΣ = − Σ Σ∑

 
or for  a single-factor, single-term  process iZ = Σ  we have 
 

                    2     dZ Z dW= −                                                                  (III-16)  
 

with the Fokker-Plank equation 
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2 21 ( )

2t z zz zρ ρ∂ = ∂ ∂
 

 
and stationary solutions 

                                   3           a
z

ρ =                                                          (III-17) 

Then we see that both processes have similar distributions if y is sufficiently 
small  

                               
ay
c

<<
 

 

It was the Stratonovich process. For the Ito process we have eq. (III-8). 
The mean can be estimated from the trend term by the following reasoning: 
taking average of the equation we have for         and 0s sΣ =< Σ > + < >=  
 

3 3 2 33d s s< Σ >=< Σ >=< + < Σ >> = < >< Σ > + < Σ >    

Where the variance 2 4s t< > ≈ < Σ > and the first term in the equation can be 
neglected. Now since 1t td d+< Σ > =< Σ − Σ > = < Σ >  we come to 
                              3d dt< Σ > =< Σ >  
with the solution 

      2
2

1

2

1 (1+  )                             
1

t
t

σ σ σ
σ

< Σ > = ≈
−

 
 

Armed with the above knowledge we can calculate the forward price curve. 
In order to obtain analytical estimate we restrict ourselves to “short time” 
horizons: 
                                  2 1   tσ <<                                                                  (III-18) 
  
and consider only first two initial terms in the asymptotic expansion. 
 Earlier, we consider the statistical properties of the model and its short time 
horizons. In what follows we study the dynamics of the model in more detail. 

Let us consider the single factor version of model (III-2). Then for F(t,T) we  
have 
 

            
( , ) ( , ) ( )     and      ( , ) ( ) 
( , )

dF t T t T dW t F t t S t
F t T

= Σ =                                 (III-19) 
 

or using Ito’s lemma  

21ln ( , ) ( , ) ( , ) ( )
2

d F t T t T d t t T d Wt= − Σ + Σ
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Integrating once we obtain 
 

or 
 

2

0 0

1( , ) (0, ) ex p { ( , ) ( , ) ( )}  
2

t t
F t T F T u T du u T dW u= − Σ + Σ∫ ∫                 (III-20)     

 

This solution is defined so far accurate to an arbitrary function F(0,T). To 
restrict this freedom we can specify a random process for the spot price S(t). 
Now since S(t)= F(t,t), knowing the equation for S(t) gives us the equation for 
F(0,T) through the parameters involved in the equation for S(t). 

Let us consider a mean-reverting process for S(t), viz. 
 

                 ( ln ) ( ) ( )    dS S dt t dW t
S

α µ σ= − +                                      (III-21)         
 

This kind of processes is very popular in econometrics since, for example, 
forward prices as well as interest rates appear over time to be pulled back to 
some long average level. This phenomenon is known as mean reversion, see 
Hull 1993, p388. Also Schwartz’s 1997 model for the commodity price 
dynamics used a single factor mean-reverting process. In fact, equation of type 
(III-21) appeared in physics long ago and was assumed to describe the so-called 
Ornstein-Uhlenbeck process, see appendix for more detail.   

From the other hand, eqn. (III-20) gives 
 

2

0 0

1( ) (0, ) ex p { ( , ) ( , ) ( )}
2

t t
S t F t u t du u t dW u= − Σ + Σ∫ ∫                      (III-22)   
      

i.e. lnS is normally distributed with 

the mean = 2

0

1ln ( , )
2

t

F u T du− Σ∫  

the dispersion  = ( , )t tΣ  
 

Also from eqn. (III-22) taking the log we have 
 

2

0 0

1ln ( ) ln (0, ) ( , ) ( , ) ( )
2

t t
S t F t u t du u t dW u= − Σ + Σ∫ ∫                            (III-23) 

                                                                                                                                  
Then by differentiating over t one has 
 

2

0 0

( , ) 1ln ( , ) ( , ) ( )
(0, ) 2

t tF t T u T du u T dW u
F T

= − Σ + Σ∫ ∫
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Easy to check out that from Ito’s lemma follows that 
 

21ln ( ) ( , )
2

dSd S t t t dt
S

+ Σ =  

Therefore 
 

0 0

( ) ln (0, )[ ( , ) ( , ) ( , ) ( )]
( )
( , ) ( )   

t t

t t
dS t F t u t u t du u t dW u dt
S t t

t t dW t

∂
= − Σ Σ + Σ

∂
+Σ

∫ ∫
             (III-24) 

 

Now if the spot process underlying the forward price dynamics is defined by 
eqn. (III-21) we have the self-consistent system of equations: 
 

     ( ) ( , )t t tσ = Σ                                                                                       (III-25a)                                 
         

0 0

ln (0, )( ln ) ( , ) ( , ) ( , ) ( )
t t

t t
F tS u t u t d u u t d Wu

t
α µ ∂

− = − Σ Σ + Σ
∂ ∫ ∫      (III-25b)                                                                                           

                                                                                                          

Rewrite eqn. (III-23) in the form  
    

2

0 0

1( , ) ( ) {ln ( ) ln (0, )} ( , )
2

t t
u t dW u S t F t u t duΣ = − + Σ∫ ∫                 (III-26)                                                                               

 

We can easily solve the system of equations (III-24), (III-25) and (III-26) if 
 

1) The first group of models  
            

        1 1( , ) ( , )t u t u tα∂ Σ = − Σ                                                              (III-27)                                                           
 

Or in more general case 
 

2)  The second group of models 
 

        2 2( , ) ( , ) ( )t u t u t f tα∂ Σ = − Σ +                                           (III-28)                                               

2

0

0

ln (0, ) 1ln ( ) [ ( , ) ( , ) ( , )
2

( , ) ( )] ( , ) ( )

t

t

t

t

F td S t t t u t u t d u
t

u t dW u dt t t dW t

∂
= − Σ − Σ Σ

∂

+ Σ + Σ

∫

∫
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where  f(t) is a known function of  t. Those conditions allow canceling 
stochastic integrals in the equations (akin to the risk-less condition) and are 
necessary for solvability of the whole problem. They look very plausible for 
they mean that the volatility of the forward price decays from one level to 
another or zero. 

