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Abstract:Weoffer a shipper and a carrier the choice among three contracts in
which to frame their relationship. Both can also take recourse in the transport
spotmarket. Demand and price on the spotmarket are dependent exogenous
stochastic processes. We model the outcome of this endogenous choice of
contract. The results, given in closed form, are different from those presented
in the literature. Using numeric instances, we show how a choice is made
and which contract would be preferred. Comparison on the variance of the
economic returns are offered. The conclusions are applicablewhen the carrier
is not capacity constrained.
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1 Introduction

We observe that in transport, very frequently manufacturers have relationships with
several carriers. Often, no formal contracts back them up. The price of transport is per
unit and independent of volume. The manufacturer may at times take recourse to a
list of other carriers when his first choice of carrier cannot pick up a load. The price
in this case may fluctuate and at times, there may be no available transport capacity.
In other cases, the manufacturer prefers to tie his business to a carrier by a formal
contract using some form of commitment of quantities to be carried in each period of
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time (aMinimum Purchase Commitment orMPC) or over several periods (a Quantity
Flexibility Commitment or QFC). How do the manufacturer and carrier decide on
which contract is best and with which parameters? We attempt to solve this problem
when both carrier and shipper will repeatedly renew their contracting arrangements.
It is the point of this paper to show that previous literature on the subject of contracts
in transport and in supply chain management may not be pointing to optimal contract
or contract parameters when carrier and shipper have the choice of contract.

Three types of contracts are compared in profit maximising functions. To the
preceding two, we add the single price per unit for all volumes often characterised as
the Price only Relational Contract (PRC).

In Section 2 we review the relevant literature, in Section 3 we explain the model,
in Section 4 we explain how a contract is chosen. In Section 5 numerical examples are
presented before concluding in Section 6.

2 Literature review

Papers making endogenous the contract selection mechanism are few. Generally,
when modelling interactions between a buyer and a supplier with imperfect
information, the contract being chosen or mechanism being designed is viewed as
exogenous. In effect, in such a setting, games will yield a certain outcome which
may be optimal. However, how does this optimal behave when both players have
to choose between such a contract and other contracts? Jackson and Wilkie (2005)
models a contract in which players can write ‘side contracts’ where they adjust the
original contract to affect the outcome of the game and its equilibrium. These side
contracts result from a rich choice of possible ‘side payments’ that each player can
make to the other. In effect, this means that both players have the choice of contract.
This type of ‘theoretical’ contract does not really apply to situations observed in
transport. We know from Lagunoff (1992) that fully endogenous mechanism selection
(selection of institutional arrangements) is non-vacuous when the class of mechanisms
is restricted at each stage of a process.1

In supply chain management literature, in the presence of multi-period stochastic
demandMartínez-de-Albéniz and Simchi-Levi (2005) addresses procurement through
a diversity of contracts and spotmarket buying.Martínez-de-Albéniz and Simchi-Levi
devise a portfolio of contracts to replenish stock from a variety of suppliers. Minimum
commitment and quantity flexibility contracts are shown to be reducible to portfolios
of options. But why would suppliers agree to sell options and not insist on firm
commitments, since they will incur the cost of reserving capacity? Also, Corbett et al.
(2004) shows that with three types of contracts, deterministic demand and asymmetric
information, information has greater value with two-part contracts then with one-part
contract. Wu et al. (2001, 2002, 2005) study the contracting arrangements in energy
sector between a producer and several buyers. The buyer can take recourse in the
spot market at the daily spot price. The decision variables are the reservation price
and execution price per unit of capacity. The spot market enables the buyer to satisfy
her needs in case the contractual arrangement is not enough. A mixture of spot
procurement and long-term contract procurement are shown to be the optimal for a
supply chain. Unhappily, these models do not really apply to transport as spot prices
are modelled as varying in direct function with demand.
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Spinler and Huchzermeier (2006) builds upon Wu et al. (2002) and is one of the
few who study spot market price and demand as two random variables. In a game
theoretic setting, the seller acts as Stackelberg leader by bidding an option two-part
tariff menu consisting in a reservation price and an execution fee ahead of revelation
of demand. This problem is solved as a dynamic programming problem. This option
on capacity problem bears close resemblance to the setting which we will use in the
present paper as the MPC contract. There are two differences. One is that here the
buyer must buy from the seller the contracted capacity, even when the spot price is
lower than the variable fee that she pays for each effectively bought unit. The other
difference is that in Spinler and Huchzermeier (2006), the buyer can decide not to
buy if the spot price is too high, which is not the case here. The present paper
assumes that the buyer always serves exogenous demand: she relies on the spot
market.

Tsay et al. (1999) list Quantity Flexibility Clauses (QFC) and Minimum Purchase
Commitments (MPC) providing justification of their usefulness in coordinating a
supply chain and which will be considered as proven here. This classification assumes
that each contract is exogenously given.

Cachon andLariviere (2001), Özalp andWei (2006) andBrusset and Temme (2005)
draw attention to the information imbalance prevalent in most supply chains which
has special consequences when the supplier is capacity constrained and can decide on
contract compliance level. The conclusion which is used here is: the supply chain is
better coordinated under assumption of asymmetric information when both players
set up a firm commitment for capacity with a lump sum payment.

Tomlin (2003) builds upon and refines Cachon and Lariviere (2001) by comparing
the contract choices open to manufacturer (buyer) and supplier in the case of variable
demand so that the supplier is coordinated into investing into the proper capacity to
respond to stochastic demand. When processing costs at the supplier are non-linear,
it is shown that three forms of contract dominate the linear-price contract and
enhance coordination compared to the centrally organised case: quantity-premium,
firm-commitment and option when the supplier has positive capacity cost (our case).
In the game considered here, as opposed to Tomlin’s game, the preliminary capacity
investment is excluded as it is a sunk investment,2 information about demand is
supposed to be asymmetric and there is a back-up source.

Tsay and Lovejoy (1999) and Tsay (1999) describe in detail the contract model
which inspires us here: the total minimum quantity commitment where a buyer
guarantees that his cumulative orders across all periods in the planning horizon will
exceed a specified minimum quantity. In the present paper an incentive is added that
ensures coordination in the supply chain in the form of a penalty as described in
Chen (2004).

Since the two players operate in a repeated game setting, the general working
of the negotiations with alternated offers before a contract is signed are inspired
from Plambeck and Taylor (2005, 2007). First observed in Macauley (1963), the
supporting arguments for the informal PRC enforced by reputational concerns and
between parties who interact repeatedly are presented more thoroughly as ‘relational
contract’ in Baker et al. (2001, 2002). Namely, repeated interaction introduces
dynamics in relationships that influence the costliness and effectiveness of actions in
the future. These repeated interactions facilitate the use of informal agreements not
sustained by court system, but by the ongoing value of the relationship.
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3 Transport contract model

3.1 Repeated game with bivariate output demand and input price

The shipper (which, to avoid confusion, will be termed a ‘she’) has to satisfy transport
for her product and to do so must buy transport services either from a carrier through
an ex ante arrangement or from a spot market. Remember that transport, as a service,
cannot be stocked and has no salvage value if unused. One unit of transport capacity
used corresponds to one unit of product carried. The shipper’s residual demand not
covered by the long-term contract is resolved by buying additional transport capacity
from the carrier at the going spot market price. The spot market is the place where
excess demands and excess transport capacities meet and transactions take place at
prices whichmay fluctuate and which usually clears the market. The remaining unused
capacities are considered as lost and the remaining transport demand is rescheduled
for the following day. It is considered in this model that both shippers and carriers
influence this spot market price by their action. A spot market exists as soon as there
are demands and capacities which are standard enough to be interchangeable.3

3.2 Asymmetric information about demand and utility functions

We model asymmetric information as in Cachon and Lariviere (2001). Demand X is
part of a family of scaled distributions (see Lariviere, 1999, for a definition of scaled
distributions) which is characterised by a factor µX > 0 such that for all µ′

X ≤ µX ,
FX(x |µ′

X) > FX(x |µX) for x > 0 and FX(0 |µ′
X) ≥ FX(0 |µX). Only the shipper

knows the parameter µX and can estimate the transport capacity she will require from
it. Thus, the demand is stochastically increasing in µX . The shipper is also private of
her utility function. The carrier is private to his own costs and other opportunities, he
needs credible information about the capacity that the shipper will need so as not to
commit more transport capacity than necessary, even though we have not modelled
any limit to his existing capacity. We assume that the highest possible demand that the
shippermay conceivably ask to be transported is limited toQHigh. This limit is assumed
to be common knowledge and to be less than the transport capacity available to the
carrier (either from his fleet or from known third party carriers operating in the spot
market which can be subcontracted). On the other hand, the information about the
spot market price, mean, variance and distribution is assumed to be freely observable
by both.

The spot market is not well organised so information is sparse and costly
(in difference to themodels developed in Spinler andHuchzermeier (2006),Kleindorfer
and Wu (2003), Seifert et al. (2004), Wu and Kleindorfer (2003)). To access this
information, a player who wishes to use this spot market incurs a fixed cost I per
period. The carrier has only one technology at his disposal and hence his production
facility is homogeneous, which simplifies fixed cost attribution. He has the installed
capacity in place to satisfy the shipper’s demand, but this capacity is not expandable
at short notice. His capacity is shared among all his customers, minimising risk of
capacity under-usage by pooling it.

Somementionmust bemade here of the fact that the carrier appears to bemodelled
as enjoying unlimited capacity. In reality, this type of carrier usually is a third-party
logistics operator who just out-sources transport requirements to a vast number of
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owner-operated trucks or he is a trucking company who calls up extra capacity from
sub-contractors or other trucking companies when faced by demand in excess of his
available fleet capacity.

This type of carrier is known to exist in road and sea transport andhave been looked
into in a number of transport research papers. The model presented here can easily
be extended to railway and even air freight because it is always possible to contract
extra capacity from other companies in the same industry. This type of carrier relies
on the existence of a spot market among carriers where loads and excess capacity can
be offered.

Contrary to most models in supply chain management literature but along with
Spinler and Huchzermeier (2006), no storage, holding or shortage costs are incurred
for the transport capacity by the carrier. The supply lead time is assumed to be zero.

We assume that the shipper must satisfy an exogenous demand Xt, i.i.d. for each
integer value of time t, that is a stationary process whose probability distribution is at
least a twice differentiable unimodal distribution FX(X) on a support [0, QHi] with
0 < QHi and density fX(X), mean µX , 0 < µX < QHi and variance σ2

X . The spot
market price of transport capacity P is also assumed to be an exogenous variable
with similar characteristics (P, FP (p), fP (p), µP , σ2

P ) and taking values in the interval
[v, PHi] with 0 < v < PHi, v being the variable marginal transport cost common to
all carriers and PHi being a large value compared to µP . In the same way, let us
call F the continuous, twice-differentiable joint unimodal distribution and f the joint
density function of P and X with mean µ, variance σ2 and correlation coefficient ρ,
(0 ≤ ρ ≤ 1).4 Demand and spot market are usually positively correlated because when
all shippers in an industry face increased demand, theywill make excess capacity scarce
by their joint calls on transport capacity, thus pushing up its price for any yet available.
There can exist realisations of high demand and low spot prices as well as low demand
with high spot prices.5 However, we shall also present a case where spot market price
is fixed and demand is a random variable.

Our model is of wider application than the one exposed in Seifert et al. (2004)
because in that paper the market spot price and demand are modelled as a bivariate
normal distribution only. In the present model, any bivariate unimodal distribution
can be plugged in.

