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Abstract: This paper characterizes the conditions under which holdout (i.e. bargaining in-

efficiency) may, or may not be significant in a two-sided, one-buyer-many-seller model with

complementarity. We address this problem in a very general setup with a bargaining proto-

col that is symmetric and allows for both publicly observable, as well as secret offers, and a

technology that allows for variable degrees of complementarity. The central insight is that the

transparency of the bargaining protocol, formalized by whether offers are publicly observable

or secret, as well as the extent of complementarity, play a critical role in generating efficiency.

Even with perfect complementarity, holdout seems to be largely resolved whenever the bargain-

ing protocol is public (but not if it is secret). Further, irrespective of the bargaining protocol,

holdout is resolved if the marginal contribution of the last seller is not too large.
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1 Introduction

Many economic activities involve a single buyer seeking to acquire and combine objects from

several sellers, e.g. drug development often requires separate patents, land developers have to

combine separate plots of land and firms often purchase assets of other firms. Further, firms

often bargain with multiple unions, and, in case of financial distress, with multiple creditors.

Coase’s (1960) famous railroad example considers a situation where a railroad has to acquire

plots of land from several farmers.1

Given the complementarity inherent in all such activities, received wisdom suggests that the

outcome is likely to exhibit holdout, with sellers refusing to transact until others have already

done so, when commencing production becomes more profitable, allowing the sellers who holdout

to extract a greater share of the surplus. In such a scenario holdout is expected to cause

inefficiencies, viz. delay, or the implementation of an inefficient project, even, in the presence of

strong complementarities, a complete breakdown of negotiation.2

We formalize such interactions as a non-cooperative bargaining problem with one buyer and

many sellers, focusing on the tension between the complementarity intrinsic to such a setup and

efficiency. Our central result is that the presence or absence of holdout (i.e. inefficiency) is

critically dependent on the transparency of the bargaining protocol. Even with perfect comple-

mentarity, we find that efficient equilibria exist whenever buyer offers are publicly observable.

In case buyer offers are secret (with a seller only observing her component of the offer), there

is bargaining breakdown. Further, in case the technology is less than perfectly complementary,

there may be efficient equilibria even if buyer offers are secret.

To this end we consider the interaction between one buyer and n ≥ 2 sellers, all of whom

have an object to sell. These objects can be combined to produce value. In particular, all sellers

have identical objects, with a project using m objects having value v(m). We assume that v(m)

is strictly super-additive, with v(0) = 0 and v(n) = 1.3 This formulation allows for different

1Similarly, Cournot analyzed a problem where a brass manufacturer has to buy copper and zinc from

two monopoly suppliers.
2In the context of land acquisition, many countries, including the USA, have promulgated eminent

domain laws (that allow land acquisition for public purposes on payment of compensation), presumably

to counter this holdout problem. One of our motivating examples comes from West Bengal, India, where

the state government used the Land Acquisitions Act, 1894, to acquire land for building an automobile

factory for Nano (the one lakh rupee car) in Singur (West Bengal). It has also been argued by some,

e.g. Parisi (2002), that problems like excessive fragmentation can be be traced, at least partially, to such

holdout problems. In the patents literature, Shapiro (2001), suggests that holdout can be serious obstacle

to R&D.
3Perfect complementarity thus arises as a special case where v(m) = 0, ∀m < n,.
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degrees of complementarity, with the buyer being allowed to implement a ‘partial’ project that

does not require the use of all objects.

The negotiation process that we consider is a natural extension of the Rubinstein (1982)

bargaining model in which the agents, the buyer, as well as the sellers, make simultaneous offers

to the other side of the market in alternate periods. Note that this protocol is symmetric in the

sense that at no point during negotiation, is an active seller shut out of the bargaining process.