For the first group of models if we substitute eqn (III-27) into (III-25) and 
use (III-26) we come to  

 

21
1 1 10

ln (0, ) 1ln (0, ) ( , ) ( )
2

tF t F t u t du t
t

α α µ∂  + = − Σ ≡ Φ ∂  ∫                    (III-29)           
 

In general case (III-28) we have  
 

2
2 2 20 0 0

1( ) ( , ) ( , ) ( ) ( ) ( )
2

t t t
t u t du u t f u du f u dW uα µ Φ = − Σ + Σ − 

 ∫ ∫ ∫            (III-30)         
 

Equation (III-29) along with  (III-30) can be readily solved, provided we know the 
forward price volatility ( , ).t TΣ  
Below we give the graphs of modeled volatility curves and real ones.                
             

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

 
 

(0, )  0.3 (-0.5 )  S T Exp T=  
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2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

 
 
Fig 1. Zero maturity asymptotic of the. 
Fig. 2. Nonzero maturity asymptotic. 
 
In reality we have the situation very close to the second curve, see Clewlow & 
Strickland 1999. 

 
 
 

 (0, )  0.2 (-0.5 )  0.1S T Exp T= +  

 

Total 
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Fig. 4. Principal component analysis for Natural gas. 
 
The solution of (III-29) (obtained by the variation of constant method) is 
 

0
ln (0, ) { ( ) }  

tt u
i iF t e e u du constα α−= Φ +∫                                             

 

Since at t = 0  ln (0,0)  ln (0)i iF S=  then 
 

0
ln (0, ) { ( ) ln (0)} 

tt u
i i iF t e e u du Sα α−= Φ +∫                                      (III-31)     

 

We see µ  not necessarily be a constant. It can be a function of time.  
For example: if the forward price process volatility  
1) is a regular function of time, e.g. a first class three-parameter exponential 
model 
            ( )

1 1( , ) T tt T e ασ − −Σ =                                                                       (III-32a) 
and 
 
2) 1( ) tt eκµ µ=      (a constant κ  can be both negative or positive)  
 

 

Total 

Volatility Functions for NYMEX Henry Hub Natural Gas 
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Then the integral is exactly evaluated as 
 

2
21 1

1 1(0, ) exp{ ln (0) ( ) (1 ) }
4

T T T TF T e S e e eα κ α ααµ σ
α κ α

− − −= + − − −
+             (III-33)       

 

Now by setting 0κ =  we come to the well-known result, Clewlow and 
Strickland 1997: 
 

2
21

1 1 1(0, ) exp ln (0) (1 ) (1 )
4

T T T
RF T e S e eα α ασµ

α
− − − 

= + − − − 
 

                       (III-34)        

 

It’s easily seen that in this case the forward price curve is regular with zero 
volatility. 

A bit more tedious calculations are needed to get the forward price curve for 
the second class four-parameter model: 
 

            ( )
2 1 0( , ) T tt T e ασ σ− −Σ = +                                                             (III-32b)    

 

 In this case we have got 
 

2 22
2 2 1 0

1ln (0, ) (0) (1 ) (1 ) 2 ( 1 )
4

T T T T
RF T e S e e T eα α α αµ σ σ α

α
− − − − < >= + − − − − − +                   

                                                                                                                    (III-35) 
and                                                                                                                                                                                                                      
 

[ ]
2

2 2 2 2 20
2ln (0, ) 2 (1 ) (2 )

2
T T

RVar F T e T T e Tα ασ α α α
α

− − = − + − +       (III-36)                                                                                                                      
 

I.e. in the second case, even for regular volatility of the forward price process 
( , )t TΣ  the forward price curve itself 2 ( , )RF t T  becomes stochastic with nonzero 

volatility (III-36). 
Even more tedious calculations needed to take into account the stochasticity 

of the forward price process volatility ( , )t TΣ . For that we should solve the 
second equation of the stochastic differential geometry (III-12). This equation is 
self-consistent and can be separately analyzed. 

Under the same assumption (single-factor model) for Stratonovich 
process it reads,  
 
               2

1 1( , ) ( ) ( , ) ( )  str str
St Std t T t T d WtΣ = − Σ                                           (III-37) 

and 
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3 2

1 1 1( ) ( )i i i
St St Std dt dWΣ = Σ − Σ                                                (III-38)                                                                  

 

for the Ito process. 
 From eqns. (III-15) and (III-17) one can see that the solutions to both FP 
equations are identical if c<<a or, e.g. when c = a. It means that in our case the 
Stratonovich process distributions are a subclass of the more general Ito’s 
distributions. 
 Since for Stratonovich processes we have the conventional calculus, we 
get 
 

                   1
(0, )( , )

1 (0, ) ( )
str
St

tt
t W

στ
σ τ

Σ =
+  

 

or 
 

                    1
(0, )( , )       

1 (0, ) ( )
str
St

Tt T
T W t

σ
σ

Σ =
+                                        (III-39)   

 

and 
 

                  1 2

(0, )( , )
(1 (0, ) ( ))

str t
t St

tt
t W

στ
σ τ

∂ Σ =
+  

 
In eq. (III-39) W(t) is a standard Wiener process with mean-less and unity-
variance Gaussian distribution. So we can express W(t) as a function of  iΣ   
 

                     1 1( )                
( ) (0)str strW t
t

= −
Σ Σ

                                                    (III-40)      