3.3 Prior mutual selection of shipper and carrier and cost thereof

The shipper and the carrier have selected each other either through previous transport
experience or because the carrier has been selected through an active search among
potential carriers by the shipper. The carrier has also been active in soliciting the
business of the shipper. This type of relationship is known in themarketing literature as
‘relationship marketing’ as presented in Knemeyer et al. (2003) and references therein.
According to the field study in Knemeyer et al. (2003), logistics outsourcing involves
investments in specific assets and non-retrievable commitments of resources by both
partners. These pre-existing costs are an incentive to play for both actors. Even though
this investment is sunk when the first stage begins, each party knows that a breach of
trust represented by a failure to honour the contract will trigger immediate rupture of
relations. The game stops at this point and none can start between those players in the
future (reputation effect). The cost is not only the foregone revenue but the necessity
for each to look for another partner and hence incur the information investment again.
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As recognised in Reichheld and Sasser (1993), the process of losing clients and finding
new ones (client churn rate) is common but costly. The trigger strategy for the shipper
of refusing to transact in the future with this carrier will be considered a credible threat.

3.4 Performance record and trust

After each game, both know of the performance history of the other so that trust and
records become important factors. Both players make a tally of the performance of the
other player and the induced cost to him of the eventual shortfall in performance of
the other. This tally of past costs is extrapolated to the remaining games to be played.
If this probable estimated cost is higher than the remaining amortisation cost to him of
the relation specific investment, he is better off by terminating the relationship and start
a new onewith another player. Thus, the higher the initial relation specific investments,
the higher the lock-in effect.

Another effect is that if one playermust investmuchmore than the other, hewill feel
much more bound by this lock-in effect. This difference translates into a difference in
performance: the player who invests less has the least incentive to deliver the expected
performance.

3.5 N games of two-stage decision processes

There are N games to be played if no contract is ever broken, N being a finite number
representing the long term decision planning horizon. At the end of the N games,
both players recover their ‘liberty’ to trade with the same or other players in the sense
that the sunk information and managerial costs have come to the end of their useful
economic lives and hence new investments have to be made to create a link to a ‘new’
player for a ‘new’ set of N games. To satisfy demand addressed to the shipper, the
players face a two-stage stochastic decision process within each game. In the first stage,
they have to set up a transport arrangement whereby the shipper gets a privileged
access to a certain transport capacity and the carrier ensures use of a certain amount
of his overall capacity. In the second stage, the two actors operate according to this
arrangement given the realisations of demand and spot market price. At the end of the
second stage, payout occurs and the game is finished.

Let us now look in detail at how the first stage works.
To define the contract which shall be retained, both players engage in iterative

alternating-offers bargaining as presented in Rubinstein (1982). We concur with
Lariviere (1999) and reference to Salanié (1997) in that properly modelling bargaining
is sufficiently complex that no consensus exists regarding the appropriate equilibrium
concept.

If both select the same contract and agree on the contract terms, then the first stage
is over, the second can then start (see Figure 1).

The second stage extendsovernperiods. In eachperiod from t1 to tn (say everyday),
i.i.d. demands and spot prices are revealed and the shipper buys sufficient transport
capacity from the carrier to meet the demand addressed to her. In each period, if the
revealed demand exceeds committed capacity, both shipper and carrier refer t the going
spotmarket price at which this remaining demand is to be carried.Delivery and payout
occurs in the last period, the game stops, each player records the performance of the
other, eventual penalties are paid out, and a new game can start.
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Figure 1 N games with n + 1 smaller periods in each

We propose here to restrict our comparison to a closed choice of mechanisms, with no
possibility to re-open a contract once it has been signed and with contracts that are
not contingent on one another. So each player has the choice among three contracts
and not signing a contract. The outcome of the choice is a three column and three row
matrix where the interesting cells are the ones on the diagonal: only if both choose the
same contract and agree on the specific parameters is this stage finished. The remaining
cells are the cases where the players do not agree.

If a contract and attending parameters are chosen, this stage is finished, the contract
is signed and both start to operate within it: the second stage begins.

In all other cases, both players have to make a new offer represented by a type of
contract and corresponding contract parameters. If a player cannot be satisfied by any
offer the other player submits, he can decide to refuse to enter in a contract and this
particular game is over and the second stage never starts. In the case that both choose
not to sign a contract, the first and second stage are considered over, a new game can
start. This possibility represents the reservation profit level given outside opportunities.
The carrier can allocatemore transport capacity to someother customer (Corbett et al.,
2004). In the same way, the shipper can decide to privilege another carrier within her
pool of known carriers. In the following, we normalise the participation and individual
rationality constraints for both at zero. Intertemporal relationship is still guaranteed
by the mutual initial investments by each player in ‘goodwill’ which still has to be
amortised and the performance and demand records that each keeps.

3.6 Fixed and variable cost of the carrier

A convex cost function could have been modelled with different parameters for both
fixed and variable costs (respectively K and c) for own or third-party capacity, but
this adds significantly to the calculations without adding value to the demonstration.
We consider here that the required capacity allocation, result of the strategic decision
of the carrier to work with this shipper, takes into account the signals which the latter
sends to the former regarding the forecast demand that will have to be transported.
Instead, all costs have been considered to be agglomerated into a fixed cost K and a
variable cost c, given a fixed capacity set ex ante.

Spinler and Huchzermeier (2006) distinguishes between the marginal cost of
production related to long-term contract-based capacity allocation and the marginal
cost of production associated with short-term spot allocation. We assume, along
with Spinler and Huchzermeier, that the marginal cost is lower for the contract than



280 X. Brusset

for the spot market. In Spinler and Huchzermeier (2006), both costs are assumed to
increase in the state of the economy, a modelling artefact which has been eliminated
by considering the marginal cost and the spot market to be independent. The carrier
is an active participant in the spot market in his own right as he daily has to balance
his transport requirements and available capacity. As they are independent of the
transport requirement expressed by the shipper, the information cost and all other
costs incurred while dealing in the spot market are considered as included in his
fixed cost.

3.7 Carrier’s estimation of shipper’s demand

The carrier does not know the demand distribution of the shipper and therefore must
make an educated guess. Before the start of the first game, this guess is tantamount to
estimating the probable demands based on the carrier’s knowledge of the industry the
shipper is in. The carrier is embedded in a Bayesian universe in which parties have an
a priori belief on the information they do not possess, and they revise this belief as the
interaction unfolds. So, the carrier has a Bayesian belief about the distribution of the
expected demand to be carried q0 in an interval [q0, q0]. The cumulative distribution
function is FX(q) (with FX(q0) = 0 and FX(q0) = 1) and fX(q0) as the continuous
and strictly positive density on [q0, q0].

Before the first game, the carrier will exaggerate the possible cost by
underestimating the average demand and overestimating the variance of this demand,
inflating both variable and fixed cost. Game after game, he is able to update
his estimates of demand and corresponding distribution function and refines his
evaluation of actual variable and fixed costs.6

The carrier wishes to know what to expect from the shipper in terms of capacity.
To that end, hebuilds amenuofprices inone contractwhich enableshim todeduct from
the answer of the shipper the expected capacity which will be required. This problem
was first mooted in Myerson (1979), well presented and treated in Laffont and Tirole
(1993) and extended to mechanism design with direct revelation and non-linear utility
functions in finite-space in Lovejoy (2006). The problem here is of this same type.
We argue that since this is a repeated game between the same actors, the carrier will
have be able to update the expected demand game after game in such a way that it is
in the shipper’s interest to indicate even in the first game her expected level of demand.
We conjecture that this principal agent problem can be solved by devising a menu of
fixed fees and capacity commitments which discriminates among shippers by solving
their incentive compatibility constraints.

3.8 Shipper costs and estimates

Before the start of a game, the shipper observes the demand distribution parameter
µX which defines FX(x), and which we interpret as her forecast of demand. From her
own past experience and polls from other carriers, she derives a budgetB for transport
which covers all periods of a contract. Ex post, it may be that the overall transport
cost (including the cost of procuring some transport capacity from the spot market) is
higher than B. This extra cost is still paid to the carrier but internally such an event is
considered as a smudge on the shipper’s ability to budget correctly.
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3.9 Risk aversion

Risk aversion is reduced to the possible lack of transport capacity when needed by the
shipper and by the possible absence of cargo to load by the carrier. This motivates the
contract in the first place but does not constrain the utility functions of the players
within each game (once a contract has been signed). This feature is not how Seifert
et al. (2004) has chosen to represent the risk aversion of the buyer. There, risk aversion
is represented by including in her objective function the variance of profits times a
factor k: as k increases, the more risk-averse is the buyer.7

The Table 1 lists all the notation in this chapter.

3.10 Types of contracts

The three contracts chosen here, as mentioned in the literature review, represent
individually optimal contracts to coordinate a shipper and carrier when information
is asymmetric. Here, in a key difference from other models, the process of buying
transport capacity from the spot market is assumed to entail a higher cost than the
one attributed to contract buying. This is to represent that information gathering,
service quality and price discovery all cost significantly more than the transaction cost
involved in buying from the contracted carrier. As we shall see lower, this helps to
steer away from trivial situations where the shipper might always be better off buying
capacity from the spot market or pushing for a watered down PRC.

The objective maximising functions are described for the shipper and carrier under
three settings: PRC, a MPC and a contract with single price but with QFC.

We now proceed to describe the contract mechanisms.

3.11 Price-only Relational Contract

In this form of contract, the shipper’s cost function is:

V1(xt, pr) = prxt, ∀t ∈ {1, . . . , n} (1)

where pr is the negotiated price ex-ante and xt is the realised demand in period t.
The carrier’s objective function is the profit function

π1(xt, pr) = prxt − cxt − K, ∀t ∈ {1, . . . , n}. (2)

In this type of contract, the shipper does not make any demand forecast and the
carrier cannot make an educated decision on the capacity to allocate to the shipper’s
requirements. The downfall is that the shipper cannot be sure that the carrier will
always satisfy all her transport capacity requirements.

It must be noted that in this type of contract, if the shipper’s cost of accessing
the spot market I = 0, the price which makes the contract eligible would be pr = µP ,
the mean spot market price, if the specific assets that the shipper has invested in her
relationship to this carrier were fully amortised. Our model specifically excludes this
case since we consider that the negotiation takes place within the number N of games,
the required time to amortise the specific assets that both the carrier and the shipper
have invested in.
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Table 1 Table of notations

Environment Notation Definition

demand Xt realisation of demand in period t
fX(.), FX(.) probability and cumulated density functions

of random v. X
pX discrete marginal probability of demand
µX , σX average and standard deviation of demand

spot market fP (.) probability density function
price FP (.) cumulated density function

µP , σP average and standard deviation of spot price

bivariate spot f(X, P ), F (X, P ) probability and cumulated density functions of
and demand bivariate demand and spot

µ, σ average and standard deviation of bivariate

shipper U(.) utility function derived from satisfying demand
Es

i expected profit function in contract i

carrier β capacity available to the shipper in any time period
c, K variable per unit and fixed per period production costs
Ec

i expected profit function in contract i

spot market I information cost for spot market transactions
v common variable cost for all carriers (v ≡ c)
pt spot price in period t

time N number of games (multiple of n + 1)
t0 period within which contract is set up
t1 . . . tn n periods of any contract

PRC pr linear price per unit

MPC r fixed fee paid in each t
q capacity commitment per period t
s variable per unit per period fee

ϕs(q) 1
FX (q)

∫ PHi

v

∫ QHi

q
(x − q)yf(x, y)dx dy

ϕc(q) 1
FX (q)

∫ PHi

v

∫ q

0 (q − x)(y − c)f(x, y)dx dy

+ 1
FX (q)

∫ PHi

v

∫ QHi

q
(x − q)(y − c)f(x, y)dx dy

µX(q) q − ∫ q

0 FX(x)dx

QFC α variable per unit per period fee within total
commitment β

θ penalty paid per unit for unused commitment
β planned commitment over n periods
Yn, fYn

∑n
i=1 Xi, probability density function of Yn

g1(β, n) 1
FYn (β)

∫ β

0 ufYn(u)du

g2(β, n) 1
FYn (β)

∫ QYHi

β
ufYn(u)du

Ψ(β, θ, n) θ
(

β
FYn (β) − g1(β, n)

)
+ µP

(
g2(β, n) − β)

FYn (β)

)

In the general case, we spell the expected residual budget or profit at both firms as

Es
1(pr) = B − E

( n∑
t=1

V1(xt, pr)
)

= B − nprµX ; (3)
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Ec
1(pr) = E

( n∑
t=1

π1(xt, pr)
)

= n(prµX − cµX − K); (4)

with superscript c for the carrier, s for the shipper and E the expectation sign.
Some mention must be made here as to the ex ante choices available to the shipper

and carrier. If the shipper enjoys a cost of information about available capacity in
the spot market equal to 0 (I = 0), then her choice ab initio is to take her transport
requirements to the spot market or to the carrier, which if she hadn’t incurred any
costs in ‘finding’ the carrier in the first place, would mean that the cost pr of the PRC
would be reduced to the mean of the spot market price µP :

pr =
1

µX

∫∫
XPf(X,P )dX dP.

