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Abstract 
In this paper, we investigate the interrelations among Turkish interest rates with 
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1. Introduction 

Studies on term structure dynamics have always been at the core of macroeconomics 

and finance research. Campbell and Clarida (1986), Campbell and Shiller (1987) and 

Hall et al (1992) studied the long run dynamics of term structure of interest rates.  

Recently, Clarida et. al. (2006) proposed a nonlinear multivariate vector error correction 

(VECM) model to investigate the term structure of interest rates. Clarida et al. (2006) 

also incorporated the potential asymmetries in the error correction mechanism. They 

also studied the weekly forecasting performance of the nonlinear dynamic interest rate 

model against some linear benchmark models. Despite the importance of these 

developments, relatively few studies addressed the dynamics of term structure of 

interest rates in emerging markets1. However, none of these studies, except Guillen and 

Tabak (2008) for the Brazilian case, explicitly addressed the nonlinearity of term 

structure of interest rates. During the last two decades, Turkish economy has 

experienced a number of sharp downturns and economic crises2. These have a direct 

impact on the interest rates and term structure of interest rates. As a result, term 

structure dynamics of the Turkish economy can be better investigated under nonlinear 

models. It is also interesting to see whether the short run adjustments towards 

equilibrium is symmetric or not. 

                                                 
1 For instance, Alper et al. (2007) provided an analysis of term structure of interest rates for Turkey. 
Telatar et al. (2003) examined the information content in term structure of interest rate about future 
inflaton by using time-varying-parameter model. Kaya and Yazgan (2009) emphasized the effect of 
monetary policy change on the nature of this information content. Gonzales et al. (2000) investigated the 
predictive power of term structure of interest rate for different macroeconomic variables including 
inflation. Ogaki and Santealla (2000) analyzed the effects of term structure of interest rate on exchange 
rate. Although it is a small European economy, we can also include Greece in our short list by quoting 
Drakos (2001) who investigated the impact of monetary policy on term structure of interest. Guillen and 
Tabak (2008) studied Brazilian term structure of interest rates and characterized how the term premia had 
changed over time. 
2 See Yilmazkuday and Akay (2008) for a brief account of these developments and an analysis of 
business cycles of Turkish economy in regime switching approach. 
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In this paper, we wish to fill these gaps in empirical macroeconomics. Following 

Clarida et al (2006) we analyze the term structure dynamics of the Turkish interest rates 

by using the weekly Turkish interest rate data between 1993 and 2009. We empirically 

test the existence of nonlinearity in the term structure of interest rates. We conduct a 

weekly forecasting experiment on the Turkish interest rates with different maturities. In 

addition to these, we extend the regime switching specification by allowing the speed of 

adjustment coefficients to change across regimes. Furthermore, we adopt the reality 

check methodology of White (2000) to test the adequacy of forecasts generated by the 

various alternative nonlinear and asymmetric models. 

 

Consequently, we obtain three main results: First we conclude that long run 

relationships among various interest rates exist, which supports the predictions of 

expectation hypothesis. We also demonstrate that there exists a nonlinear regime 

switching structure in the weekly interest rate data we study. Finally, forecasts 

generated by symmetric nonlinear regime switching model beats the other alternative 

linear vector time series models. This result suggests that an asymmetric adjustment in 

the interest rate modeling do not exist in our data. To the best of our knowledge, this is 

the first comprehensive attempt on analyzing the term structure dynamics on an 

emerging market economy. 

 

The organization of the paper is as follows: In the following section, we discuss the 

theories of term structure and in section three we discuss its estimation through 
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nonlinear dynamic time series models. In the fourth section we present our empirical 

results. We conclude in the final section. 

 

2. Cointegration and the expectations hypothesis 

Expectations hypothesis (EH) can be formulated as follows (see Clarida et al., 2006 and 

Campbell and Shiller, 1991) 
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where ,k tR  is the yield to maturity obtained from a k-period pure discount bond. As is 

known, this equation can be interpreted as the longer term spot rates are equal to the 

average expected short rate of interests. If we subtract 1,tR  from both sides of equation 

(1) we obtain the following equation 
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where Δ  is the first difference operator and tE  refers to the expectation operator 

conditioned on information available time t. The last term in this equation refers to the 

time varying term premia. More specifically, the term spread between long and short 

term of maturities should be explained by first difference of interest rates with various 

maturities. Therefore, equation above has testable implications. In this formulation, if 
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we allow a time varying and stationary term premia, ,k tγ  and if we assume that the 

interest rates are integrated order one, I(1), the above equation implies a cointegrating 

relationship between the term spread (i.e. the difference between interest rate of 

maturity k and l), In other words, if the theoretical predictions of the above model is 

correct then term spread should follow I(0) i.e. , 1, (0)k t tR R I− ∼ . More concretely, the 

interest rates of maturity k and 1 are cointegrated with a vector [ ]1, 1 ′− . Hence, 

according to EH, if we have n interest rates of different maturities, there must be exactly 

1n −  distinct co-integrating relationships among them. Each of these cointegrating 

vectors are given by stationary spreads between , 1,k t tR R−  for 2,...,k n= . As is well 

known, given the existence of cointegrating relationships between a set of interest rates 

of different maturities, the dynamic relationships between them can formulated within a 

vector error correction model (VECM).  