                                                                                          
Also it is easy to calculate the mean and variance of ( , )i t TΣ  for small t (short 
horizons)                  
 

                  
2

4 2

[ ( , )] (0, ){1 (0, ) }
[ ( , )] (0, ) {1 6 (0, ) }                             

i i i

i i i

E t T T t T
Va rt T t T t T

σ σ

σ σ

Σ ≈ +

Σ ≈ +
 

                                                                                    
 It should be mentioned that the series over t are asymptotic and in 

principle are divergent and, strictly speaking, the only point of 
convergence is t = 0 even without its neighborhood. Also as could be 
expected the results are independent of a sign of the random term.  
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Now for the Stratonovich process we can go even further. Due to (III-40) we 
calculate the distribution for ( , )str t TΣ  by means of the formula 
 

                            

( ) (1/ ) ( )str str str str
str

dww dW d d
d

ρ ρ ρ= Σ Σ ≡ Σ Σ
Σ

 
 

And for ( )wρ  is a Gaussian distribution we have  
 

                               

2
0

2

(1/ 1/ )1( ) exp
2 ( )2

str str str
str

str

d
tt

ρ
π

 Σ − Σ Σ
Σ = −  Σ 

    

                                                                             
a distribution for a reciprocal of W(t). 

Let us now continue discussing the dynamic properties of the forward 
curves. 
 In the first case, i.e. 1(0, ) tt e ασ σ −= , we have 
 

               1
1 2

( , )(0, )( , )
(1 (0, ) ( )) (1 (0, ) ( ))

str
str St

t St
ttt

t W t W
α τστ α

σ τ σ τ
Σ

∂ Σ = − = −
+ +         (III-41)   

Assume also that 
 

              (0, ) ( ) 1T W Tσ <<                                                                              (III-42) 
 

The last condition is very essential for the evaluations. This is because 
 

( )
1 1 1 1(0, ) ( ) ( ) ( ) ( )T t T t T t t tT W t e W t e W t e e W t e tα α α α ασ σ σ σ σ− ≤ − − − − −= ⇒ ≤ ≈  

 

Here are two cases: 
 

1) 1Tα <<  then 2
1 1Tσ <<  and  

2) 1Tα >>   2
1 Tσ  is arbitrary 

 

Now we have 
 

                  
1 1 1

2
1

( , ) ( )

( ) ( ) (0, )[1 2 (0, ) ( )]
t St St u t f u

f u W u t t W u
α

α σ σ

∂ Σ = − Σ +

= −                              (III-43) 
 

And 
 

3 2 2 4 2
1

0 0

1 1 9( ) 2 (0, ) ( ) (0, ) ( ) (0, ) ( )
2 2

u u

u u W d u W u u W u d uµ σ τ τ σ σ
α

Φ = + − −∫ ∫            (III-44) 
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Finally, we can solve eqns. (III-29) and (III-44) together to obtain ln (0, )F T  as a 
stochastic process with the mean and volatility  
 

2
1 1

4
2 31

2

1ln (0, ) (1 ) ln (0) [1 (1 ) ]
2

1[1 (1 3 (3 ) )                                  ]  
6 2

 

{

}

T T T
St

T

F T e e S T e

T T e

α α α

α

µ σ α
α

σ α α
α

− − −

−

< >= − + − − +

− − + +
        (III-45) 

 
and 
 

{ }

2 6 2 2 ( )
1 1 0 0 0 0

6
4 2 2 2 2 21

2

[ln (0, )] 4 ( ) ( )

3 2 (3 6 4 )
12

T T u zT u z
St

T T

Var F T e e du dz W d W t dt

Te T e T T

α α

α α

α σ τ τ

σ α α α
α

− − +

− −

= < >

= − + + + +

∫ ∫ ∫ ∫
     (III-46) 

 

In what follows we will compare our result with the conventional case 
 

constµ =  and ( )
1 1( , ) T t

R t T e ασ − −Σ =  
 

with 
2

2 21
1 1ln (0, ) (1 ) ln (0) (1 )

4
T T T

RF T e e S eα α ασµ
α

− − −= − + − −  

for specific values of the parameters involved. 
By looking at (II-22) and (II-24) we see that the means differ by the terms 

proportional to some power of 1σ . 
Underline again that the volatility of the spot price process S(t) is defined as  

( ) ( , )t t tσ = Σ  therefore 
 

1
1 1 1 1

1

( ) [1 ( )]
1 ( )

t
t t t

t

et e e W t e
e W t

α
α α α

α

σσ σ σ σ
σ

−
− − −

−= ≈ − ≈
+                     (III-47) 

 

Then for the second class four-parameter model: 
 
          2 2 0 1 0i.e.   (0, )(0, ) ( (0, ) ),     t

t St St tt t e ασ σα σ σ−=∂ Σ = − Σ + +             (III-48) 
 and                

                  0
2

0

at( ) ,       1
1 ( )

t T
W t

σσ α
σ

≈ >>
+  

 
i.e. the spot price volatility falls down with time that looks plausible for the 
mean reverting process. Now instead of 
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               2

1( ) ( ) (0, )[1 2 (0, ) ( )]f u W u t t W uα σ σ= −  
we have 

       2 0 0 0
3( ) (0, ) ( )[ (0, ) 2 2 (0, )( (0, ) ) ( )]
2

f u t W u t t t W uασ ασ σ σ σ σ σ= + − − −  

and 
 

2 2
2 0 0 0

0

(0, )( ) {( 2 ) 2 (2 3 ) ( ) 3 (3 4 ) ( )}
2

ttt W u W u duσα µ α σ σ σ σ σ σ σ σΦ = − − − − + −∫  

 

Then up to the lowest orders terms with respect to ( )W t  we obtain 
 

  
2 2

2 2 1 0

2 2 2
1 0

1ln[ (0, )] ln (0) (1 ) {( )
2

                         [ (1 ) (1 )]}

T T T
St

T

F T e S e e

T e T

α α α

α

µ σ σ
α

σ α σ α

− − −

−

< >= + − + −

− + − −
      (III-49) 

and 
 

           
2

20
2[ln (0, )] { (4 1) (2 3)}

2
T T

StVar F T e e Tα ασ α
α

− −= − + −                    (III-50)            
 

 The term structures of all these models, viz. 1 1 2 2, ,R St R StF F F and F  for specific 
values of parameters: 0 1, , ,α µ σ σ  and various (0)S  are given at Figs. 5 – 8. 
 