In fact, it is a better representation of reality to model a positive cost of information
and a positive search and specific asset investment amortisation cost that the shipper
incurs in procuring her transport capacity requirements. In the following, we shall
consider that both these costs are not null for all transactions involving a contract:
PRC, MPC or QFC.

By the individual rationality and participation constraints, we must have jointly

B − nprµX ≥ 0
n(prµX − cµX − K) ≥ 0. (5)

The following condition follows directly from the above.

Condition 1: Conditions for a PRC

For the PRC to be eligible by both supplier and buyer, the chosen pr must meet the
following conditions:

c +
K

µX
≤ pr ≤ B

nµX
. (6)

Save for the trivial case where the supplier’s costs are higher than the buyer’s budget,
the above proposition admits a set of values apt to satisfy both players.

3.12 Minimum Purchase Commitment contract

The MPC consists in a fixed fee r that the shipper agrees to pay the carrier at each of
the n periods within the contract, a capacity commitment q and a variable fee s for
each unit effectively carried in the period.8 The fixed fee is paid whether the shipper
takes delivery of the committed transport capacity or not. This type of contract plays
two roles: convincing the carrier that her future requirements are genuine and inducing
him to reserve adequate capacity so that he will not fail her.

This is very similar to the supply chain management model presented in Cachon
and Lariviere (2001) for the price-only contract, voluntary compliance, asymmetric
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information case. As in Cachon and Lariviere’s case, our model also falls into the
type of economic models known as ‘signalling’ models. In it, Cachon and Lariviere
present a manufacturer who requires from a supplier K ≥ 0 units of production
capacity at w(K) wholesale price, proportionate to the capacity required. The point
is to motivate the supplier to build or reserve adequate capacity so as to be able to
serve the realised demand. The manufacturer, being private to the forecast demand,
wishes to communicate this forecast credibly. He does so by paying an additional
‘lump sum’ to the supplier ex ante. Cachon and Lariviere establish in their Lemma 2
that if the manufacturer can make a request for a capacity somewhat larger than what
he expects and commit to a lump sum payment ex ante, then the expected demand is
credibly signalled to the supplier. They further establish in their Theorem 6 that the
manufacturer’s profit is higher when he requests more capacity than what he expects
to buy when demand is realised. We use these results in the following as the settings
are clearly similar. One notable difference however is that the wholesale price paid
by the manufacturer in their model requires him to know the production costs of the
supplier, an information which the shipper does not possess in our model and which
is frequently unavailable in the transport industry.

The fact that the shipper also buys transport capacity from the spot market is also
envisaged in Cachon and Lariviere (2001) in Section 6: ‘a second source’ where it is
showed that the single supplier model can be used to study a two supplier model and
still derive the same conclusions. The information cost I of our model can be included
as part of the extra cost of the second supplier in their model.

Hence, we consider that the shipper will signal her expected demand per period
through her proposed parameters for a MPC. Our discussion of the evaluation of the
variable per unit fee s shall depart from their model.

From period t1 to period tn demand and the spot market price are realised.
The shipper buys the necessary transport capacity from the carrier who delivers
demands at or below q at the contracted price and extra demand above q at the spot
market price. The remainder of committed capacity is sold on the spot market. Payout
occurs at every period. The game ends after period n.

For a given outcome the shipper’s cost function is per period

V2(xt, pt) =

{
r + qs + (xt − q)pt + I, when xt > q,

r + xts, when xt ≤ q;
(7)

whereas, for the carrier it is

π2(xt) =

{
r + q(s − c) + (x − q)(pt − c) − K, when xt > q,

r + xt(s − c) + (q − xt)(pt − c) − K, when xt ≤ q.
(8)

The expected profit for shipper and carrier are functions of q, s, r, contract parameters
which becomedecision variables of both players. From the definition of the conditional
distribution and of conditional expected values, we define new functions ϕ such that

ϕs(q) = E((xt − q)pt | X > q), ∀t ∈ {1, . . . , n}

=
1

FX(q)

∫ PHi

v

∫ QHi

q

(x − q)yf(x, y)dx dy;
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ϕc(q) = E((q − xt)(pt − c) |X ≤ q) + E((x − q)(pt − c) |X > q
)
,

∀t ∈ {1, . . . , n}

=
1

FX(q)

∫ PHi

v

∫ q

0
(q − x)(y − c)f(x, y)dx dy

+
1

FX(q)

∫ PHi

v

∫ QHi

q

(x − q)(y − c)f(x, y)dxdy, (9)

with FX(q) = 1 − FX(q).
The carrier fills the transport requirement of the shipper subject to the limit of

commitment q made by the shipper. Let µX(q) be expected transport under constraint
of the committed capacity q9:

µX(q) = E[X − (X − q)+]

= q −
∫ q

0
FX(x)dx. (10)

So in each game where this contract has been chosen the buyer’s expected profit is

Es
2(q, s, r) = B − E

(
n∑

t=1

V2(xt, pt)

)
,

= B + n[−r − sµX(q) − IFX(q) − ϕs(q)]. (11)

For the supplier:

Ec
2(q, s, r) = E(π2(X,P ))

= n(r + (s − c)µX(q) + ϕc(q) − K). (12)

For each to choose this contract, the individual rationality constraints are:

{
B/n − r − sµX(q) − IFX(q) − ϕs(q) ≥ 0

r + (s − c)µX(q) − K + ϕc(q) ≥ 0.
(13)

On the domains of q and s in which the shipper’s objective functions is concave, the
interesting variable to determine is the optimal quantity q∗, object of the commitment.

Theorem 2: In the case of a Minimum Purchase Commitment (MPC), if and only
if the shipper’s objective function is concave, the optimal parameters q and s which
satisfy the shipper are solution to the equation

s =
IfX(q) − ϕs′(q)

FX(q)
(14)

see Appendix A for the proof.
The carrier will always be looking for the highest possible commitment within his

other constraints. This result can be compared to the one obtained in Spinler and
Huchzermeier (2006), where the boundaries over optimal parameters of the options to
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bebought are expressed in termsof one another inCorollary 3 andare alsoonlyoptimal
to the buyer. Further, in Spinler and Huchzermeier (2006), the result is only valid
when a mapping of the demand to the spot price exists whereas here, any relationship
between demand and spot price is accommodated.

For the MPC to be retained, the individual rationality constraints have to be
satisfied in every period. Given that the shipper has tailored B to be sufficiently large
as to accommodate demand and possible values of q, r and s (from past experience and
observation of other similar arrangements in the market), and given that the carrier
will not wish to contemplate any offer from the shipper which does not allow him to
cover his fixed costK, themutually agreeable sets of parameters {q, r, s} is non-empty.
In the case of a concave objective function for the shipper, this leads us to spell out the
following condition:

Condition 3: Conditions for a MPC

For the MPC contract to be chosen by both supplier and buyer and also enjoy
the coordinating powers described in Cachon and Lariviere (2001),10 the contract
parameters q, r and s must meet the following conditions




r ≤ B

n
− sµX(q) − IFX(q) − ϕs(q),

r ≥ K − ϕc(q) − (s − c)µX(q),

s =
1

FX(q)

(
IfX(q) − ϕs′(q)

)
,

r, s ≥ 0, q > 0.

(15)

This result can be related to the result from the use of the ‘advanced contract’ and
asymmetric information in the model presented in Cachon and Lariviere (2001), from
which the model is inspired.

One difference is that in our case q is the total capacity reserved by the carrier for the
shipper’s needs, whereas Cachon and Lariviere make a distinction between the ‘firm
commitment’ by the supplier to the manufacturer (analogous to the commitment by
the carrier to the shipper) and the total capacity that the supplier actually reserves to the
manufacturer (shipper, in our case). However, they make no attempt at characterising
literally the optimal capacity in the asymmetric information, voluntary compliance
case, which is what we attempt to do here.

Another difference is that they consider that the demand not met by the contract
is lost to the manufacturer, whereas we let the shipper solve extra demands she may
receive using the spot market price.

3.13 Quantity Flexibility Contract

Consider the case of a price α per unit of cargo and a minimum quantity commitment
β by the shipper to the carrier over n periods. To ensure coordination, at the end of the
game, a penalty11 per unit θ is charged by the carrier to the shipper for all transport
requirements over the n periods which the shipper did not need. That is, the total
transported units are summed and compared to β, the amount paid by the shipper to
the carrier equals the shortfall in units times the penalty.
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If the shipper has had β carried before the end of the contract, she can purchase
additional capacities from the carrier at the revealed going mean spot market price Pi

for the remaining periods within the total n. This is possible by making an adjustment
at the end of the n periods to the observed daily spot market price. Since she knows the
carrier, she does not incur the information cost I . The carrier will be at the receiving
end of the variance of the demand that the shipper faces. He will accommodate within
his own transport capacity what he can and derive the excess to the spot market
in pursuance of his best interest: satisfy his customer, increase his knowledge of the
demands that the shipper faces for future reference in future bargaining rounds in
the next games and finally to increase his presence and visibility in the spot market.
We argue that the payout he receives from such dealings will not generate any profit
but the other intangible side benefits should still make it worthwhile.

Payout and penalty occur at the end of the n periods. Note that in this contract the
penalty, if due, is paid only after revelation of the demand of the nth period.

The shipper’s and carrier’s expected profit functions can now be written using the
random variable of the sums of demands:

Es
3(α, β, θ, n) = B − nαµX − Ψ(β, θ, n)

Ec
3(α, β, θ, n) = n[αµX − cµX − K] + Ψ(β, θ, n),

(16)

with Ψ defined as

Ψ(β, θ, n) = θ

(
β

FYn(β)
− g1(β, n)

)
+ µP

(
g2(β, n) − β

FYn
(β)

)
. (17)

Let us define g1(., .) the conditional or truncated mean of the sum of n demands being
less than β and g2(., .) the conditional mean of the sum of n demands being higher
than β:

g1(β, n) =
1

FYn
(β)

∫ β

0
ufYn

(u)du, g2(β, n) =
1

FYn(β)

∫ QYHi

β

ufYn
(u)du (18)

whereQHi andPHi are suitably highnumbers abovewhich the probability of a demand
or a spot market price are considered suitably low.12

The definitions of the functions g1 and g2 are also in Table 1.
Proof in Appendix B.
The conditions and the characterisation of the optimal values of α, β, θ and n are

discussed in Appendix C.