 

3. Modeling Term Structure Nonlinearities via Regime-Switching Vector Error 

Correction Model (RSVECM) 

Term structure of interest rates is very much affected by economic growth and business 

cycles. Consequently, the levels and the term structure of interest rates have varying 

dynamics in different economic regimes. Recent studies on Regime Switching models 

by Hamilton (1983), Krolzig (1997) have investigated the properties of regime 

switching econometric models both in univariate and multivariate contexts. 

 

Consider the MS-VAR process in its most general form:  
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1 1( ) ... ,  1, 2,..,t t t k t k ts y y t T− −= + + + + =y ν Π Π ε    (3) 

 

where ty  is an n dimensional time series vector observed at time t and T is the sample 

size. In our specific example n is equal to 5 and the vector y contains interest rates at 

90, 120,180, 270 and 360 days maturities i.e 90, 120, 180, 270, 360,( , , , , )t t t t t ty R R R R R ′= . v is the 

vector of intercepts, 1, , pΠ Π…  are the matrices containing the autoregressive 

parameters and tε  is a white noise vector process such that ( )| ~ , ( )t ts NID stε 0 Σ . The 

regime generating process is assumed to be an ergodic Markov chain with a finite 

number of states [ ]1,...,ts M∈ governed by transition probabilities 

( )1Pr /ij t tp s j s i+= = = and 
1

1M
ijj

p
=

=∑  for all { }, 1,...,i j M∈ . The MS-VAR setting 

also allows for a variety of specifications.  

 

Krolzig (1997) established a common notation to provide simplicity in expressing the 

models in which various parameters are subject to shifts with the varying. In Equation 

(3) the intercept term is assumed to vary with state beside other parameters. Intercept 

switch specification is used in cases where the transition to the mean of the other state is 

assumed to follow a smooth path. An alternative representation is obtained by allowing 

the mean to vary with the state. This specification is useful in cases where a one-time 

jump is assumed in the mean after a change in regime.3  

                                                 
3 Note that the intercept ν controls the mean of yt through the relationship 

( ) ( ) ( ) ( ){ } 1

1t t t p ts s s s
−

= − − −μ v I Π Π" . 
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This type of MS(M)-VAR(p) model, which allows regime shifts , both in intercept and, 

variance and covariance matrix, is termed as Markov-switching-intercept- 

heteroskedastic- VAR (MSIH-VAR) after Krolzig (1996). Then, the VEC 

representation of the MSIH-VAR(p) model, or MSIH-VECM(p-1) can be written as 

 

  1
1 1

( ) p
t t t i t i ti
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− −=
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Given that Π is not full rank, it can be written as the product of two rectangular matrices 

α  and β  of order n r×  such that ′=Π αβ . The vector β  is the co-integration vector 

and the vector α  is the factor-loading (or speed of adjustment) vector. Hence r is the 

number of co-integrating vectors. Therefore MSIH-VECM in (4) can be written as 

 

  1
1 1

( ) p
t t t i t i ti

s −

− −=
′Δ = + + Δ +∑y ν αβ y Γ y ε     (5) 

 

As indicated by Clarida et.al. (2006) the asymmetric adjustment in interest rates, can be 

modeled within this framework. To capture the asymmetries in the data they write the 

above MSIH-VECM model by allowing differing speeds of adjustment to equilibrium 

depending on whether interest rates are above or below equilibrium, i.e. whether the 

'
1t−β y  is negative or positive. 
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Where tI  is a r r×  identity matrix, and tΨ  is a r r×  diagonal matrix whose jth 

diagonal at time t taking the value of unity or zero according to whether the lagged jth 

deviation from the equilibrium, i.e. the jth element of 1t−′β y  is positive or negative 

respectively. The model in (6) is termed as MSIH Asymmetric VECM  

 

Note that specifications in (5) and (6) do not allow regime dependent behavior neither 

for speed of adjustment nor the autoregressive coefficients (or short-run parameters). 

We can enrich the models considered by Clarida et al. (2006) by allowing both type of 

regime switching and we can, first, rewrite MSIH-VECM in (5) as 

 

   1
1 1

( ) ( ) ( )p
t t t t i t t i ti

s s s−

− −=
′Δ = + + Δ +∑y ν α β y Γ y ε                           (7) 

 

This model can be noted as Markov-switching-intercept-autoregressive-heteroskedastic 

(MSIAH) VECM. In this model we retain the usual assumption of this literature by 

supposing that whereas the long-run parameters contained in the cointegration vector β  

is regime-invariant, speed of adjustment coefficients of vector α  are regime dependent. 