    2 4 6 8 10

1.05

1.1

1.15

1.2

1.25

1.3

 
 

(0, )iF T  

T months 
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Fig. 5. Plots of  (0, )iF T  as functions of the maturity T. The lowest (red) stands 
for 1RF , the next from it up (green) stands for 1StF , one more up (blue) for 2RF , 
and the uppers (magenta) for 2StF , whereas S(0) =1. 

 
 

2 4 6 8 10

1.15

1.175

1.225

1.25
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Fig. 6.  (0, )iF T   for S(0) = 1.15 . 

        
2 4 6 8 10

1.25

1.3

1.35

1.4

1.45

1.5

1.55

 
 
Fig. 7. (0, )iF T  for S(0) = 2.  
 

In all calculations we put 1 00.5, 0.2, 0.14, 0.17.α µ σ σ= = = =  what is very 
close to the values at the NYMEX Crude Oil market. 
We see that for the short terms (around during two months) and out of the 
vicinity of (0) 1.15S =  all four curves look very close to each other and then they 
start do disperse about 7-10 % at the end of a year. The vicinity of the point 

(0, )iF T  

T months 
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(0) 1.15S =  is the specific one. The function 1 ( )RF T has a humped shape there, and 
quite essentially differs from the other three curves that have no humps.  
 
 For the first exponential model the variances for both regular and stochastic 
variants are negligible. For the second model plots of the stochastic variance 
(yellow or the top curve), the “regular” one (red or the middle curve) and the 
difference between them (magenta, the bottom curve) are as follows. 
 
 

2 4 6 8 10

0.025

0.05

0.075

0.1

0.125

0.15

0.175

 
Fig. 8.Variances for the second stochastic and regular models and their  
           difference. 
 
IV. DISCOUNT BOND INTEREST RATES DYNAMICS. 
 
Definitions. P(t,T) is the zero coupon (discount) bond price at time t with 
principle P(T,T) = $1, maturing at t = T. 
      r(t) is the short term interest rate. 

( , )p t Tν  is the volatility of  P(t,T) corresponding to the p-th component of a n-
dimensional vector Wiener process: 1{ ,..., }.ndW dW dW=



 
R(t,T) is the rate of in interest: 
  

                    ln ( , )( , ) , 0   P t TR t T t T
T t

= − < ≤
−

                                              (IV-1) 
 

such that 
 

                    ( , )( )( , ) R t T T tP t T e− −=                                                                        (IV-2) 
 
and R(t0 ,T) is a yield curve.  

F(t,T) is the instantaneous forward rates ( )t T≤ defined by the equation 

[ln (0, )]iVar F T  

T months 
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                    ln ( , )( , ) , 0P t TF t T t T
T

∂
= − < ≤

∂
                                               (IV-3) 

and finally 
 

                   ( , )( , ) ( , ) ( ) R t TF t T R t T T t
T

∂
= + −

∂
                                                     (IV-4) 

 

with the boundary condition at  t = T : 
 
               ( , ) ( , ) ( )F t t R t t r t= =                                                                      (IV-5) 
 
     Due to the weak market efficiency, P(t,T) along with the other variables are 
supposed to follow certain Markov processes. The most general of them is 
 

            
1

( , ) ( , )[ ( , ) ( , ) ], 1,. . . ,
n

p
p

p
d Pt T P t T t T d t t T d W p nµ ν

=

= + =∑                      (IV-6) 
 

This process is determined by (n+1) unknown functions ( , )t Tµ  and ( , )p t Tν . In 
the arbitrage-free case, Hull 1993 this equation rewritten for F(t,T)  was shown 
to be reduced to a simpler equation only containing the unknown functions 

( , )p t Tν : 
 

               
1

( , ) { ( , ) ( , ) ( , ) }p
p p p

p
d Ft T t T t T d t t T d Wσ ν σ

=

= − +∑                               (IV-7) 
 

where 
 

                    ( , )
( , ) p

p

t T
t T

T
ν

σ
∂

= −
∂

                                                                    (IV-8) 
  

 The internal space or the system state space is a discrete version of the 
bond term space (the space of bond maturing). This space is an N-dimensional 
vector space with the metric [ ( ) ( )]E A t B t  and is created by the vectors 
 

              1 1( ) { ( ),..., ( )} { ( , ),..., ( , )}N NX t X t X t F t T F t T= ≡


 
 

     A point 1( ) { ( ),..., ( )}NX t X t X t=


in this space corresponds to a portfolio (a set) 
of different bonds, and portfolio dynamics is a movement of the corresponding 
point in the state space which can be a curved manifold, 0R ≠ . 
     This movement is governed by the stochastic differential equations and to 
solve the pricing problem we have to specify initial and boundary conditions: 

(0, ), ( ,0)F T F t and ( , ).NF t T  
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So we have the following scheme of logic steps: 
    1) The weak efficiency of market defines SDE (IV-6) with the freedom 
defined by unknown functions and  ( , )  ( , )pt T t Tνµ  of two variables. 
     2) The arbitrage freedom reduces this freedom by one function ( , )t Tµ  and 
gives the drift term expressed through volatility as 

                        
1

( , ) ( , ) ( , )
n

p p
p

f t T d t t T t T d tσ ν
=

= −∑                                              (IV-9) 

Such that we have N unknown functions, viz. the volatility vector ( , )p t Tσ . 
1) The “fair game” rule (in fact related to the previous) allows one to write 

down equations of SDE to find the discrete version of ( , )p t Tσ . What is 
important that the drift term (IV-9), as we have seen, determines the geometric 
structure of the state space, namely i

jkΓ , see eq. (II-6). 
2) The initial and boundary conditions make the problem completely 

defined, and the freedom left is the two functions of one variable F(t,0) and 
F(t,TN), and the set of parameters F(0,Ti). 