Further, the buyer can choose to exit at any period when he can implement a partial project

involving the objects collected so far, or opt for an outside option of C which can be arbitrarily

small. The question of interest is the possibility of obtaining equilibria that are asymptotically

efficient, i.e. the grand project is implemented and delay costs, if any, goes to zero as the

discount factor approaches 1.4

In order to focus on the holdout problem more sharply, we begin by analyzing the case of

perfect complementarity, so that v(s) = 0, ∀s < n. When buyer offers are public, there exists

equilibria that are asymptotically efficient and the buyer obtains a payoff close to 1/2. When

buyer offers are secret though, there is bargaining breakdown with the buyer opting out at the

first period. These results are of interest for several reasons. First, these establish that protocol

transparency is critical as far as efficiency is concerned. Second, in contrast to the literature

on one-buyer-many-seller bargaining problems with complementarity, viz. Cai (2000, 2003) and

Menezes and Pitchford (2004), which concludes that inefficiency is endemic in such setups (see

detailed discussion later), we find that efficient equilibria exist whenever offers are public.

The intuition for these results depends on an interplay of two factors. Suppose the buyer

has already acquired n − 1 of the objects. Then the buyer has a strong incentive to conclude

bargaining with the remaining seller also. Thus this seller (and thus ex ante all sellers) has

some bargaining power. On the other hand, the buyer can opt out, which is a potential source

of bargaining power for the buyer. When offers are secret however, the buyer cannot credibly

commit to opt out of the game. This is because the buyer can make secret agreements with the

other sellers, which may reduce his incentive to opt out. With public offers however, such secret

agreements are not possible so that threats of opting out are credible. Hence the difference in

results.

We then extend the analysis to the case where complementarity is less than perfect, so that

v(s) is not necessarily zero for s < n. We find that the marginal contribution of the n-th seller,

i.e. 1 − v(n − 1) plays a critical role in the analysis. Whenever the marginal contribution of

the last seller is not too large, in the sense that v(n − 1) < 1/2, we find that the results are

4Given the folk-theorem like results in Chatterjee et al. (1993) and Herrero (1985), the most that we

can hope for here is the existence of at least one equilibrium that is efficient, at least asymptotically. See

Hyndman and Ray (2007) on this issue though.
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completely analogous to those under perfect complementarity. However, when v(n − 1) > 1
2 ,

there is an efficient equilibrium where the grand project is implemented in the first period and,

moreover, the buyer obtains a payoff of 1. This result holds under both bargaining protocols,

public, as well as secret offers. These results show that the assumption that v(n − 1) < 1/2,

provides a precise generalization of the perfect complementarity case.

Moreover, for v(n − 1) > 1/2, we find that there exists efficient equilibria even when buyer

offers are secret. The intuition can be simply stated. If v(n − 1) > 1/2, then once the buyer

reaches an agreement with n− 1 of the sellers, in any continuation game the buyer must obtain

at least v(n− 1). In fact, given that v(n− 1) > 1
2 , the buyer has a strong incentive to terminate

the project immediately and implement v(n − 1). Since the seller then has a payoff of zero,

this consideration considerably reduces the ability of the remaining seller, and ex ante of all the

sellers, to holdout, allowing the buyer to extract all the surplus from trading.

1.1 Relation to Existing Literature

This paper traces its ancestry to one of the most important recent research areas, the theory

of coalitional bargaining. Following the seminal work of Rubinstein (1982), as well as the

literature on core implementation, researchers have studied the non-cooperative foundations of

various cooperative solution concepts, in particular the core and the Shapley value. While Gul

(1989) and Hart and Mas-colell (1996) are concerned with the Shapley value, Chatterjee et al.

(1993), Serrano (1995) and Krishna and Serrano (1996) study implementing the core. Moreover,

while Chatterjee et al. (1993) consider exogenous, but deterministic bargaining protocols, Okada

(1996) examines a model with random proposers. There is also a relatively recent branch of this

literature that tries to endogenize the process of coalition formation, e.g. Perry and Reny (1994),

Bloch (1996), Ray and Vohra (1997, 1999) and Okada (2000), as well as allow for contractual

renegotiation, e.g. Seidmann and Winter (1998), Hyndman and Ray (2007), etc.