 

Then considering asymmetric behavior defined in (6) within this model leads to the 

following MSIAH Asymmetric VECM. 
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 1' '
1 1 1

( ) ( ) ( ) ( ) ( )p
t t t t t t t t i t t i ti

s s s s−+ −
− − −=

Δ = + + − + Δ +∑y ν Ψ α β y I Ψ α β y Γ y ε         (8) 

 

In forecasting exercises provided in Section 4 we concentrate the following 9 

models outlined in Table 1. 

 

Table 1 is about here 

 

Estimation of MSIAH-VECM models in (5)-(8) can be carried out in two steps as 

suggested by Krolzig (1996), and as applied, among others, by Clarida et. al. (2003, 

2006), Krolzig (2002), Sarno and Valente (2005, 2006). First, cointegration tests and the 

estimation of the parameters of the long-run relations can be accomplished by the 

maximum likelihood (ML) approach to the problem of estimation and hypothesis testing 

in the context of VECMs as outlined in Johansen's (1991, 1996). Second step, the long-

run parameter matrix, β  estimated (and identified) in the first step is embedded in the 

above MS-VECMs. Then, the remaining parameters can be estimated by using the 

expectation maximization algorithm as in Krolzig (1996). 

 

3. Long Run Equilibrium Relationship and term structure of interest rates 

3.1 Data and Time Series Properties 



 10

In this section we analyze the time series properties of the variables that are included in 

our analysis4. We use weekly data covering the period 1993w1-2009w5 for interest 

rates at 90, 120, 180, 270 and 360 days maturities: 90 120, 180, 270 360, ,R R R R R 5. As interest 

rates we use Treasury bond rates with maturities 90, 120, 180, 270 and 360 days. These 

data are obtained from Istanbul Stock Exchange database on a daily basis6 and weekly 

averages are used in the estimation. In order to proceed with the co-integration analysis,  

we first test for presence of unit roots7. Table 2 displays the results of different unit root 

tests of the interest rate levels and their first differences at different maturities. Since the 

interest rate data do not contain a trend term, unit root test regressions are run without a 

trend term by only including an intercept term. As can be seen from the results 

presented in the following table, for all maturities we cannot reject the existence of unit 

roots in the levels. But this is not true for the first differences, hence the conclusion that 

all of our series are I(1). 

Table 2 is about here 

 
                                                 
4 This is important for us since the multivariate cointegration test applied here requires that variables are 
firmly established as I(1).  
5 In fact, we first perform the following transformation to our data: ln(1 )R i= + , where i is the interest 
rate.  
6 The interest rate data has been obtained by Riskturk (www.riskturk.com). In constructing the yield curve 
official bond market data has been collected from Istanbul Stock Exchange. Since the Turkish Fixed 
Income Bill and Bonds are traded in an official exchange (more information can be found at 
www.ise.org) a reliable official data exists and the market is rather liquid for an emerging market. Once 
the official data is obtained from the ISE, the spot yields are solved. Then a simple interpolation scheme 
is used to construct the yield curve. We believe a more advanced yield curve construction technique such 
as Nelson and Siegel (1987) (see Diebold and Li (2006)) do not make a big difference since the 
correlation between these two techniques was very high. More details can be found in 
http://www.riskturk.com.  
7 Unit root tests are computed by using Eviews 6.1. The computations in section 3.2 are carried out by 
using CATS Version 2. MS VECM models are estimated by using the GAUSS routine, MSVARlib, 
developed by Benoit Bellone (http://bellone.ensae.net/MSVARlib.html). The codes for remaining 
calculations, forecasts and forecasts test statistics, are written in GAUSS. Our GAUSS code and data are 
available upon request 
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3.2. Cointegration Tests and Long-Run Identification 

As mentioned above, in the first stage of our estimation process, we work in a 

symmetric linear VAR model in levels (i.e. Equation (3) with 1M = ) to accomplish our 

cointegration analysis within the Johansen’s framework. Prior to cointegration tests, the 

decision about the lag length (p) of underlying (linear) vector autoregressive (VAR) 

model must be accomplished. However, as is well known (e.g. Cheung and Lai (1993) 

Johansen's cointegration tests are rather sensitive to different parameterizations in the 

lag length. Therefore we report the results for different lag specifications up to 6 lags. It 

should be mentioned that the results outlined below is highly robust to higher lag orders 

of the VAR model. When these tests are performed, the intercept term is constrained 

into cointegration space. Since as mentioned above, the level variables are not trended, 

this formulation ensures that the solution of the model in terms of level variables does 

not contain linear trends8.  