As a result, we obtain the closed problem to find F(t,Ti) and ( , )p it Tσ  with  
i = 1,…, N. Notice that the term axis T is in fact always discrete since bonds are 
issued by lumps rather than continuously. Also we have to underline that due to 
the fair game rule the state space structure does not depend on time: specifying 

( , )p t Tσ  at some moment t defines this structure, i.e. , , ,i
jk ij ijklg RΓ  and R in the 

future. This is why the stochastic processes with an internal space, in other 
words the portfolios, can be classified by conexion curvature of this space: 
 

1. A zero curvature means a trivial market: no correlations among bonds of 
different terms. Bonds with various T live independently and their behavior 
corresponds to pure diffusion on a plane. 

2. A nonzero curvature implies a rich dynamics and the structure of the bond 
market is with drifts, correlations and so forth.   

Now the equations of the stochastic differential geometry for the bond 
forward rates dynamics are 

           
1

( ) ( ) ( )
n

i i p
s p

p
d X t t d W tσ

=

= ∑                                                               (IV-10) 
 

           
1 1

( ) 2 ( ) ( ) ( )
q n

i i i r
s q p r

p r
d t t t dW tσ σ σ

= =

= ∑ ∑                                                  (IV-11)      

They are written in the Stratonovich form and obtained by equating the Ito drift 
term of eq. (IV-10) to drift term (II-5a) that related to the structure of the 
system state space (a set of portfolios). Some solutions to this system of 
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equations can be derived in a special case of a single factor model and 
continuous form. 
  
IV.1  REGULAR VOLATILITY 
 

First we study solutions for the system in the case of one factor model and 
regular volatilities ( , )p t Tσ . Moreover as we did earlier for forward price 
dynamics we suggest that spot interest rates follow a mean reverting process of 
the type (III-21)  

 

          ( ) ( ) ( )dr t a b r dt s t dW= − +                                                            (IV-12)    
 

Again we consider for the volatility in (IV-12) two different approaches (III-27) 
and (III-28) or more precisely (III-32a) and (III-32b). It turns out that, like in 
the case of forward price dynamics, equations (III-27) and (III-28) are sufficient 
in order for stochastic integrals to cancel each other. In the first approach  
 

          ( )
1 1( , ) a T tt T eσ σ − −=  

 

we come to the so-called Vasicek econometric solvable model, 1997 and 
instead of  (IV-10), (IV-11) we have 
 

          ( , ) ( , ) ( , ) ( , )d Ft T t T t T t T d Wσ ν σ= − +  
 

           ( , ) ( , )d t T a t Tσ σ= −     
and 
 

           2( , ) ( , ) ( , )
T

t

F t T aF t T ab t d
t

σ τ τ∂
+ = −

∂ ∫  
 

Such that 
 

          ( ) ( ) 1( , ) ( ) (1 ) ( , ) ( , )a T t a T tF t T e r t b e t T t T
a

σ ν− − − −= + − −          

Now since 
 

          
( , ) ( , )( )( , )

T

t
F t d R t T T tP t T e e

τ τ−
− −∫= ≡  

 

we finally have Vasicek’s result: 
 

           ( , )( , ) ( , ) B t T rP t T A t T e−=  
 

with 
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1
2 2 2 2

( , ) 1 1
1 2

( )

( ( , ) ( ))( / 2) ( , )( , ) exp
4

1( , ) (1 ) | ( )

C t T

a T t
t T

B t T T t a b B t TA t T e
a a

B t T e T t
a

σ σ

− −
→

 − − −
= ≡ − 

 

= − ≈ −
    

 

More cumbersome calculations allow one to derive analogous but longer 
formulae in the second case 
 

          ( )
1 0( , ) a T tt T eσ σ σ− −= +  

 

In addition to Vasicek’s result we now have terms proportional to 0 1σ σ  and 2
1σ . 

Also a tiny volatility of the forward rate arises as it was in the case of the 
forward price dynamics, see (III-50). 
 
 

        2 ( , )
2 ( , ) C t TA t T e=    

        
2

( ) 30 1 1
2 1 2( , ) ( , ) ( 2 ( , ) ( )(2 ( )) ( )

2 6
a T tC t T C t T B t T T t e a T t T t

a
σ σ σ− −= + − + − + − + −  

 
 

IV.2.  STOCHASTIC VOLATILITY 
 

Let us come back to the self-consistent case of stochastic volatility. We can 
derive some solutions if we proceed to the continual form of  (IV-10) and (IV-
11), viz. 
 