Formal treatments of the holdout problem (using game theoretic arguments) were first pro-

vided in Eckart (1985) and Asami (1988). The theoretical literature was further developed in

Cai (2000, 2003) and Menezes and Pitchford (2004). Like us, Cai (2000) and Menezes and

Pitchford (2004) analyze a cash-offer model in which the seller is paid immediately after an

agreement is arrived at. In contrast, Cai (2003) allows the buyer to offer a contingent contract

that promises to pay the seller a given amount only when production is carried out. While Cai

(2000) and Menezes and Pitchford (2004) find that inefficiency in the form of delays must occur

in equilibrium, Cai (2003) finds that the buyer payoff is arbitrarily close to zero if the number

of sellers is large. financing.

Our results extend the literature by clarifying the role of protocol transparency in obtaining
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efficiency, showing that whether holdout is serious or not depends on two factors, first, the nature

of the bargaining protocol, and second, on how complementary the sellers are. This paper also

contributes to the literature by providing a framework that has some appealing features. First,

the bargaining protocol adopted by us is symmetric, second, we allow for outside options (which

however can be vanishingly small), and finally, we allow for general production technologies

(which however does include perfect complementarity as a special case).

The rest of the paper is organized as follows. Section 2 describes the framework, and, in 2.1,

also establishes some preliminary results. Under perfect complementarity, Section 3 examines

the case where buyer offers are public, whereas Section 4 examines the case where buyer offers

are secret. Section 5 extends the analysis to the case where complementarity is less than perfect.

Section 6 concludes. Proofs of some of the propositions and lemmas are collected together in

the Appendix.

2 The Framework

There are n+1 agents, one buyer and n ≥ 2 sellers. Every seller has an identical object that can

be combined to generate returns for the buyer. We write v(s) to denote the return to the buyer

when a project that combines s objects, 0 ≤ s ≤ n, is implemented, where the grand project

involves combining all the objects. v(s) is assumed to be non-decreasing in s and we normalize

units such that v(0) = 0 and v(n) = 1. We assume that v(s) is strictly super-additive in that

v(n) > v(s) + v(n − s) for any s, where 1 ≤ s < n. Consequently implementing any project

other than the grand project, is inefficient. The buyer is allowed to implement a project of size

zero, which should be interpreted as the buyer exiting the game without acquiring any object.

In that case the buyer obtains an outside option of C > 0. C can be arbitrarily small and in

particular we assume for the rest of the analysis that C < 1/2.

To begin with, we focus on the case with perfect complementarity so that the return to the

buyer is 1 if the project combines all n objects and v(s) = 0, for all s < n.5

The buyer and the sellers bargain over the price of the objects. The bargaining protocol that

we use here is a simple variant of the standard Rubinstein (1982) procedure. Time is discrete

and continues for ever, so that t = 1, 2, · · ·. At the start of any period t, there is a set of ‘active’

sellers who are yet to sell their objects. Each period t is divided into three sub-stages.

We begin by describing the first two stages. The first stage of t consists of one side of the

market making offer(s) to the other side, followed, in stage two, by the acceptance/rejection

decisions of the other side. We assume without loss of generality that the buyer makes his offers
5In Section 4 we extend the analysis to the case where complementarity is less than perfect, and show

that some additional results of interest emerge, especially when v(n− 1) > 1/2.
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in odd numbered periods, whereas the sellers make their offers in even numbered ones. Thus at

t = 1, 3, . . ., the buyer offers a price vector to the set of sellers active at that point of time. In

Section 3 we consider a bargaining protocol that involves ‘public offers’, i.e. each seller observes

the entire vector of offers made by the buyer. In Section 4, we extend the analysis to allow

for the case where buyer offers are secret.6 These sellers then simultaneously decide whether

to accept, or reject the offer made to each one. In even numbered periods, t = 2, 4, . . ., on the

other hand, the active sellers simultaneously make their offers. After observing all the offers,

the buyer decides which of these offers to accept, if at all. Finally, once a price is agreed upon

between the buyer and any seller, the concerned seller immediately receives the agreed upon

price and exits the game.

At the third stage of t, the buyer has the option of implementing a project of size k, where

k denotes the number of objects that are acquired by the buyer till then, or opting out when he

receives C. If the buyer either implements a project of size k or opts out, the game is over. When

k < n however, the buyer may continue bargaining when the game goes to the next period, with

the number of active sellers being n − k. We assume, without loss of generality, that if k = n,

then the project is immediately implemented.