Trace statistics9, reported in Table 3, indicate that the interest rate series are 

cointegrated with the co-integration vector dimension of 4. In other words we conclude 

that the interest rate series have a long run equilibria with a co-integration dimension of 

4 out of five variables (i.e. 4r = )10. This finding is consistent with the EH hypothesis 

which suggests that interest rates with various maturities should move together in the 

long run.  

 

                                                 
8 Following Clarida et al. (2006), we think the cointegration vectors should not contain a constant term, as 
opposed to Tilmann et al (2006). Therefore we further test whether intercept terms to be equal to zero or 
not. 
9 We only report trace statistics as suggested by Cheung Lai (1993) and Lutkepohl et al. (2001). 
10 Small sample corrected trace test statistics (Trace * statistics) of Johansen (2002) are qualitatively 
indicate the same result. 



 12

Table 3 is about here 

 

We also wish to test whether the over-identifying restrictions imposed by EH 

can be supported by the data. More specifically, EH, as outlined above, implies the 

following 4 over-identifying restrictions on βmatrix: 

90,

120,

180,

270,

360,

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0

t

t

tt

t

t

R
R
R
R
R

⎡ ⎤
−⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥′ =
⎢ ⎥− ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

β y  

The resulting Likelihood ratio (LR) test has a chi-square value (8) 79.868χ = 11 

which leads the rejection of these over-identifying restrictions with an associated p-

value of 0.000. However, Johansen (2000) argues LR tests over-reject over identifying 

restrictions and suggests a Barlett correction factor to overcome this problem. If we use 

correction we obtain an LR statistic that is equal to (8) 9.509χ =  together with a p-value 

0.301. The underlying correction factor is equal to 8.399. Therefore the restrictions 

implied by EH hypothesis cannot be rejected by the data at any conventional 

significance levels. 

In addition to the use of Barlett correction, we proceed to examine whether the 

departure from the null hypothesis were large by imposing the following restrictions: 

                                                 
11 The degrees of freedom is equal to 8 since we also restrict all the 4 intercepts to be equal to zero as is 
mentioned above. 
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90,
12

120,
13

180,
14

270,
15

360,

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
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β
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β
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β y  

In this case β  parameters are left unrestricted. This approach yields the following 

estimates12 

12 23 34 451.015, 1.025, 1.014, 1.001β β β β= = = =  

It can be observed from the estimated values the departure from the over-identifying 

restrictions on β s can be considered small in magnitude. 

 

3.2. Tests of Asymmetry and Linearity  

As we have show that interest rate series have long run equilibrium, it is interesting to 

investigate the short run dynamic adjustments. One major question regarding the term 

structure modeling is whether the short run error dynamics exhibit an asymmetric 

pattern. In other words, what we wish to distinguish is whether the sign of the shock 

causes a different adjustment speed towards the equilibrium. One may expect that the 

negative shocks might take longer to adjust than that of positive shocks. In this 

subsection we test the error correction asymmetries (III, VIII and IX in Table 1) against 

their symmetric alternatives (see Table 4 below), by using LR tests. Similarly, we test 

our five nonlinear models against their relevant linear alternatives (see Table 5 below). 

All LR tests indicate that both asymmetries are nonlinearities are present in the data and 

                                                 
12 The LR statistics is equal to (4) 8.619χ =  with an associated p-value of 0.071. Hence the zero 
constraints on the intercepts terms are accepted in this case. 
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asymmetric MSIAH VECM should be the preferred model as it holds the highest LR 

test statistics. 

 

Table 4 is here 

 

Table 5 is here 

 

4. Forecasting the Term Structure of Interest Rates out of Sample with MSIAH 

VECMs 

 

The approach developed by Krolzig (1996, 2002) is used to predict multiple time 

series subject to Markovian shifts in the regime. The k-step ahead predictor for 

symmetric MSIH-VECM in (5) is given by 

 

  ( ) 1'
0 1 1

ˆ ˆ,..., p
t k t t i t it t t t i

E −

+ − −=
Δ Δ Δ = + + Δ∑y y y MPξ NPξ β y Γ y                   (9) 

 

Where [ ]1 : ... : M=M v v  and [ ]1 : ... : M=N α α . P is the transposed matrix of transition 

probabilities, ˆ
t tξ  is the vector of filtered regime probabilities at time t. The forecast for 

the other models can be constructed in similar manners. 

 

The out-of-sample forecasts for a given horizon k are constructed by using (9). The 

coefficients in (9) are estimated by running regressions with data up through the date 
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0t T< . The first k-horizon forecast is obtained by using the coefficient estimates from 

this first regression. Next, the time subscript is advanced, and the procedure is repeated 

for 0 1t + , 0 2t + ,…,T k−  to obtain 0 1fN T t k= − − +  k-step distinct forecasts13. By 

using these fN  k-horizon forecasts we evaluate the forecasting performance our models 

by using Root Mean Square Error (RMSE)14. 