         
( )

1

1

( , ) ( , )

( , ) 2 ( , ) ( , )

n
p

s p
p

nT r
s q q rt

r

d F t T t T d W

d t T t d t T d W

σ

σ σ τ τ σ

=

=

=

=

∑

∑∫
                                   (IV-12)           

 

In a single factor model this system admits exact solutions in terms of 
stochastic integrals. We put  

 

   ,p pi
idW dWδ σ σ= =  

 

then 

   
( )( , ) 2 ( , ) ( , ) ( )

( , ) ( , ) ( )

T

t
d t T t d t T d Wt

dF t T t T dW t

σ σ τ τ σ

σ

=

=

∫                          (IV-13)      

 

In order to integrate this system of equations we again consider 
discretization over T in the form:   
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( , ) ( , ) ( )
( , ) ( , ) ( ), ( 1, )

j

j

F t T F t j T F t
t T t j T t t j j Tσ σ σ

= ∆ ≡

= ∆ ≡ ∈ − ∆  
 

Now we substitute the smooth functions with their step-wise approximation. 
In the first interval 0 t T≤ ≤ ∆  we have 

1
2

( ) 2 ( ) ( ) ( ) ( )

( ) ( )

i

i j i
j

i i

d t T y t T t t dW

dF t t dW

σ σ σ σ

σ
=

 
= ∆ − + ∆ 

 
=

∑
                                     (IV-14)     

 

Wherefrom for 1( )tσ  we have the equation 
 

 2
1 1( ) 2 ( ) ( ) , (0, ]d t T t t dW t Tσ σ= ∆ − ∈ ∆  

 

with the solution 
 

 1
1 1 1

1 0

(0)( ) , (0) ( 0)
1 2 (0) ( ) ( )

tt t
T dW

σσ σ σ
σ τ τ

= = =
− ∆ −∫

                    (IV-15)                         

 
This solution is defined by the following Stratonovich integral 
 

 1 0
( ) ( ) ( )

t
I t T dWτ τ= ∆ −∫                                                                            (IV-16)  

 
 

in the denominator of the r.h.s. of  (IV-15). This integral is easy estimated 
giving 
 

 
1

2 2 2 2
1 1 1 0

[ ] 0

[ ] [ ] [ ] ( ) ( 3 ( ))
3

t

E I
tVAR I E I E I T d t T T tτ τ

=

≡ − = ∆ − = + ∆ ∆ −∫
 

therefore 
 

 3
max

1| ( ) ( )
3

VAR VAR t T T= = ∆ = ∆  

and the standard deviation 
 

3/ 2
max

1 ( )
3

S D T= ∆                                                                 (IV-17)               

 
In order for the solution (IV-15) to be finite the denominator should be 

positive, i.e. 
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1 1 11 2 (0) 0d Iσ= − >    
or 

  3/ 2
1

2 (0)( ) 1
3

Tκ σ ∆ <                                                            (IV-18) 
 

For estimations, the numerical factor κ  in this equation may be taken less than 
three. 

If this condition breaks down the solution becomes singular, and the market 
loses stability. It is interesting to notice that the stability condition (IV-18) 
along with the initial volatility 1(0)σ  contains the term structure step T∆  and the 
less this step the stable the market. 

After the time t T= ∆  the first bond matures and dies, such that the second 
one becomes the first, the third the second and so on. This process repeats 
periodically with T∆ . 

The equation for 2 ( )tσ  is 
 

{ }2 1 2 2( ) 2 ( ) ( ) ( ) ( )d t T t t T t t dWσ σ σ σ= ∆ − + ∆                           (IV-19) 
 

or  
 

 22
2 2( ) , 2d t dt T dW

dt
σ α σ= + = ∆   

 

with the solution  
 

 
{ }

{ }
2 20

2

2 20 0

(0)exp 2 ( , ( )) ( )
( ) , 0

1 2 (0) ( ) exp 2 ( , ( )) ( )

t

t x

T W dW
t t T

T dW x T W dW

σ α τ τ τ
σ

σ α τ τ τ

∆
= < ≤ ∆

− ∆ ∆

∫

∫ ∫
  (IV-20) 

 

and 
 

  2 1( ) ( )T tt t
T

α σ∆ −
=

∆
 

 

This solution may be easily generalized for the arbitrary ( )i tσ  by the 
substitution 2 i→  and 
 

1 2 1( , ) ( , ) ( , ) . . . ( , )i i
T tt W t W t W t W

T
α σ σ σ −

∆ −
= + + +

∆
                         (IV-21)              

 
Solutions (IV-15), (IV-20) and (IV-21) are valid within one time step 0 t T< ≤ ∆ , 
and we have assumed that short term bonds maturing for the time essentially 
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less than T∆  are absent. Mathematically this means the trivial (zero) boundary 
condition at the left end of the interval, 0t = . Actually, at the market there 
always are short-term bonds (e.g. overnight bonds) which effect can be modeled 
by a non-trivial boundary condition at the left end. Then the formula (IV-20) is 
still valid and eq. (IV-21) is changed as follows: 
 

0
1 2 1

( )( , ) ( , ) ( , ) . . . ( , )i i
tT tt W t W t W t W

T T
να σ σ σ −

∆ −
= + + + +

∆ ∆
  

 

where 0 ( )tν  is the specified volatility of the short bond price. In such a way we 
define the boundary condition at the left end of the bond maturity chain. 

Now we can solve the whole problem by first integrating the equation for the 
forward rates 

 

( , ) ( , )sd F t T t T d Wσ=  
 

and then evaluating the integral 
 

 1( , ) ( , )
T

t
R t T F t d

T t
τ τ=

− ∫  
 

Note that the specific behavior of the system now depends on either initial 
conditions for short range dynamics or boundary conditions for long range 
epochs and steady states. 