Condition 4: Conditions for existence of a QFC

For the QFC to be chosen by both shipper and carrier, the contract parameters
α, β, θ, n must meet the following conditions



α ≥ 0, ∧θ ≥ 0, ∧β > 0

θ

(
β

FYn(β)
− g1(β, n)

)
≤ B(n) − nαµX − µP

(
g2(β, n) − β

FYn
(β)

)

θ

(
β

FYn
(β)

− g1(β, n)
)

≥nK + ncµX −nαµX −µP

(
g2(β, n) − β

FYn(β)

)
.

(19)
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4 Choosing a contract

Which contract should the players choose? The model assumes that the carrier is
unaware of the forecast of demand made by the shipper. He relies on the past
demands he has observed in previous games. In our particular case the Theorem 7 in
Cachon and Lariviere (2001) prove that lump sum payments in these type of settings
generate separating equilibria so that the carrier can use the proposed contracts and
corresponding parameters as indications of the shipper’s demand forecast. In our
model, we have two contracts which induce lump sum payments: r in the MPC and θ,
the penalty, in the QFC. So any offer by the shipper in any of those contracts signals
the level of forecasted demand.

We first compare each contract to one another, we then spell the conditions for the
dominating contract.

4.1 Minimum commitment vs. Price-only Relational Contract

The difference between the expected values to the buyer of the MPC and relational
contract is labelled D2−1; a function of the contract parameters pr, q, s and r. In
the following, the decision variables shall be omitted when no confusion can ensue to
alleviate the notation.

From (3) and (11) for the shipper and from (4) and (12) for the carrier,

Ds
2−1 = Es

2(q, s, r) − Es
1(pr)

= n[−r − sµX(q) − I(1 − FX(q)) − ϕs(q) + prµX ]
Dc

2−1 = Ec
2(q, s, r) − Ec

1(pr)
= n[r + sµX(q) + ϕc(q) − prµX − c(µX(q) − µX)].

(20)

We are interested in the signs of the differences: for both to choose the same contract,
the differences must be of the same sign.

Dc
2−1 ≥ 0 ∧ Ds

2−1 ≥ 0 ⇒ MPC weakly preferred

Dc
2−1 < 0 ∧ Ds

2−1 < 0 ⇒ PRC strictly preferred. (21)

However, the conditions on q fromCondition 3must also bemet for aMPC to prevail.
All of which lead to the following set of inequalities.

Condition 5: Conditions of preeminence of a MPC over a PRC

The MPC will be weakly preferred over the PRC when Condition 3 and{
r ≤ prµX − IFX(q) − ϕs(q) − sµX(q)

r ≥ prµX − ϕc(q) + c(µX(q) − µX) − sµX(q),
(22)

are fulfilled. The PRC will be preferred when{
r > prµX − IFX(q) − ϕs(q) − sµX(q)

r < prµX − ϕc(q) + c(µX(q) − µX) − sµX(q),
(23)

and Condition 1 are satisfied.
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4.2 Quantity flexibility vs. Price-only Relational Contract

Let D3−1 be the function of the difference between QFC and PRC over n periods.
We are again interested in the sign of this function. The difference D3−1 is a function
of the decision variables pr, α, β, θ, and n.

From (3), (4) and (16)

Ds
3−1 = n[prµX − αµX ] − Ψ(β, θ, n), (24)

Dc
3−1 = n[αµX − prµX ] + Ψ(β, θ, n), (25)

which are exactly opposite from each other. In practical terms, for both players to
choose the QFC contract means that both (24) and (25) must be positive or null at the
same time.

The only solution is when both contracts yield the same utility to both players.
Hence,

prµX = αµX +
Ψ(β, θ, n)

n
, (26)

because n > 0. For all other values, each player would not choose the same contract.
Theother conditionswhich render theQFCor thePRCeligible alsohave tobe satisfied.
The following set of conditions is enunciated.

Condition 6: Conditions for a QFC to be equivalent to a PRC

Both carrier and shipper are indifferent between PRC and QFC if

pr = α +
Ψ(β, θ, n)

nµX
(27)

and Conditions 1 and 4 are satisfied. In all other cases, no agreement on these two
contracts can be reached.

4.3 Quantity flexibility vs. minimum commitment

Building from previous results, we now try to help the shipper and carrier choose
betweenQFCandMPC, butalso include the conditions for both contracts to dominate
the PRC. Let us call D3−2 the functions of the differences between QFC and MPC in
terms of the decision variables α, β, θ, n, r, s and q. According to (11), (12) and (16),

Ds
3−2 = n[−αµX + r + sµX(q) + IFX(q) + ϕs(q)] − Ψ(β, θ, n), (28)

Dc
3−2 = n[µX(α − c) − r − (s − c)µX(q) − ϕc(q) + Ψ(β, θ, n)]. (29)

The following set of conditions can be enunciated (Proof in Annex D).

Condition 7: Conditions of dominance of a QFC over a MPC

When carrier and shipper have the choice between a QFC and a MPC contract, they
will choose the QFC when Conditions 3 and 4 and the following Condition is satisfied{

r + sµX(q) + IFX(q) + ϕs(q) > Ψ(β, θ, n)/n + µXα

cµX + r + (s − c)µX(q) + ϕc(q) < Ψ(β, θ, n)/n + µXα.
(30)
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The MPC shall prevail when Conditions 3, 4 and

{
r + sµX(q) + IFX(q) + ϕs(q) < Ψ(β, θ, n)/n + µXα

cµX + r + (s − c)µX(q) + ϕc(q) > Ψ(β, θ, n)/n + µXα
(31)

are satisfied. Both will be equivalent when Conditions 3, 4 and

{
r + sµX(q) + IFX(q) + ϕs(q) = Ψ(β, θ, n)/n + µXα

cµX + r + (s − c)µX(q) + ϕc(q) = Ψ(β, θ, n)/n + µXα
(32)

are satisfied.

4.4 Conditions for a contract to dominate the others

We now consider that both carrier and shipper have the choice among all three
contracts at the same time. For this to happen, all three have to be already agreeable
per se and also be mutually compatible. This means that we must have simultaneously
the choice of a PRC agreeable to both and the choice of a QFC agreeable to both, so
that we require Condition 6 to be satisfied before even comparing them to the MPC.
In this case, we have Conditions 5 and 7 which become equivalent. To recapitulate,
the conditions for each contract to dominate are the following.

Condition 8: Conditions for dominance of a PRC over a MPC and equivalence with
a QFC

A PRC will be equivalent to a QFC and preferred over a MPC when




pr = α +
Ψ(β, θ, n)

nµX

c +
K

µX
< pr ≤ B

nµX

r > prµX − IFX(q) − ϕs(q) − sµX(q)

r < prµX − ϕc(q) + c(µX(q) − µX) − sµX(q).

(33)

Condition 9: Conditions for dominance of a MPC over both a QFC and a PRC

A MPC will be preferred when




r ≤ B

n
− sµX(q) − IFX(q) − ϕs(q)

r ≥ K − ϕc(q) − (s − c)µX(q)

r < prµX − IFX(q) − ϕs(q) − sµX(q)

r > prµX − ϕc(q) + c
(
µX(q) − µX

) − sµX(q).

(34)
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Condition 10: Conditions for aQFC to dominate theMPCand be equivalent to thePRC

The QFC will be preferred over the MPC and weakly preferred over the PRC when
the following conditions are met



α ≥ 0, ∧ θ ≥ 0, ∧β > 0, ∧n > 10

pr = α +
Ψ(β, θ, n)

nµX

θ ≤ 1
β

FYn (β) − g1(β, n)

[
B(n) − nαµX − µP

(
g2(β, n) − β

FYn
(q)

)]

θ ≥ 1
β

FYn (β) − g1(β, n)

[
nK + ncµX − nαµX − µP

(
g2(β, n) − β

FYn
(q)

)]
.

r + sµX(q) + IFX(q) + ϕs(q) > prµX

cµX + r + (s − c)µX(q) + ϕc(q) < prµX

(35)

Evidently these are not trivial results, they change from previous ones as stated in
literature because of the endogenous choice of transaction form.

If the above sets of conditions for eligibility of a contract are notmet, no agreement
can be reached and this particular game ends. The carrier will prefer to attend to his
other customers, whereas the shipper will look among her other carriers. This does
not preclude that in the following game both agree on a common contract and
corresponding parameters.13

To grasp the results and their significance, let us present three numerical examples.
The first presents a case where both demand and spot market prices for transport
fluctuate in a bivariate normal distribution. In the second, we fix the transport price
and let demand fluctuate in a normal distribution. The last example is a case where
both carrier and shipper use only the spot market and do not interact together: this last
example uses also a bivariate normal distribution of demand and spot market prices.
Further examples applying exponential distributions of demand and prices have not
been presented here because the results are functionally the same.

5 Numerical examples

5.1 First example: a binormal stochastic process

We instantiate the preceding results in the following way. Let f(X,P ) be a bivariate
normal distribution with their supports, the information cost for the spot market,
the carrier’s fixed and variable cost take the following values:

µX = 10, σX = 3, µP = 8, σP = 1.5, ρ = 0.5,

I = 2, v = 2, PHi = 14, QHi = 25, K = 20, c = 1.8. (36)

The transport budget is estimated in terms of the average per unit spot market price.
So as to be on the safe side, the shipper adds a margin which we set here at 20%.
The transport budget is a function of the number of periods over which a contract runs

B(n) = µP (1.2)nµX .



292 X. Brusset

By the Central Limit Theorem, the sum of the expected demands over a large number
of periods (more than 10 periods) behaves like a normal distribution which has the
following characteristics:

Yn =
n∑

t=1

xt ∼ N (nµX ,
√

nσX) ∼ N (10n, 3
√

n). (37)

To show the impact of the choice of contract on each player, let us now evaluate the
objective function of the shipper and carrier when the choice of contract is exogenously
given and when the choice is endogenous.14 We present the results in Table 2.

Table 2 Bivariate demand: table of maximum contract outcomes for each player separately
and parameter conditions for exogenous or endogenous choice of contract

Carrier Shipper

n = 40 Exogenous Endogenous Exogenous Endogenous

PRC 2320 2320 2320 470
pr = 9.6, q = 1 pr = 3.8 pr = 8.43, q = 1

Variance 1.33 × 106 1.33 × 106 0.21 × 106 1.02 × 106

MPC 5158.4 2926.1 833.6 833.6
q = 22, s = 8.87, q = 12, s = 8.26, q = 8, s = 5.98, r = 0
r = 0, r = 0 7.51 < pr < 9.6

7.51 < pr < 9.6
Variance 1.21 × 106 0.88 × 106 0.87 × 106 0.87 × 106

QFC 2320 1486 2320 1504
α = 9.30 α = 7.21, α = 3.50 α = 5.54

β = 400, θ = 0, q = 1 β = 400, θ = 0, q = 1
Variance 1.28 × 106 0.79 × 106 0.21 × 106 0.48 × 106

Spot 1680 – 470 –
Variance 1.89 × 106 – 1.89 × 106 –

We assume in the following that the number of periods of a game is 40.
The details of the calculations first of the exogenous choice of each contract are

relegated to the Sections A–C in the Appendix.
Once the required domains for the emergence of the contracts are defined, we

compare the contracts. The details of the calculations can be found in D–G in the
Appendix. For all the contracts and corresponding solution, the variance of the
objective function have been tabulated. The results are presented in two.

The choice of contracts once the comparison is endogenous yields a preference for
theMPC for a large range of values; the PRC and QFC prevail only when the partners
agree to a commitment per period of q = 1 for the MPC, hardly an optimal setting
when the expected demand faced by the shipper is at least of a required capacity of ten.
For all practical purposes, this means that the shipper and carrier will settle for aMPC
most of the time. If they do, the reader will note that neither partner can pull the cover
to himself: each can expect to make a profit or retain some budget even in the extreme
cases where one partner has all the bargaining power.
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If we suppose that the MPC is not retained, the choice is between two contracts
which can yield the same economic result for both partners, however, if variance is
an issue, one sees that the QFC would get the preference of both players. There are
large domains of possible parameter sets which would satisfy both and split the supply
chain’s surplus more or less evenly.