 

In Table 6 we report the average of RMSE over fN  (number of forecasts at k-horizon) 

and over n variables (5 interest rates at different maturities). 

 

Table 6 is here 
 

The table compares different models at different forecast horizons (k). The emboldened 

numbers show the smallest of the corresponding criteria, therefore the best model, at the 

corresponding forecast horizon (k). The table reveals the fact that the symmetric 

MSIAH-VAR of Equation (7) with =Π 0  is the “best” model in terms of forecast 

accuracy at all horizons. 

 

4.1 Assessing the forecast accuracy: Diebold and Mariano test 

In order to assess the relative accuracy of forecasts derived from two competing models, 

we first employ the Diebold and Mariano (1995). The suggested DM statistics is 

distributed as standard normal under the null hypothesis of equal forecast accuracy as 

                                                 
13 The number forecasts differ between 89 and 37 for different k values between 1 and 52  
14 We also use Mean Absolute Error (MAE) in all the forecasting and forecast evaluation procedures that 
we use in this paper. To save the space we only report the results associated with RMSE. The results are 
qualitatively identical with MAE which is available upon  request. 
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shown by Diebold and Mariano. When we test the equal forecast accuracy hypothesis 

we first use asymmetric MSIAH VECM as our benchmark model, which is the best 

model according to results of LR tests above. Then symmetric MSIAH VAR is used as 

the benchmark, which is the best model in terms of forecast accuracy. 

 

Table 7 is here 

 

The results on DM statistics displayed in Table 7 generally indicate that our benchmark 

model MSIAH-VAR is found superior than the other competing models. Even though 

we notice the forecast superiority, at the lower forecast horizons are less clear. 

Therefore, we further investigate the forecast precision of our benchmark model with a 

newer test developed by White (2000).  

 

4.2 Assessing the forecast accuracy: Reality Check 

White (2000) developed an elegant test of superior unconditional predictive ability 

among multiple models built on Diebold and Mariano (1995) and West (1996). Our 

interest is to compare all the models with our benchmark of symmetric nonlinear term 

structure model (MSIAH-VAR). An appropriate null hypothesis is that our competing 

model is no better than our benchmark. Our objective function is, once more RMSE 15. 

We report the results on White (2000) test in Table 8 where Prc1 is the bootstrap p-

value for comparing a single model with the benchmark model, and Prc2 is the 

bootstrap reality check p-value for comparing m models with the benchmark model. 

                                                 
15 As with the results of DM tests the results with MAE are identical qualitatively. 
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The first number for Prc2 is the bootstrap reality check p-value for the null hypothesis 

that the best of the first m models has no superior predictive power over the (MSIAH-

VAR) model. The last number for Prc2 checks if the best of all the models under 

comparison has superior predictive ability over the benchmark model. As in most of the 

cases the loss differential is high and Reality Check probabilities are small we conclude 

that our benchmark has a superior forecasting precision than its alternatives. In this 

testing method we observe a more decisive forecast superiority in our symmetric 

nonlinear model. Therefore, we conclude that on the basis of reality check of White 

(2000), a symmetric regime swithching model has a better predictive power for the 

weekly interest rate series. 

 

Table 8 is here 

 

4.3 Comments on Empirical Findings 

We can summarize our findings as follows. First we observe a long run relationship in 

the interest rate data. We show that interest rates with different maturities are moving 

together in the long run. Furthermore, the dynamics of these interest rate series can be 

better modeled in a non-linear environment. For instance, nonlinear time series model 

fits the data better than that of linear benchmark models. This may be expected since the 

economy faces different growth and inflationary states, a regime switching model can 

mimic interest rates data more successfully. Finally, unlike Clarida et al (2006), we 

cannot obtain asymmetry in our data set.  
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5. Conclusion 

In this paper we study the nonlinearity and asymmetry in the weekly Turkish interest 

rates. The interest rate data with various maturities move together which is in line with 

the predictions of the expectations hypothesis theory. In addition, we also show that the 

interest rate data exhibits nonlinear time series properties. Both in the in-sample and out 

of sample data, we demonstrate that nonlinear regime switching models have better 

predictive power. However, we cannot reach a decisive conclusion regarding the 

asymmetric adjustment properties of the interest rate data. Linking the term structure 

with macroeconomic factors is left for future research. 
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Tables: 

Table 1 Models used in Forecasting 

 

(I) Linear Symmetric VAR, i.e. (5) with 1M =  and 0=Π  

(II) Linear Symmetric VECM, i.e. (5) with 1M =  

(III) Linear Asymmetric VECM, i.e. (6) with 1M =  

(IV) MSIH Symmetric VAR, i.e. (5) with 0=Π  

(V) MSIAH Symmetric VAR, i.e. (7) with 0=Π  

(VI) MSIH Symmetric VECM, i.e. (5) 