To allow for the long term bond effect we assume that at each jump at a 
moment j T∆  a new bond with volatility Nσ  is born at the right end of the chain, 
for instance with  

N constσ σ= =  
 
V. FINAL COMMENTS AND CONCLUSIONS 

 
The important influence that can cause the boundary conditions to stochastic 
stationary distributions were formulated in the papers Makhankov et al 1995 
and Makhankov 1997 accompanied with numerical studies. Their results and 
the current ones  regarding  this work,  allow us to make  the following 
conclusions:   
1.  Boundary conditions and initial conditions must be specified from the 
market data on the basis of the known methods such as time series, ARCH and 
GARCH models and so on. 
2.  Computer experiments depending on the boundary conditions revealed the 
following scenarios in the market dynamics: 
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i) Explosive instability of the solution that leads to unpredictability of 
the market behavior. 

ii) Various types of stationary solutions for the interest rates/yield curve: 
monotonic upward shape and monotonic downward shape (see Figs. 9 
and 10), well known in the literature, Hull 1993. The curve shape is 
completely determined by the boundary conditions and especially at 
the left end of the maturity chain and hence by the economy as a 
whole. 

iii) The monotonic upward slope shape of the curve reflects the normal 
stable market, and the volatility of short term bonds is substantially 
greater than that of long term ones. 

iv) Instability of the market is predicted to occur if the volatility of 
forward rates exceeds a certain threshold. Usually this instability 
follows the development of a monotonic downward slope curve as 
values of volatilities increase at the boundary. 

v) The theory is based on the three cornerstones: the weak efficiency of 
the bond market, arbitrage freedom and the “fair game” rule. 
Violation of one of them should make the predictions invalid.  

 
 
 
 

 



 31 

Normalized Interest Rates and 
Yields. Down Slope

2.62

2.64

2.66

2.68

2.7

2.72

2.74

2.76

2.78

1 2 3 4 5 6 7 8 9
Normalized Maturity

DS Interest Rates

DS Yield

 
 
 

 
 
                                                         

Figs. 9 and 10 look very plausible, see Hull 1993 Sec 4.1.  
                                                        
Also in the papers cited, the question of what is the dimension of the Wiener 

process that generates the stochastic behavior at the market was studied. And 
they stated that a single factor Wiener process may only match short term 
volatilities of forward rates. If we, following a typical assumption that interest 
rates volatilities are constant then forward rate dynamics is completely 
described by two independent Wiener processes. However, in general case long 
term dynamics requires more than two Wiener processes since, according to the 
above theory, volatilities change in time and the solution found gives a simple 
estimate of the time rate for this changing. So in general, the long term 
dynamics is described by multi-dimensional Wiener process. Evidently, this 
should count at least three not necessarily equal in contribution. However, due 
to definite degeneration of the market parameters the minimal number of 
stochastic processes that operate under various market conditions should be 
extracted from market data. This picture seams being real due to the principal 
component analysis, see pictures 3 and 4 and also, e.g. Wilmott 2001, Clewlow 
and Strickland 1999.    

 
Acknowledgments.  MAAG gratefully acknowledges support from 
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Figs. 9 and 10.  Simulated stationary curves for the interest rates and yields: 
1) Up-slope curve: 30 years max-maturity, 0( ) 0.7%, 52%.NTσ ν= − =  
2) Down-slope curve: 30 years max-maturity, 0( ) 0.05%,   5.2%NTσ ν= =       

 



 32 

 
 
 
REFERENCES 
 

Clewlow C., and Ch. Strickland. 1999. “Power Pricing – Making it 
Perfect”. Internet, Power: Continuing the electricity forward curve debate. 
 

Cortazar, G., and E. Schwartz. 1994. “The Valuation of Commodity     
Contingent Claims”. The Journal of Derivatives V.1, No 4: 27-39.  
 

Dubrovin B, Fomenko A., and Novikov S. “Modern Geometry. Methods and 
Applications”. Part I, The Geometry of Surfaces, Transformations Groups, and 
Fields. Springer, Heidelberg 1984. 
 

Hillard J. and Reis J.  1998. “Valuation of Commodity Futures and Options 
under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the 
Spot”. Journal of Financial and Quantitative Analysis, 33, #1, pp.61-86.  
 

Hull, J.C. 1993.“Options, Futures, and other Derivative Securities”. 
Prentice Hall, New Jersey. 
 

Kendal W. 1987. “Stochastic Differential Geometry: an Introduction”. Acta 
Applicandae Mathematica, 9, pp. 29-60.  
 

Makhankov V., Taranenko Yu., Gomez C., and Jones R.1995. “Geometrical 
Setting of the Term Structure of Interest Rate”. LA-UR-95-449. Los Alamos 
National Laboratory, Los Alamos, USA.  
 

Makhankov, V.G.1997. “Stochastic Differential Geometry in Finance 
Studies”. In “Nonlinear Dynamics, Chaotic and Complex Systems”, Eds. E. 
Infeld, R. Zelazny and A. Galkowski, Cambridge University Press. 

 

Makhankov V and Pashaev O. 1992. “Integrable Pseudospin Models in 
Condensed Matter”. Harwood Acad. Publishers GmbH, London. 
 

Schwartz E. 1997. “The Stochastic Behavior of Commodity Prices: 
Implications for Pricing and Hedging”. The Journal of Finance, Vol. LII (3), 
pp. 923-73. 
 

Stratonovich R. 1968. “Conditional Markov Processes and their Application 
to the Theory of Optimal Control”. Elsevier, N.Y. 

 

Vasicek O. 1977. “An Equilibrium Characterization of the Term Structure”. 
Journal of Financial Economics, 5, pp. 177-88.  
 

Wilmott P. 2001. “Quantitative Finance”. J. Willey & Sons 



 33 

 
 
 

Annex 1. Equations of Stochastic Differential Geometry. 
 