Overall the choice of contract and the parameters on which both partners agree
is counterintuitive and presents the case of the transport industry within the overall
supply chain management literature as a supply chain member apart due to the
particularities of the trade. The observations in Cachon and Lariviere (2001) about
the frequency of the MPC in industry support this affirmation.

It is further interesting to note in Table 2 the hierarchy between the variance of
the results to both the shipper and the carrier when the maximum yielding transport
procurement contract is adopted. Clearly, the strategy to procure or sell transport
capacity by using exclusively the spotmarket, which is given here as reference, not only
produces less interesting results for both carrier and shipper (even though the carrier
does not have to pay a fixed information cost to access it) but it induces the highest
level of variance of the results. Such a strategy should only be adopted by shippers
and carriers who cannot engage in other types of contractual arrangements or when
both demand and spot market volatilities are very low or also if the specific assets that
are needed by both for a relationship are of low value compared to the benefits of
spot market transactions. This result is similar to the observations in the market and
to results presented in supply chain management literature as in Kleindorfer and Wu
(2003).

When the volatility of demand and spot market prices are higher, the volatility
of the MPC can become as high as the one for the PRC, even for high values of pr,
undermining its interest for both players. In such a case, the QFC becomes even more
attractive, especially if α is low.

What happens when the spot market price does not move? This is the case of a
market for transport capacitywhich is not subject to suddenvariations andhencewhere
both shippers and carriers can withhold excess demand or capacity from destabilising
the price.Would the hierarchy among the contracts change? The results of a numerical
study are presented in the next section.

5.2 Second numeric example: case of univariate stochastic process

Let us consider now the case of a transport market where the spot price is fixed: P = 8.
In this case, the shipper’s budget function is rewritten as

B(n) = 8 × 1.2 × µX × n.

We deal with a univariate stochastic process consisting of just the demand faced by
the shipper.

The calculations are relegated to Appendix F.
For aMPC to emerge as the favoured contract for both shipper and carrier, we need

to set 2 ≤ q ≤ 12, which leads to a fixed fee 0 ≤ r ≤ 23.09 and 5.984 ≤ s ≤ 8.498.
For this to happen, we have as well 8.20 < pr ≤ 9.6 and the corresponding vectors
{α, β, θ} which enable Condition 6 to be satisfied.

For a QFC to emerge as a dominant contract, we must have q = 1, 8.2 ≤ pr ≤ 9.6
and the other parameters of the QFC as required for its existence.
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We recapitulate the results in Table 3.
As can be seen, the MPC also has good chances to be retained. This is due to the

fact that the lesser variance of the spot market enables the shipper to retain a larger
proportion of her budget, whatever commitment she agrees with the carrier. If the
carrier can force the shipper into accepting his terms, then he is better off overall in
picking a MPC with q = 11.

The choice of contract parameters presented in the table do not do justice to the
range of available values which still yield the same profit or retained budget, but the
calculations involved (in all, 5 parameters can change independently: q, r, β, α and θ)
were too complex and too large, so we chose to just present some values of interest.
Note that given the alternatives of the QFC or PRC, to retain the MPC when the
choice is endogenous, the shipper has to accept to push her commitment up to q = 11
thus enabling the carrier to make a large profit of 1832, even with r = 0.01.

These results still beg the question of when and why the shipper and carrier would
choose one contractual form or another in a more general context. To address these
issues, we take now a look at what would happen if both took recourse in the spot
market and the impact of the variance of both the spot market price and demand.
We enlarge the scope of the results by first evaluating the cost and opportunity for
shipper and carrier to engage in a pure spotmarket sourcing strategy in the next section
before addressing the issue of the variance of all four strategies in the section after that.

Table 3 Univariate case: table of maximum contract outcomes for each player separately and
parameter conditions for exogenous or endogenous choice of contract

Carrier Shipper

n = 40 Exogenous Endogenous Exogenous Endogenous

PRC 2320 2320 2320 2320
pr = 9.6 pr = 9.6 pr = 3.8, q = 1 pr = 3.8, q = 1

MPC 2974 2849 923.6 923.6
q = 12, r = 0, q = 11, r = 13.03, q = 8, s = 5.98, q = 8, s = 5.98,
s = 8.49 s = 7.11 r = 0 r = 0

QFC 2320 644.9 2320 1675
α = 9.3, α = 15.68, β = 400, α = 0, α = 15.898, β = 400,
β = 400, θ = 0 θ = 1.558 β = 400, θ = 0 θ = 0, q = 1

5.3 Third numerical example: pure spot procurement strategy

Let us now consider the case of the shipper who decides to forego a contract with a
carrier and decides to procure all his transport needs directly from the spot market.

In this example, we are very near to the supply chain management case presented
in Wu et al. (2002) where a buyer has the possibility of combining procurement from
a contract and from a spot market to resolve his necessities. In that paper’s model,
the buyer can choose to privilege either the contract or the spot market, depending
on the relative cost of either. However, since demand is modelled as being a function
of spot market price, we feel that the answers provided in that paper do not reflect
the real world practice of transport, where, as seen before, spot market prices may be
correlated with demand by a factor ρ and 0 < ρ < 1.
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The shipper buying exclusively from the spot market her transport capacity
requirements can be considered as a particular case of a MPC where both the
commitment q and the fixed fee r are set to nought. The profit function and expected
profit of the shipper can be written as

VSpot(xt, pt) = B(n) − xtpt (38)

Es
Spot = B − n[I + µXµP + Cov(X,P )]

= B(n) − n[I + µXµP + σXσP ρ]. (39)

When we evaluate it for n = 40, we obtain an expected residual budget of 470.
In the case of the carrier, the profit to be had by simply selling all his available

capacity on the spot market yields 1680 since he does not incur the information cost
which affects the shipper. Both results are included in Table 2.

As mentioned earlier, we do not consider these alternative strategies as viable in
the long term because of considerations which are difficult to include in the present
model, notably the liquidity of the spot market on a long term basis. Another issue
is the variance of the cost or the profit to be had in this type of transaction. We now
turn our attention to it by evaluating the variance of residual budget or profit for all
strategies previously presented.

5.4 Variance of results from contracts for shipper and carrier

In effect, if the shipper decides to source all her transport requirements from the spot
market, she is letting herself be affected by the variance of the spot market price. If as
is often the case, she must respect an overall budget for this cost, this variance is bound
to substantially impact it.

The calculations of the variance of the three contracts and the variance of the spot
market are relegated to Appendix G.

We find that the variance of spot market procurement is equal to 1186.3 over just
one period.

Table 4 Table of maxima and minima of the variances of the different transport procurement
strategies according to the capacity commitment over 40 periods (bivariate demand
and spot market)

Variance (×10 6 )
Procurement
strategy Max Min

Spot 1.898 1.898
PRC 1.327 0.130

pr = 9.6 pr = 3.8
MPC 1.774 0.723

q = 1 q = 10
QFC 0.840 0.145

β = 320 β = 448
α = 0 α = 1
θ = 0 θ = 0.1
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We compare the three contracts over 40 periods. The results are tabulated in Table 4.
As can be observed, the possibility of contracting ex ante transport capacity clearly
exhibits important differences in terms of the variance of the cost of transport for
the shipper. The most favourable contract being the QFC, a result which is intuitive:
the shipper reduces uncertainty in both the cost of transport and the uncertainty of
demand by contracting in advance the required transport capacity over a number of
periods. The variance is even lower than the MPC’s on all capacity commitments.
This is due to the length of the period considered here (n = 40): for lesser lengths of
time, the result would not be so clear cut. This difference increases when increasing n,
favouring the QFC contract when the shipper has the ability to contract over multiple
periods.
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Notes

1In the process, each game results from the choice of a game which in turn results from the
choice from another game, etc.

2The supplier is in fact trying to coax the buyer into using this available capacity.
3This is the case for example for non-dangerous palletised products and tautliners: loads or
trucks can be exchanged among themselves.

4This situation can be contrasted with Spinler and Huchzermeier (2006), Kleindorfer and Wu
(2003) where demand is an inverse function of the spot price, but is similar to the setting in
Seifert et al. (2004).

5In contrast to the assumptions underlying the model in Spinler and Huchzermeier (2006).
6This effect is similar to the ‘learning curve’ effect: as the number of games runs up, the
information effect represents a rent to the carrier which he can hide from the shipper.

7This type of objective function is introduced in the 1950s by Markowitz within the
Mean-Variance Theory, basis of the modern portfolio selection theory.

8This contract is on purpose very similar to the option contract presented in Spinler and
Huchzermeier (2006).

9See the definition for S(K) presented in Section 2 of Cachon and Lariviere (2001).
10See the discussion in Appendix E.
11The reasons for this penalty is to ensure that the shipper conveys demand forecasts in a credible
way. Note that in this contract no other lump payment is made which would otherwise ensure
such credibility. The reader can refer to Chen (2004) and Cachon and Lariviere (2001) among
others for further justifications.

12We are interested in feasible and tractable solutions, not mathematical proofs.
13Unless this is the N th game, in which case the sunk investments have come to the end of their
useful lives.

14The details of all calculations are available upon request to the author.
15I.e., where both differentials in terms of n are positive.

Appendix

A Proof of Theorem

Proof of Theorem 2: There is an optimal commitment for the shipper or the carrier
if the shipper’s or the carrier’s objective function are concave. For the shipper,
this is the case iff

∂2E2
s (q, s, r, n)
∂q2 = sfX(q) + If ′

X(q) − ∂2ϕs(q)
∂q2 ≤ 0. (40)

We look for the optimal quantity q which should satisfy both players.

∂E2
s (q, s, r)
∂q

= −sFX(q) + IfX(q) − ∂ϕs(q)
∂q

. (41)

The F.O.C. requires that

s =
IfX(q) − ϕs′(q)

FX(q)
, (42)

subject to FX(q) < 1 and the shipper’s objective function being concave.
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For the carrier, the first differential in q of his profit function is written

∂E2
c (q, s, r)
∂q

= (s − c)FX(q) +
∂ϕc(q)

∂q
. (43)

∂2E2
c (q, s, r)
∂q2 = −(s − c)fX(q) +

∂2ϕc(q)
∂q2 . (44)

The second derivative ofϕ(q)maynot be always negative for all q so that no conclusion
can be drawn as to whether the extremum in q for the carrier is actually an optimum.
In point of fact, in the bivariate example presented here, the values of q which mark
local extremums are minimums.

Depending on the bargaining power of both players, the final commitment on
which both agree may be equal to the optimum of the shipper or higher. �

B Objective functions with a QFC

Given that all periods of the game are symmetric: each demand outcome is i.i.d. with
respect to the others and the spot prices are also i.i.d. with respect to the other spot
prices. We can reorder the realised demands within the overall sum in each of the
objective functions of the buyer and supplier irrespective of what demand occurs
exactly in which period.

The objective functions take different forms whether the sum of outcome demands
is higher than β or not: if the shipper has overestimated her demand, she has to pay a
penalty.

β ≥
i∑

i=1

xi,




V3(X,P ) = α
n∑

i=1

xi + θ

(
β −

n∑
i=1

xi

)

π3(X,P ) = α
n∑

i=1

xi + θ

(
β −

n∑
i=1

xi

)
− c

n∑
t=1

xi − nK

β <

n∑
i=1

xi, ∃j | j ≤ n ∧
n−j−1∑

i=1

xi ≤ β ∧
n−j∑
i=1

xi > β,




V3(X,P ) = αβ +
( n−j∑

i=1

xi − β

)
pn−j + µP

n∑
i=n−j+1

xi

π3(X,P ) = αβ +
( n−j∑

i=1

xi − β

)
pn−j + µP

t∑
i=n−j+1

xi − c
n∑

i=1

xi − nK.