(VII) MSIAH Symmetric VECM, i.e. (7) 

(VIII) MSIH Asymmetric VECM, i.e. (6) 

(IX) MSIAH Asymmetric VECM, i.e. (8)  
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Table 2: Augmented Dickey-Fuller Unit Root Tests 
 

 
variable ADF DF-GLS Variable ADF DF-GLS 

90R  -2.103 
(-2.865) 

-1.611 
(-1.941) 

90RΔ  -8.043 
(-2.865) 

-8.036 
(-1.941) 

120R  -2.144 
(-2.865) 

-1.604 
(-1.941) 

120RΔ  -7.826 
(-2.865) 

-7.793 
(-1.941) 

180R  -1.859 
(-2.865) 

-1.476 
(-1.941) 

180RΔ  -8.497 
(-2.865) 

-7.432 
(-1.941) 

270R  -1.606 
(-2.865) 

-1.249 
(-1.941) 

270RΔ  -7.577 
(-2.865) 

-5.734 
(-1.941) 

360R  -1.480 
(-2.865) 

-1.112 
(-1.941) 

360RΔ  -10.131 
(-2.865) 

-9.061 
(-1.941) 

Notes: 
- ADF denotes augmented Dickey-Fuller test. DF-GLS denotes GLS detrended Dickey-Fuller by Elliot, 
et.al. (1996). Lag order selection of these tests is carried out by Akaike Information Criterion by setting 
the maximum number of lags being equal to 8. 
-Critical values are given in parentheses. 
- Since interests rate variables are not trended at the levels, unit root test include an intercept term only. 
Accordingly we do not include an intercept term for the first differences. 
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Table 3: Cointegration Rank Statistics (Trace Statistics) 
 

H0 H1 VAR (1) VAR (2) VAR (3) VAR (4) VAR(5) VAR(6) 
r = 0 r ≥ 1 1111.028 

(0.000) 
711.115 
(0.000) 

566.529 
(0.000) 

467.667 
(0.000) 

421.127 
(0.000) 

380.881 
(0.000) 

r ≤ 1 r  ≥ 2 675.351 
(0.000) 

429.186 
(0.000) 

301.664 
(0.000) 

235.302 
(0.000) 

242.769 
(0.000) 

219.308 
(0.000) 

r ≤ 2 r  ≥ 3 336.036 
(0.000) 

228.539 
(0.000) 

146.009 
(0.000) 

133.126 
(0.000) 

129.978 
(0.000) 

125.420 
(0.000) 

r ≤ 3 r  ≥ 4 82.944 
(0.000) 

74.651 
(0.000) 

52.540 
(0.000) 

52.134 
(0.000) 

50.656 
(0.000) 

55.603 
(0.000) 

r ≤ 4 r  ≥ 5 2.689 
(0.646) 

2.656 
(0.656) 

2.196 
(0.738) 

1.951 
(0.783) 

1.948 
(0.784) 

2.049 
(0.765) 

 
Note: p-values are given parentheses.  
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Table 4: Asymmetry Tests 
 
 

0H ↓  
1H →  Linear Asymmetric 

VECM 
MSIH Asymmetric 
VECM 

MSIAH Asymmetric 
VECM 

Linear Symmetric  
VAR 805.267 3114.302 3201.502 
Linear Symmetric  
VECM 140.892 2449.928 2537.128 
MSIH Symmetric  
VAR  318.842 406.042 
MSIAH Symmetric  
VAR   305.941 
MSIH Symmetric  
VECM  133.423 220.623 
MSIAH Symmetric  
VECM   96.833 
 
Note: LR is likelihood ratio tests and associated p-values of the symmetry null hypothesis are indicated in 
cells, where the unrestricted and restricted models being tested are indicated in columns and rows 
respectively. The tests are constructed as *2(ln ln )L L− , where *L  and L  represent the unconstrained 
and the constrained maximum log likelihood respectively. These test statistics are asymptotically 
distributed as ( )gχ  under the null hypotheses, where n  is the number of restrictions. We do not report p-
values since they all are very close to 0. 
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Table 5: MSIH-VECM Estimation: Linearity Tests 
 
 

0H ↓  
1H →  MSIH 

Symmetric  
VAR 

MSIAH 
Symmetric 
VAR 

MSIH 
Symmetric 
VECM 

MSIAH 
Symmetric 
VECM 

MSIH 
Asymmetric 
VECM 

MSIAH 
Asymmetric 
VECM 

Linear 
Symmetric  
VAR 2795.459 2895.560 2980.878 3104.668 3114.302 3201.502 
Linear 
Symmetric  
VECM   2316.504 2440.294 2449.928 2537.128 
Linear 
Asymmetric 
VECM      2309.035 2396.235 
 