Let us consider a “pure” Brownian motion on a sphere, and first build a 

frame bundle on it. Consider a point 1X  on  S2 and a patch of a tangent plane in 
this point, we denote it as 

1XT S2. It is called a fibre in the point X1. Then we 
proceed to a neighboring point X2 and, doing the same, we get 

2XT S2. In such a 
way, we can cover all the sphere with these patches sticking them along the 
lines of their intersections like a soccer ball that gives us a polyhedron. So we 
have an example of the fibre bundle with the sphere being the base of it and the 
polyhedron a bundle of fibres (in fact, a bundle of frames in our case). We call 
this polyhedron a “covering” of the sphere. So finally we have got: 

a) the sphere which is curved (a manifold), 
b) the covering which is a Euclidean space. 
A pure Wiener process (a martingale) satisfying the equations 

 

 q p qpdW dW dtδ< >=  
 

occurs in the Euclidean world. The same takes place for semi-martingales 
(approximately), for only in a Euclidean space it is possible to represent a 
stochastic process in the semi-martingale form  
 

 q q qdW dt dWα= +  
 

This means that Wiener processes can only appear on the covering while a 
particle is moving on the sphere. Now we should adjust both phenomena. Let us 
consider a covering “boiling” with fluctuating forces (Wiener processes) and a 
particle in the point X1 on the sphere. This point also belongs to the fibre 

1XT S2. 
Hence the particle undergoes a random shock 
 

1 1 1ˆdX dWσ=
 

 
 

jumping into a point X2 on the sphere. In this point it again undergoes a shock 
 

 2 2 2ˆdX dWσ=
 

 
 

and so forth. The matrix σ̂  defines particle mobility (sensitivity). Here we 
should emphasize that all differentials considered above are of the Stratonovich 
type, which allows us to use the standard differential calculus. 
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Now we assume that all idW


 are the same in distribution (pure Brownian 
motion). And we have to connect 1σ  and 2σ . Note that matrix σ̂ , being in fact a 
rotating operator, can be constructed out of two vectors 1j



 and 2j


: 
 

  
1 2

1 2

ˆ
x x

y y

j j
j j

σ
 

=  
 

 

 

which gives a natural frame on the patch. 
While moving from one patch to another, this frame changes its orientation. 

So the total change of a vector, B


 due to moving from one point to another 
consists of two pieces 

 

                            B dB BdXδ = + Γ
                                                      (A1-2)       

 

Where the first term is the differential along the path 

           
( ) ( )                                                                           .i

i

BdB t dX t
X

∂
=

∂





 
 

and the second allows for a change of the frame orientation. Since the matrix σ̂  
consists of  n vectors it is transformed following the same rule 
 

               ˆ ˆ ˆ ( )                d dX tδ σ σ σ= + Γ


                                          (A1-3)             

The second assumption is that “Rules must not change from game to game” 
(“fair game” or no arbitrage opportunity or same action same response) means 
that the total change of σ̂  should vanish                                    
 

                 ˆ 0δ σ =  
or 
                ˆ ˆ ( )d dX tσ σ= −Γ



 
 

which along with the equation for the elementary shock 
 

               ˆ( )dX t dWσ=
 

 
 

gives the equations of Stochastic Differential Geometry on the sphere. 
Generalization to other curved manifolds is straightforward. Let us stress again 
that the equations are written in Stratonovich differentials. 
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Annex 2. Ornstein-Uhlenbeck Process. 
 
A unity mass particle moving with the velocity U(t) under the influence of 

the friction force and a rapidly oscillating random force ( )tσ η  is described by 
the stochastic differential equation  
 

( ) ,dU t U dt dWγ σ= − +     dW dtη=                                                  (A2-1) 
 

Assuming γ  and σ  being constants (additive noise) we have the following 
Focker-Plank equation for the above process: 
 

 21( , | , ) [ ] ( , | , )
2t u uu t y s u u t y sρ γ ρ∂ = ∂ + ∂  

 

Its solution reads 

 
( ) 2

1/ 2 ( )( , | , ) [2 ( )] exp
2 ( )

t su y eu t y s t s
t s

γ

ρ π
− −

−  −
= Σ − − Σ − 

                       (A2-2) 

with 

  
2

2 ( )( ) (1 )
2

t st s e γσ
γ

− −Σ − = −  
 

The stationary distribution achieves at t → ∞  or s → −∞ such that 
 

 

2

2

2( ) lim ( , | , )
u

stat tu u t y s e
γ
σγρ ρ

πσ
−

→∞= =                                   (A2-3) 

 

The covariance of the process U(o) in the stationary state is as follows 
 

  
2

| |[ ( ) ( )] ( , | , ) ( )
2

t s
statE U t U s du uydy u t t s y e γσρ ρ

γ

∞ ∞
− −

−∞ −∞

= =∫ ∫              (A2-4)  
 

Conclusion. 
1/τ γ=

This implies the correlation time is determined by the value of  
 such that at | |t s τ− >>  the correlations decay exponentially and at 

small τ  the process U(o) behaves as a white noise. On the contrary, at large  
    τ  the process U(o) can be regarded as the Wiener process. What is easily     
     seen from the following non-stationary correlation function 
 

 
2

2 | | 2[ ( ) ( )] (1 )
2

t t sE U t U s e e tγ γσ σ
γ

− − −= − →  
 

A non-zero mean O-U process is 
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 0( ) ( )dX t x X dt dWα σ= − +  
 

where again 0, , xα σ  are constants. Then 
 

 
2

2
0 2

1( , | , ) ( ) ( , | , )
2t xx t y s x x x t y s

x
ρ α σ ρ

 ∂
∂ = ∂ − + ∂ 

 
 

The non-stationary solution is 

 
( ) 2

1/ 2 0( )( , | , ) [2 ( )] exp
2 ( )

t sx x yex t y s t s
t s

α

ρ π
− −

−  − −
= Σ −  Σ − 

 

 
2

2 ( )( ) (1 )
2

t st s e ασ
α

− −Σ − = −  

and 

 
2

02 ( )

2( )
x x

stat x e
α

σαρ
πσ

− −
=  

 Now 
2

0and   ln ,    
2

xx S σµ= = −  for the interest rate case. 

Volatility of this distribution as function of time and initial moment are 
depicted on the following figures.  
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