To evaluate the dispersion of demands around β, we need to calculate the variance of
the sum of demands within a game. Because demand is a stationary stochastic process,
its sum over n periods is also a stationary process, and its variance is finite. Let us call
Yn =

∑n
i=1 xi. By the central limit theorem, for a large n,

Yn ∼ N (nµX ,
√

nσX). (45)

Let us call fY (.) and FY (.) the pdf and cdf of this normal distribution. Let us restrain
the present study to the support [0, QYHi], with QYHi a suitably high number.
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In the following, we shall assume that n is sufficiently large as to render the Central
Limit Theorem applicable.

C Expected optimal parameters in the QFC

The parameters of the contract α, β, θ and n presented in Condition 4 are discussed
and evaluated.

The shipper is interested in minimising the impact of both the spot market when
she underestimates the demand she has to satisfy and the penalty she has to pay when
she overestimates the demand.

A Optimal θ:

∂E3
s (α, β, θ, n)

∂θ
= −

(
β

FYn(β)
− g1(β, n)

)
≤ 0. (46)

So the shipper is always looking tominimise the penalty. By the same token, the carrier
is always looking to increase it.

The shipper would not accept a contract in which the penalty for not forecasting
correctly the demand to be carried over the length of the contract is equal to the whole
budget she has identified for transport. The carrier would not countenance a penalty
where he would have to actually pay for a forecasting error imputable to the shipper.

So, the range for this parameter is

0 ≤ θ ≤ B − nαµX − µP

(
g2(β, n) − β/FYn

(β)
)

β/FYn
(β) − g1(β, n)

. (47)

The higher the penalty, the higher the confidence that the shipper has in her forecasts
(meaning she has a pretty good notion that she won’t have to pay up), or the higher
the carrier’s bargaining power, or both. This commitment by the shipper resembles the
commitment presented in the model in Cachon and Lariviere (2001). A large penalty
clearly signals that the shipper expects to exceed her transport commitment.

B Optimal β:

The differential in terms of β of the shipper’s and carrier’s objective functions are only
different in sign:

∂Ψ(β, θ, n)
∂β

= θ

(
1

FYn(β)
− βfYn

(β)
FYn(β)2

− ∂g1(β, n)
∂β

)

+ µP

(
∂g2(β, n)

∂β
− 1

FYn
(β)

+
βfYn

(β)
FYn

(β)2

)
. (48)

Whatever the type of distribution of demands, g1, g2 are always continuous on the
domain of interest, θ ≥ 0 soΨ (β, θ, n) is also continuous andmay admit an extremum
over the domain. However, by construction, this will be a maximum for one party
when it is a minimum for the other party.

The shipper will be looking for a low β when the carrier looks for a high one:
we have no way of telling how the bargaining will turn.
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C Optimal n:

As an initial remark, the reader is reminded that both carrier and shipper are involved
in a transaction setting which requires an initial investment which has yet to run its
full economic life. This life is a function of the number of games that both participants
play but not of the length of each game. Both are motivated to increase the lifetime
of the investments because at the end of the useful life of those investments, they will
have to incur new ones. So both are inclined to choose n as large as possible.

To evaluate the optimal number of periods, we linearise n and differentiate
according to it. We obtain

∂E3
s (α, β, θ, ñ)

∂ñ
=

∂B(ñ)
∂ñ

− αµX − ∂Ψ(β, θ, ñ)
∂ñ

. (49)

The optimal n to the shipper is when the F.O.C. is satisfied, meaning that

α =
1

µX

[
∂B(ñ)

∂ñ
− ∂Ψ(β, θ, ñ)

∂ñ

]
. (50)

The equivalent optimal parameter for the carrier is different unless ∂B(n)/∂n =
K + cµX , which has no reason to be. So the parameter α, result of the bargaining,
will fall within a range defined by the regions in which both partners wish to extend
the number of periods.15

So, both players are likely to choose α such that

α ≤ 1
µX

[
∂B(ñ)

∂ñ
− ∂Ψ(β, θ, ñ)

∂ñ

]

α ≥ c +
K

µX
− 1

µX

∂Ψ(β, θ, ñ)
∂ñ

. (51)

Along the way we obtain a ‘desirable’ range for α, something which is not given from
the F.O.C. in α of the players’ objective functions since the carrier’s first differential
in α of his objective function is always positive and the shipper’s is always negative.
However, this range is not mandatory: choosing a value outside this range does not
impede the players from reaching an agreement, so we shall only mention it here but
not include it in the set of conditions for the eligibility of the contract.

D Participation constraints

The participation constraints on the players also require that

{
Es

3(α, β, θ, ñ) ≥ 0,

Ec
3(α, β, θ, ñ) ≥ 0.

(52)

with

Es
3(α, β, θ, ñ) = B(ñ) − ñαµX − Ψ(β, θ, ñ)

Ec
3(α, β, θ, ñ) = ñ[αµX − cµX − K] + Ψ(β, θ, ñ). (53)
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By replacing function Ψ by its definition in (17), the participation constraints can now
be written

θ

(
β

FYn
(β)

− g1(β, ñ)
)

≤ B(ñ) − ñαµX − µP

(
g2(β, ñ) − β

FYn(β)

)

θ

(
β

FYn(β)
− g1(β, ñ)

)
≥ ñK + ñcµX − ñαµX − µP

(
g2(β, ñ) − β

FYn
(β)

)
.

The Figure 2 represents the area where the tuples {α, β} with both α and β positive
enable a positive penalty θ to exist in the numerical example of a bivariate demand
and price.

Because all the above functions and expressions are continuous and do not change
when we consider integer values for n, in the following we shall drop the tilde over the
n and consider that we are using whole periods only.

We can now enunciate the conditions of existence of the QFC:




α ≥ 0, ∧ θ ≥ 0, ∧ β > 0

θ ≤ 1
β/FYn

(β) − g1(β, n)
[B(n) − nαµX − µP (g2(β, n) − β)]

θ ≥ 1
β/FYn

(β) − g1(β, n)
[nK + ncµX − nαµX − µP (g2(β, n) − β)].

(54)

Figure 2 The grey segments represent the possible tuples {β, α} for which a QFC which
coordinates the shipper and carrier can be chosen in the bivariate numerical
example developed later (see online version for colours)
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D Proof of Condition 7

Proof: From (28) and for both players to choose aQFC itmust generatemore reward
than the MPC to each player. Since n > 0, we must have{

r + sµX(q) + IFX(q) + ϕs(q) ≥ Ψ(β, θ, n)/n + µXα

cµX + r + (s − c)µX(q) + ϕc(q) ≤ Ψ(β, θ, n)/n + µXα.
(55)

Further, the parameters r, s and q have to satisfy Condition 3 and β, θ and n must
satisfy Condition 4. �

E Numeric example with bivariate variables

A Conditions for a PRC to exist

We first start by determining the conditions for a PRC fromCondition 1 to be eligible,
pr has to satisfy

3.80 ≤ pr ≤ 9.6. (56)

B Condition for a MPC to exist (Condition 3)

To know the MPC to be satisfactory per se for both players, let us look at how to
satisfy Theorem 2, that is to say, which values of q enable an optimal s to satisfy both
players simultaneously.

We notice that the shipper’s objective function is not concave: the second
differential in q of the objective function of the shipper is not always negative, so we
cannot apply here the Theorem 2 for the shipper. The same is true of the carrier’s
objective function, which precludes using a simple unique function to calculate the
parameter s.We plot inFigure 3 the curves of values of s in terms of q: (a) themaximum
values of s over which the shipper will have eaten her budget, even if r = 0, (b) the
minimum value of s for the carrier under which he cannot make a profit when r = 0,
(c) the curve under which the second differential of the shipper’s objective function is
negative, (d) the curve of s(q).

For the sake of clarity, we assume here that the shipper and carrier will
agree on a value of s which satisfies Theorem 2 as long as s does not violate
the shipper’s participation constraint and then follows the participation constraint
limit.

The plot of the corresponding values of s are given in Figure 4.
From the first two inequalities in Condition 3, we obtain as the grey segments

in Figure 5 the tuples {q, r} with a strictly positive fixed fee, meaning a fee that the
shipper pays to the carrier. This limits q to 1 ≤ q ≤ 11.

Why does the fixed fee have to be strictly positive? We observe that the results
presented in Cachon and Lariviere (2001) condition the coordination of the shipper
and the carrier to the fact that the shipper signals her demand forecast credibly by
paying ex ante the carrier a fixed fee. Only promising a higher per unit fee s does
not signal credibly the required capacity by the shipper, as shown in Cachon and
Lariviere (2001).
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Figure 3 The thick lines are the upper and lower limits on s for shipper and carrier to
participate, the thin dotted line is the values of s satisfying Theorem 2,

the thick dotted line limits the area where ∂2Es
2

∂q2 = 0: under the line the differential
is negative

Figure 4 The values of s in q which satisfy Theorem 2 and respect the participation

constraints, the thick dotted line limits the area where ∂2Es
2

∂q2 = 0: under the line the
differential is negative (see online version for colours)
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Figure 5 The segments represent the possible tuples {q, r} for which a MPC which
coordinates the shipper and carrier can be chosen. Parameter r ranges between 0
(excluded) and 20.84 (see online version for colours)

C Conditions for a QFC to exist (Condition 4)

We first start by determining the conditions for a QFC alone. We then shall
submit those to the comparison with conditions of the QFC dominating the other
contracts.

How do we evaluate the number of periods which will satisfy both players?
As we have seen in the considerations over the optimaln in Appendix C, the conditions
for both to agree on one value depend on their relative bargaining powers. So that the
Central Limit Theorem can apply and without loss of generality, we assume that they
agree on n = 40.

The important constraints are the ones which determine θ as solution to the
participation constraints expressed in terms of β, α and n in Condition 4.

In Figure 6 the possible values for parameter θ are the positive values between the
two envelopeswhich represent the upper and lower participation constraints, expressed
in terms of α and β. As can be seen, there are upper limits on α which, whatever
the value of β within the domain, do not enable a contract to fulfill the participation
constraints because the corresponding penalty would have to be set at a negative value.
We shall consider only the vectors of parameters {α, β, θ} for which the participation
constraints are satisfied.

The corresponding solutions are an equilibrium in which the QFC is chosen in
isolation, what would the outcome be if the shipper and carrier could compare it to
the PRC?

D Condition for the QFC to be equivalent to the PRC (Condition 6)

We join the constraints from Conditions 4 and from 6. We evaluate pr when
function Ψ (α, β, n) is replaced by its upper and lower bounds.
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Figure 6 The valid values of the parameter θ are the positive ones between the two envelopes
in β and α for Condition 4 to be fulfilled when n = 40 (see online version
for colours)

In Figure 7 we represent the upper and lower envelopes within which evolve the value
of pr given tuples of {β, α}when θ is at or slightly higher than its low bound.When this
is the case, the vectorsα, β, pr describe the volume between both grey envelopes.When
θ takes on its high bound no values of β and α can make a QFC compatible with a
PRC.

However, we also have to satisfy the conditions of existence of the QFC in the first
place. This is given by Condition 4 and as seen earlier (see Figure 6), not all tuples
{β, α} comply. The limit on the combination of β and α values are the same as the one
for existence of a QFC in the first place.

Let us now look at the conditions of existence and dominance of aMPCover a PRC
before submitting them to the comparison with the QFC.