Note: LR is likelihood ratio tests of the linearity null hypothesis are indicated in cells, where the 
unrestricted and restricted models being tested are indicated in columns and rows respectively. The tests 
are constructed as *2(ln ln )L L− , where *L  and L  represent the unconstrained and the constrained 
maximum log likelihood respectively. These test statistics are asymptotically distributed as ( )gχ  under 
the null hypotheses, where n  is the number of restrictions. We do not report p-values since they all are 
very close to 0. 
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Table 6: Forecast Accuracies of Different Models (RMSE) 

Forecast 
Horizon 

Linear  
Symmetric 
VAR  

Linear  
Symmetric 
VECM 

Linear 
Asymmetric 
VECM  

MSIH  
Symmetric 
VAR 

MSIAH  
Symmetric 
VAR 

MSIH  
Symmetric 
VECM 

MSIAH  
Symmetric 
VECM 

MSIH  
Asymmetric 
VECM 

MSIAH  
Asymmetric 
VECM 

k=1 0.29138 0.38243 0.30934 0.28232 0.27765 0.28467 0.28692 0.29718 0.29380
k=2 0.31454 0.41523 0.32930 0.31193 0.30906 0.31680 0.33228 0.33393 0.32468
k=4 0.33082 0.40946 0.33756 0.33197 0.32906 0.33858 0.36380 0.36509 0.34153
k=12 0.35362 0.38973 0.36592 0.35419 0.34913 0.37109 0.39693 0.38542 0.38141
k=24 0.33243 0.34974 0.36580 0.33266 0.32727 0.35431 0.37593 0.38950 0.35371
k=36 0.32586 0.33678 0.34400 0.32602 0.32012 0.35399 0.36896 0.39133 0.33764
k=48 0.33176 0.33815 0.34501 0.33178 0.32548 0.36063 0.37294 0.39808 0.33987
k=52 0.33660 0.34191 0.35008 0.33660 0.33054 0.36547 0.37737 0.40350 0.34556
 

Note: RMSE is given by. ( )21
ˆ1

kRMSE y yt i t iik
= −∑ + += . Where ŷt i+  is the i period-ahead forecast of 

yt i+ .  
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Table 7: DM Statistics 

(I) Benchmark: MSIAH Asymmetric VECM 

Forecast 
Horizon 

Linear 
Symmetric 
VAR  

Linear 
Symmetric 
VECM 

Linear 
Asymmetric 
VECM  

MSIH 
Symmetric 
VAR 

MSIAH 
Symmetric 
VAR 

MSIH 
Symmetric 
VECM 

MSIAH 
Symmetric 
VECM 

MSIH 
Asymmetric 
VECM 

k=1 ‐0.1687 3.7017  1.2187 ‐0.9575 ‐1.5434 ‐0.8477  ‐0.5593  0.3771

p-value 0.5670 0.0001  0.1115 0.8308 0.9386 0.8017  0.7120  0.3531

k=2 ‐0.8223 3.3691  0.4743 ‐1.0187 ‐1.3474 ‐0.6530  0.4935  1.0608

p-value 0.7946 0.0004  0.3176 0.8458 0.9111 0.7431  0.3108  0.1444

k=4 1.0608 ‐0.8673  2.7713 ‐0.4055 ‐0.7280 ‐1.0406  ‐0.2117  1.2518

p-value 0.1444 0.8071  0.0028 0.6574 0.7667 0.8510  0.5838  0.1053

k=12 2.7337 ‐1.9158  0.4984 ‐2.0167 ‐1.8404 ‐2.3512  ‐0.6138  0.9050

p-value 0.0031 0.9723  0.3091 0.9781 0.9671 0.9906  0.7303  0.1827

k=24 ‐1.6027 ‐0.2799  2.6855 ‐1.5754 ‐2.1856 0.0440  1.7687  5.7759

p-value 0.9455 0.6102  0.0036 0.9424 0.9856 0.4824  0.0385  0.0000

k=36 ‐1.0850 ‐0.0802  2.5888 ‐1.0695 ‐1.7589 1.6376  3.9367  11.4224

p-value 0.8610 0.5319  0.0048 0.8576 0.9607 0.0508  0.0000  0.0000

k=48 ‐1.2755 ‐0.2852  2.1593 ‐1.2765 ‐2.4360 6.1650  8.0147  9.4276

p-value 0.8989 0.6123  0.0154 0.8991 0.9926 0.0000  0.0000  0.0000

k=52 ‐1.5250 ‐0.6492  2.0859 ‐1.5420 ‐2.7472 4.3913  6.2722  9.6387

p-value 0.9364 0.7419  0.0185 0.9385 0.9970 0.0000  0.0000  0.0000
 



 29

(II) Benchmark: MSIAH Symmetric VAR 

Forecast 
Horizon 

Linear 
Symmetric 
VAR  

Linear 
Symmetric 
VECM 

Linear 
Asymmetric 
VECM  

MSIH 
Symmetric 
VAR 

MSIH 
Symmetric 
VECM 

MSIAH 
Symmetric 
VECM 

MSIH 
Asymmetric 
VECM 

MSIAH 
Asymmetric 
VECM 

k=1 1.1962 5.8954  2.3084 0.8441 1.0972 1.3021  1.3951  1.5434

p-value 0.1158 0.0000  0.0105 0.1993 0.1363 0.0964  0.0815  0.0614

k=2 0.8074 5.4061  2.1280 0.8467 1.6046 3.0252  1.5482  1.3474

p-value 0.2097 0.0000  0.0167 0.1986 0.0543 0.0012  0.0608  0.0889

k=4 1.3474 0.6022  4.5272 1.2605 1.2830 2.0031  3.3167  2.2480

p-value 0.0889 0.2735  0.0000 0.1037 0.0998 0.0226  0.0005  0.0123

k=12 1.0406 2.9063  7.0143 2.1043 3.0998 4.8956  8.5199  2.4565

p-value 0.1490 0.0018  0.0000 0.0177 0.0010 0.0000  0.0000  0.0070

k=24 3.0276 5.8220  3.2034 3.2061 7.4784 13.9689  4.1089  2.1856

p-value 0.0012 0.0000  0.0007 0.0007 0.0000 0.0000  0.0000  0.0144

k=36 4.4275 8.0188  2.3081 4.7427 9.5559 11.0714  5.6382  1.7589

p-value 0.0000 0.0000  0.0105 0.0000 0.0000 0.0000  0.0000  0.0393

k=48 6.0629 6.2269  2.7994 6.5315 7.1073 7.1068  6.8312  2.4360

p-value 0.0000 0.0000  0.0026 0.0000 0.0000 0.0000  0.0000  0.0074

k=52 6.6473 5.5813  3.2062 7.2346 5.9137 6.3549  7.0817  2.7472

p-value 0.0000 0.0000  0.0007 0.0000 0.0000 0.0000  0.0000  0.0030

Note: DM statistics is given as
l /d

f

d
DM

LRV N

= . Where d is an average (over fN observations) of 

the loss differential function of the RMSE, and n dLRV  is a consistent estimate of the asymptotic variance 

the loss differential function, which is defined as 
0

1

2
jd

j

LRV γ γ
∞

=

= + ∑ , where cov( , )
j t t j

d dγ
−

= . In the table 

we report the results associated with 5j = . The qualitatively similar results are obtained with the smaller 
js. The emboldened numbers indicate the best models when compared with the given benchmark. 
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Table 8: Reality Check 

Forecast 
Horizon 

Linear 
Symmetric 
VAR  

Linear 
Symmetric 
VECM 

Linear 
Asymmetric 
VECM  

MSIH 
Symmetric 
VAR 

MSIH 
Symmetric 
VECM 

MSIAH 
Symmetric 
VECM 

MSIH 
Asymmetric 
VECM 

MSIAH 
Asymmetric 
VECM 

k=1 -0.2914 -0.3824 -0.3093 -0.2823 -0.2847 -0.2869 -0.2972 -0.2938
Prc1 0.0837 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Prc2 0.0818 0.0000 0.0052 0.1813 0.0993 0.0529 0.0571 0.0884
k=2 -0.3145 -0.4152 -0.3293 -0.3119 -0.3168 -0.3323 -0.3339 -0.3247
Prc1 0.1669 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Prc2 0.1628 0.0000 0.0057 0.1595 0.0223 0.0001 0.0231 0.0652
k=4 -0.3308 -0.4095 -0.3376 -0.3320 -0.3386 -0.3638 -0.3651 -0.3415
Prc1 0.2838 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Prc2 0.2747 0.0000 0.0428 0.0414 0.0011 0.0000 0.0003 0.0739
k=12 -0.3536 -0.3897 -0.3659 -0.3542 -0.3711 -0.3969 -0.3854 -0.3814
Prc1 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Prc2 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
k=24 -0.3324 -0.3497 -0.3658 -0.3327 -0.3543 -0.3759 -0.3895 -0.3537
Prc1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Prc2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
k=36 -0.3259 -0.3368 -0.3440 -0.3260 -0.3540 -0.3690 -0.3913 -0.3376
Prc1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Prc2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007
k=48 -0.3318 -0.3382 -0.3450 -0.3318 -0.3606 -0.3729 -0.3981 -0.3399
Prc1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Prc2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
k=52 -0.3366 -0.3419 -0.3501 -0.3366 -0.3655 -0.3774 -0.4035 -0.3456
Prc1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Prc2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 
Note: The number associated with forecasts horizons are the loss differential function of the RMSE. Prc1 
and Prc2 are the bootstrap reality check p-values. 
 
 