E Condition for a MPC to dominate a PRC (Condition 5)

Let us consider how Condition 5 on the dominance of the MPC over the PRC can be
met. We represent this set of inequalities as two functions in q and pr, as the high and
low boundaries for r in (22):

	Hi(q, pr) = 10pr − 2FX(q) − ϕs(q) − s(q)µX(q),

	Lo(q, pr) = 10pr − ϕc(q) + 1.8(µX(q) − 10) − s(q)µX(q), (57)

with s(q) as the function which generates s from the values of q as defined in B.
We observe that for 2 ≤ q, whatever value is given to pr, we have 	Hi(q, pr) >
	Lo(q, pr), which satisfies the condition of preeminence of the MPC as set in (22) of
Condition 5, so the MPC prevails for all 2 ≤ q < 12. When q = 1, we get 	Hi(q, pr) <
	Lo(q, pr), which means that the PRC is preferred to the MPC insofar as r ≥ 0, as the
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inequality set (23) in Condition 5 is satisfied. by inspection, this means that we must
have at least pr ≥ 8.425, otherwise we would have r < 	Lo(1, pr) ≤ 0: the MPC under
comparison would not be a coordinating one. Even though the players will not retain
it, the outcome must be based on contracts which respect the constraints set up.

Figure 7 Between the envelopes which limit the value of pr are given vectors {β, α, θ} for a
QFC to be comparable to the PRC: the highest envelope is the one when θ assumes
its high bound, the lower one is for the low bound on θ, which at times may be
equal to 0 (see online version for colours)

When q ≥ 12, we observe that no possible positive value of r can satisfy Condition 5:
for those values of q, the MPC is no longer coordinating shipper and carrier so shall
be discarded in this setting as of limited interest. Figure 8 presents the case of lower
and higher limits for r in terms of pr: not all values of pr can enable both players
to be coordinated by a lump sum payment that the shipper makes to the carrier.
When pr ≤ 7.51, the shipper would actually receive a payment from the carrier!

F Condition for a QFC to dominate a MPC (Condition 7)

We now look at the requirements so that the QFC dominate the MPC given in the set
of inequalities (30) of Condition 7. Given that previous conditions of existence of the
QFC also have to be satisfied, we obtain

{
r + sµX(q) + IFX(q) + ϕs(q) > ΨHi(α, β, n)/n + µXα

cµX + r + (s − c)µX(q) + ϕc(q) < ΨLo(α, β, n)/n + µXα.
(58)
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Figure 8 The shaded band above the abscissa represents the possible r for the corresponding
values of pr when q = 8. The band widens progressively as q increases from 2 to 12,
but its higher bound is progressively lower. When q ≥ 12, no positive value of r can
be found which satisfies Condition 5 (see online version for colours)

Let

rhsHi(α, β, n) = ΨHi(α, β, n)/n + µXα,

rhsLo(α, β, n) = ΨLo(α, β, n)/n + µXα, (59)

as the right hand side of the constraint when the function Ψ has been replaced by its
high and low bounds. We have rhsHi(α, β, n) = 96 a constant when θ is set at its high
bound. On the other hand, by inspection we see that 38.00 < rhsLo(β, α, n) ≤ 96 for
all tuples {β, α} which satisfy the conditions of existence of a QFC (see Figure 9).

So, for any value of θ, the right hand side of the constraint is always bounded
from below by 38 and from above by 96. We can now look at the behaviour of the
left hand side.

We first set up four functions for the left hand side of the inequalities: two with
the upper limit on r for the shipper and carrier and two using the lower limits on r for
both players. The lower limit on r comply with the condition of a positive or null fixed
fee r so that the MPC is a coordinating contract in the sense established by Cachon
and Lariviere (2001) (in the present numerical instance, this low limit is r = 0).

lhss
Lo(q) = rLo(q) + s(q)µX(q) + 2FX(q) + ϕs(q) (60)

lhss
Hi(q) = rHi(q) + s(q)µX(q) + 2FX(q) + ϕs(q) (61)

lhsc
Hi(q) = rHi(q) + 18 + (s(q) − 1.8)µX(q) + ϕc(q) (62)

lhsc
Lo(q) = rLo(q) + 18 + (s(q) − 1.8)µX(q) + ϕc(q). (63)

These four functions are represented in Figure 10. The left plot represents the left hand
side set of inequalities when r takes the high value (the lower curve plots the carrier’s
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constraint and the higher one the shipper’s). The right plot represents the carrier’s and
the shipper’s constraints when r takes the lower possible bound.

Figure 9 The right hand side function rhsLo(β, α, n) evolves between 38 and 96 for all tuples
{α, β} which satisfy to the existence of a mutually acceptable QFC (see online
version for colours)

Figure 10 The grey areas are the available domains expressed in money units in which the
right hand side of (58) can evolve

If the MPC dominates strictly the QFC, the following must be verified:

{
lhsc

Hi(q) > rhsHi(α, β, n) > lhss
Hi(q)

lhsc
Lo(q) > rhsLo(α, β, n) > lhss

Lo(q).
(64)

However, what can be observed from the left-hand graph in Figure 10 for the
upper limit of r is that lhss

Hi(q) > rhsHi(α, β, 40) and lhsc
Hi(q) = rhsHi(α, β, 40),
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so that neither contract dominates. Whereas, in the right-hand graph, when r = 0
and 2 ≤ q ≤ 11, inequalities (64) are satisfied: theMPC effectively dominates the QFC.
When q ≥ 12, we see that no contract can be chosen simultaneously by both players
because the required conditions spelled out in 7 for a QFC are not satisfied either.

We conclude that a set of parameters of a MPC which dominates the QFC exist
which satisfy both players.

The MPC which yields the highest return to the shipper when taken in isolation
has q = 8 and r = 0, i.e., its low bound. In the same way, the MPC which yields
the highest profit to the carrier is when q = 11. Without knowing the balance of
power between both, we have no way of pinpointing the set of parameters of
the MPC on which both will agree: 8 ≤ q ≤ 11 and 0 ≤ r ≤ rHi(8) (as presented
in Figure 5).

G Condition for a contract to dominate both other contracts (Condition 10)

The conditions for the emergence of a contract over both other contracts means that
Condition 10 must be satisfied for one of the three contracts. As seen in the previous
subsections, theMPCdominates thePRCwhen q ≥ 2and is preferred to theQFCwhen
2 ≤ q ≤ 11. So, the MPC is preferred overall and no other contract can be preferred
in the present numeric instance over 40 periods.

In the unlikely case where a commitment of q = 1 is preferred, then both the
PRC and QFC come back into play as possible choices. Either can be retained
because sufficient domains exist for the economic result for each player to be equal.
Note however that the conditions are tighter than when both are compared on their
own merits without comparing them to the MPC: we need to have pr ≥ 8.425 as
observed in E.

F Numeric example with fixed spot price

In this instance, we consider that the spotmarket price for transport does not fluctuate.
Due to the fact that the only random variable now is demand, the functions ϕ( ) in
(9), s(q) in (15) change and we can write, adding a superscript 1 to indicate that they
represent a univariate state of the world and naming P the fixed spot price,

ϕs1(q) =
1

FX(q)

∫ QHi

q

(x − q)PfX(x)dx,

ϕc1(q) =
1

FX(q)

∫ q

0
(q − x)(P − c)fX(x)dx

+
1

FX(q)

∫ QHi

q

(x − q)(P − c)fX(x)dx

s1(q) =
IfX(q) − ϕs1′

(q)
1 − FX(q)

.

Regarding the functions which intervene in the calculations of theQFC, the definitions
of functions g1(β, n) and g2(β, n) are the same in both the bivariate and univariate
cases. So, we also have the same definition for Ψ(β, θ, n).
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A Condition of existence of a MPC in the univariate case

We first want to see what conditions for the parameters of the MPC would make this
contract eligible. From Condition 3, when adapted to the case at hand, we can present
the constraints on r in the Figure 11. Since, to be a coordinating contract, we need
that the parameter r be positive, the resulting possible tuples {q, r} are restricted to
the grey vertical bars in that figure.

Figure 11 Fixed spot price: the parameter r in terms of q, the segments are the tuples {q, r}
that enable the MPC to coordinate the players

The corresponding objective functions of the players can be presented in the Figure 12.
Because the fixed fee is at least equal to 0 and cannot take negative values, the shipper
makes the most of her budget by choosing q = 8. If we had left r take negative values,
the shipperwould have had an increasing objective function in terms of q. As the carrier
is also motivated by a high commitment, they would have settled for a commitment
as high as possible (like q = 22, or 4 standard deviations above the expected demand):
a contract which is clearly not a coordinating one as the shipper would fail to fill the
capacity put at her disposition, negating the benefit of this type of contract.

B Condition of existence of a QFC in the univariate case

We now turn to the QFC. The participation constraints from Condition 4 on θ are the
same as in the bivariate case.

The envelopes in the volume {α, β, θ} which represent the boundaries of existence
of the penalty θ are also the same as the ones presented in Section C in Figure 6.
The vectors of values which describe this volume constitute the mutually agreeable
sets of parameters for a QFC to be eligible in the univariate case also.

We now compare the MPC and the PRC.
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Figure 12 Fixed spot price: objective functions of shipper and carrier: the objective functions
show that both players have a weak incentive to extend the commitment to its
highest possible level

C Condition of dominance of a MPC over a PRC

Which parameters of the MPC would make it superior to the PRC for both players to
adopt it? From Condition 5 adapted to the univariate case, we have

r ≤ 10pr − 2FX(q) − ϕs1(q) − s1(q)µX(q)

r ≥ 10pr − ϕc1(q) − 1.8(10 − µX(q)) − s1(q)µX(q). (65)

We present in Figure 13 the resulting envelopes.We see that the lower bound (topmost
envelope in the figure) crosses the higher one when q = 1.985, which means that
the conditions for the dominance of a MPC can only be fulfilled when 2 ≤ q ≤ 12.
For the PRC to dominate, we have to satisfy 23 and this can only be the case when
q = 1 (not represented in the graph in Figure 13). In other cases, either r would be
negative or pr would have to exceed 9.6, the shipper’s participation constraint. Within
those limits, theMPCdominates the PRC for both players. The PRC is preferred when
q = 1, as the inequalities 23 in Condition 5 would be satisfied. Such solutions in terms
of r in terms of pr are presented as the shaded area in Figure 14.

D Comparing the QFC and PRC in the univariate case

Since Condition 6 which presents the cases of dominance of one contract over the
other can be applied to the univariate case in the same way as in the bivariate one, and
by replacing θ by its upper and lower bounds (expressed in terms of α and β) in the
definition of function ΨHi(β, θ, n), we obtain a set of constraints on pr in Condition 1
which can be written in the following way


3.8 ≤ α +

ΨHi(α, β, n)
nµX

≤ 9.6,

3.8 ≤ α +
ΨLo(α, β, n)

nµX
≤ 9.6.

(66)

If these inequalities were not true, the QFC and PRCwould not be equivalent, so none
could be chosen.
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Figure 13 Fixed spot price: the available values of r lie between both envelopes. Not all values
of pr are compatible (see online version for colours)

Figure 14 Fixed spot price: the shaded area represents the available values of r given pr for a
PRC to dominate a MPC, when q = 1
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When one plots the expressions α + ΨHi(α,β,n)
nµX

and α + ΨLo(α,β,n)
nµX

, one sees that
the first has a minimum of 3.8 and a maximum of 9.6, except for those tuples {α, β}
which in any case do not satisfy the participation constraints of the shipper. In the
same way, the second expression has a minimum of 9.6 except for those tuples in
{α, β} which do not satisfy the participation constraints of the shipper. The possible
tuples {α, β} which satisfy all requirements for equivalence between either contract
are represented as the shaded area in Figure 15.

Figure 15 The shaded surface represents the possible tuples {α, β} for which a QFC and a
PRC can be equivalent. The penalty θ can take any of the possible values that are
allowed under Condition 4 (see online version for colours)

E Condition of dominance of a QFC over a MPC

Let us evaluate the conditions in which the QFC dominates the MPC. Adapting
Condition 7 from the bivariate case by replacing functions ϕs(q) and ϕc(q) by their
equivalents in the univariate case, we correspondingly change the functions presented
in (60) and rename them with an added superscript 1: lhsc1

Hi, lhss1
Hi, lhsc1

Lo and lhsc1
Lo.

As in the bivariate case, the right hand side of the inequalities are the same as in
the bivariate instance.

The functions lhs describe the segments within which r can be set in terms of q, as
can be seen in Figure 16: the left hand graph represents the high and low bounds when
r is at its high bound, the right hand graph represents the same high and low limits
taken by lhsi

Lo(q), i ∈ {s, c} when r is at its low bound (in the present case: r = 0).
The higher and lower limits of rhs(α, β, n) are also presented.

We have to solve


lhsc1
Hi(q) < rhsHi(α, β, n) < lhss1

Hi(q)

lhsc1
Lo(q) < rhsLo(α, β, n) < lhss1

Lo(q).
(67)
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Figure 16 The left hand side of inequalities in (60) suitably adapted to the univariate case are
presented together with the upper and lower limits on rhs(α, β, n): left-hand graph
when r is at its highest, right-hand graph, when r = 0

By inspection, lhsc1
Lo > lhss1

Lo and lhsc1
Hi > lhss1

Hi, ∀q ≥ 2. We also observe that in two
other situations: (a) when q ≥ 12, lhsc1

Lo > rhsHi and (b) when r takes its higher bound
and q ≥ 2, lhss1

Hi = rhsHi and lhsc1
Hi > rhsHi, the players would choose different

contracts. If there are values of α, θ and β which enable the inequalities 31 in
Condition 7 to be satisfied, then the MPC dominates the QFC and if no values of
{α, β, θ} can be found neither contract can be chosen simultaneously.

To describe here all the possible solutions of contracts QFC and MPC which fall
in this category would be fastidious. We present below the solution for one solution
for the MPC and corresponding solution set and method to evaluate it.

When q = 8, r = 0, s = 5.983, we have lhsc1
Lo(8) = 79.9489 and lhss1

Lo(8) = 72.909.
Which suitable sets of {α, β, θ} allow 72.909 < Ψ(β, θ, 40)/40 + µxα? For example,
as can be gathered from Figure 17, once {α, β} have been determined, the available
penalties are the ones forwhich 72.909 < Ψ(β, θ, 40) + µxα < 79.9489, so for example,
if α = 5, β = 380, then 0 < θ < 0.9663.

F Condition of dominance of a PRC over a MPC and equivalent to a QFC

As seen above for the preeminence of the PRC over theMPC, this means that we need
q = 1 for a PRC to dominate. If this is so, the required values of pr are as presented in
Figure 14, i.e., 8.20 < pr ≤ 9.6.

Since we also need an equivalent QFC, we must have Condition 6 satisfied. This is
true when




θ <

[
3840 − nµXα − µP

(
g2(β, n) − β

FYn(β)

)]
1

β
FYn (β) − g1(β)

,

θ >

[
3280 − nµXα − µP

(
g2(β) − β

FYn(β)

)]
1

β
FYn (β) − g1(β)

.

(68)

This set of conditions is reminiscent of the ones encountered in E. The lower and upper
limits to the possible values of θ are very close. As an example, when α = 5, β = 405
and n = 40, we have 21.62 < θ < 23.60. The set of available QFC parameters {α, β, θ}
are presented in Figure 18.
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Figure 17 Fixed spot price: the upper and lower bounds of rhs1(α, β, 40) are 72.909 and
79.9489. The graph represents a volume containing the possible tuples {α, β} when
θ is at its low bound: the point {5, 380} is in the solution set, {8, 340} is not

Figure 18 Fixed spot price: the figure represents two envelopes which nearly coincide:
the lower and upper limits of the value of θ in terms of the tuples {α, β}
solution to (68) and which describe the QFC which is equivalent to the
dominant PRC
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G Condition of dominance of a MPC over both a QFC and a PRC

Since we already have established the conditions for a MPC to dominate both a PRC
and a QFC separately, we just have to ensure that the PRC and QFC are equivalent
to obtain the necessary and sufficient conditions for a MPC to dominate both others.

We have seen earlier that the only remaining commitment q which enables the
satisfaction of theses conditions is when 2 ≤ q < 12, and the parameters of the QFC
allow it to be equivalent to the PRC. Further, the inequality set (67) has to be satisfied.

We represent in Figure 19 one set of tuples which enable a QFC to exist
and be comparable to a MPC when q = 8. It has been chosen after setting θ at
its low boundary. A similar graph could have been drawn for other values of θ
and q.

Figure 19 Fixed spot price: the figure represents the lower and higher limits of the tuples
{α, β} which enable the right hand side of the inequalities in (31) to be between
lhsc1

Lo and lhss1
Lo and hence a compatible QFC to exist. The case where q = 8 is

represented, the other values of q would be similar

H Condition of dominance of a QFC over both a MPC and a PRC

We have seen earlier that the set of values which enable a QFC to be chosen
preferentially require that the MPC be first dominated; this means that q = 1, further
the penalty must satisfy the inequality set (68).

This leads to profit functions which are plotted in Figure 20: the result is
independent of the commitment as both α and θ are in fact the coordinating factors.
This graph leads us to believe that the variance of demand must have a high impact on
the final result both for the shipper and carrier when a high commitment β is agreed
upon: if the realised demand does not meet the expected one, the result must be very
different from the ones plotted here given that both α and θ are relatively expensive
(when β = 436, α = 300.3 and 7.128 < θ < 18.27).
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Figure 20 Fixed spot price: the figure represents the lower and higher limits of the objective
functions of the shipper and carrier in the case that the dominated MPC has q = 1
for all capacity commitments

G Variance of results for all strategies

We proceed to evaluate the variance of each contract. We start with the variance of
the profit or retained budget for carrier and shipper in the case where they both rely
in the spot market for their needs.

A Variance of residual budget to the shipper when buying from the
spot market

The expected cost of going to the spot market every period to buy the required
capacity to the shipper is the result of the product of the two random variables X
and P , demand and spot market price. By definition,

E(XY ) = Cov(X,P ) + µXµP = 82.25. (69)

Hence, the expected residual budget is over 40 periods:

Πspot = B(40) − 40(2 + 82.25) = 470. (70)

The variance is by definition over one period

Var(XP ) = E(X2P 2) − E(XP )2 = 1186.3. (71)

If we consider that the number of periods is independent of demand, the variance of
a procurement strategy using only the spot market over 40 periods is 40 times the
preceding result:

Vspot = 47451. (72)

Let us now evaluate the variance for the contracts.

B Variance of the cost of the PRC

Theonly risk affecting the shipper in this contract is the demand risk, hence the variance
of the cost to her of using this contract is reduced to the variance of demand times the
number of periods and the square of the per unit price:

VarPRC(pr) = np2
rσ

2
X . (73)
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In our bivariate numerical instance this can be represented in terms of pr in Figure 21.
As can be seen, 5198 < VarPRC < 33178.

Figure 21 Variance of a PRC according to pr over 40 periods (see online version for colours)

C Variance of the cost to the shipper of the MPC

Since the contract does not use the spot market when demand is less than q, we can
distinguish, for the purpose of evaluating the covariance, between the case when
demand is less than q and when it is higher. Let us define

v(q) = Var(X |X < q)

z(q) = Var((X − q)P | X > q). (74)

We can write the conditional variance of the demand when it is less than the
committed capacity as

v(q) = E(X2 |X < q) − E(X |X < q)2

=
1

FX(q)

∫ q

0
x2fX(x)dx − 1

FX(q)2

(∫ q

0
xfX(x)dx

)2

. (75)

However, the covariance of demand and spot market price when demand exceeds the
committed capacity must be written

z(q) = E([(X − q)P ]2 |X > q) − E((X − q)P |X > q)2

= eX(q) − qX(q)2, (76)

with

eX(q) =
1

1 − FX(q)

∫ PHi

v

∫ QHi

q

(x − q)2y2f(x, y)dxdy
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qX(q) =
1

1 − FX(q)

∫ PHi

v

∫ QHi

q

(x − q)yf(x, y)dxdy. (77)

The total variance of the MPC to the shipper is the sum of both variances since they
occur in distinct domains:

Var(V2) = s(q)2v(q) + z(q). (78)

So total variance of the MPC decreases to a minimum when the capacity commitment
equals expected demand as can be seen in Figure 22 before shooting up again as
the commitment encompasses the expected demand plus several standard deviations.
At the minimum, it is lower than the variance of the spot market procurement
(topmost line).

Figure 22 Variance of a MPC and spot market buying strategy according to q when taken in
isolation (see online version for colours)

D Variance of the cost of the QFC to the shipper

We first need the variance of the sum of demands when they sum less than the
commitment β:

Vg1(β, n) = E

(
X2

∣∣∣∣
n∑

i=1

xi ≤ β

)
− E

(
X

∣∣∣∣
n∑

i=1

xi ≤ β

)2

=
1

FYn(β)

∫ β

0
u2fYn

(u)du − 1
FYn(β)2

[ ∫ β

0
ufYn

(u)du

]2

. (79)

When the sum of demands is higher than commitment β, the spot price comes into
play and its variance has to be taken into account. The variance is that of a product
of random variables, which is Var(XY ) = E(X2Y 2) − E

2(XY ). We also know that
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E(X2Y 2) = E(X2)E(Y 2) + 2E
2(XY ). Hence, the variance of the price for transport

when the sum of demands exceeds β is written as

Var
(

P

( n∑
i=1

Xi − β

) ∣∣∣∣
n∑

i=1

> β

)
= E(P 2)E

(
(Yn − β)2 |Yn > β

)
+ E

2(P (Yn − β) |Yn > β
)
. (80)

So we can write

Vg2(β, n) =
1

FYn
(β)

∫ QYHi

β

(u − β)2fYn
(u)du

+
[

1
FYn(β)

∫ QYHi

β

8(u − β)fYn
(u)du

]2

, (81)

naming Vg1 and Vg2 the functions of the variance when demand is lower and higher
than β respectively.

The variance of the residual budget of the shipper with this contract can be
resumed to

Var(V3(α, β, n)) = 32α2n2 + θ2Vg1(β, n) + µ2
P Vg2(β, n). (82)

We present in Figure 23 the resulting variance when θ = 0.1, two values of α = 0.1
and α = 4 and β evolves between 320 and 480. When the penalty increases it induces
higher volatility if it surpasses certain levels. At high levels, the volatility in terms
of β goes through a minimum before increasing again as can be seen in Figure 24.
For example, when θ = 25, a minimum of volatility of 0.117 × 106 is achieved with
β = 395.

Figure 23 Variance of a QFC according to β, with n = 40, θ = 0.1, α = 0.1 (lower curve),
and α = 4 (higher curve) when taken in isolation (see online version for colours)
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Figure 24 Variance of a QFC according to β, with n = 40, α = 0.1 and θ = 1 (lower curve),
and θ = 15 (higher curve) when taken in isolation (see online version for colours)

The variance of such a contract is clearly lower than the ones resulting from the use of
either the MPC or pure spot procurement.

As a final comparison of results, Table 5 presents the lowest possible variance for
each form of transport procurement given the same distribution of demand and spot
market prices.

Table 5 Lowest variances for 1 and 40 periods for spot procurement, PRC, MPC and QFC
contracts and corresponding parameters

Contract One period 40 periods Parameters

Spot 1186 1.898 × 106 –
PRC 130 0.130 × 106 pr = 3.8
MPC 452 0.723 × 106 q = 10
QFC – 0.145 × 106 α = 1, β = 448, θ = 0.1