Finally, we assume that all agents are risk neutral and that they have a common discount

factor δ, where 0 < δ < 1.

For any given play of the game, the history at the beginning of stage i of date t includes

information on all the past offers, the acceptance/rejection decision of the players and the set

of active sellers that are yet to sell their objects. For the public offer game, all such information

is common knowledge among the players. For the secret offer game, the set of active sellers at

the beginning of stage i of date t is common knowledge.

Our focus in this paper is to study sequential equilibria in pure strategies. The central issue

addressed here is if, for δ large, one can support equilibrium in which the buyer implements the

grand project and in which the ‘delay’ cost, if any, is arbitrarily close to zero. We term such

equilibrium outcomes as ‘asymptotically efficient’.

2.1 Some Preliminary Results

In this sub-section we record some observations that will be used repeatedly in the rest of the

paper. Consider a scenario where the buyer has already acquired n − 1 of the objects. When

δ is large, it is straightforward to extend Osborne and Rubinstein (1990, 3.12.2) to show that

the buyer will prefer to reach an agreement with the remaining seller as well, and implement
6The assumption that the buyer makes an offer to every seller, is without loss of generality since the

buyer can always make a negative offer to any seller that is surely to be rejected by the seller.
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the grand project rather than opt for his outside option (v(n − 1) is of course zero). From

Rubinstein (1982), it also follows that in such a case, the continuation payoffs of the proposer

and the responder are, respectively, 1
1+δ and δ

1+δ .

Let δ∗ satisfy
δ

1 + δ
= C.

Lemma 1 Let δ > max{δ∗, 1
2}.

(a) In any equilibrium, if the buyer implements a project of size k, then k 6= n− 1.

(b) Consider any history that starts with exactly one seller. If t is odd, the buyer offers the price
δ

1+δ which is accepted by the seller, while if t is even, the seller asks for 1
1+δ , which is accepted

by the buyer.

The next lemma puts a lower bound on seller payoffs when the buyer is making acceptable

offers to all active sellers.

Lemma 2 Let δ > max{δ∗, 1
2}. Consider any history with m ≥ 1 active sellers at date t, where

t is odd. If the equilibrium calls for the buyer to make an acceptable offer to all m sellers, then

each seller must get at least δ
1+δ .

Proof. Since at t, the buyer makes an acceptable offer to all existing sellers, if any of these

sellers rejects, then at the end of period t, the buyer would have acquired exactly n− 1 objects.

From Lemma 1, the negotiation will continue in the next period when the deviating seller has a

payoff of 1
1+δ . Thus by rejecting the offer, given that the rest of the sellers are accepting their

offers, any seller can assure himself a payoff of δ
1+δ .

Given δ, let YB(m, δ) be the supremum of buyer payoffs in any continuation equilibria begin-

ning from a history with m active sellers. Similarly, let Yi(m, δ) denote the supremum of seller

i’s payoffs in any continuation equilibria starting from a history with m active sellers, with seller

i being one of these active sellers.

Our next lemma provides an upper bound on these payoffs.

Lemma 3 Let δ > max{δ∗, 1
2}. Fix an equilibrium and a history with m ≥ 1 active sellers, so

that seller i is one of the sellers active at the point. Then, YB(m, δ) ≤ 1
1+δ and Yi(m, δ) ≤ 1

1+δ .

Proof. Please see Appendix A.

3 Perfect Complementarity: The Public Offers Case

The main result of this section is that for any sufficiently large δ, there are equilibria that are

asymptotically efficient and the maximal buyer payoff is arbitrarily close to 1/2.
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Proposition 1 (a) If δ > δ∗, then in any equilibrium, the buyer’s payoff is at most δ
1+δ .

(b) Fix ε > 0, then there exists δ(ε) < 1, such that for all δ > δ(ε), there exists an equilibrium

in which the buyer implements the grand project at t = 2 and gets a payoff strictly greater

than 1
2 − ε.

Proof of Proposition 1. From Lemma 3, we know that the buyer’s payoff in any equilibrium

starting with any set of active sellers is at most 1
1+δ . Since δ > 1/2, it also follows from Lemma

2 that at t = 1, if the buyer was to make an offer that will be acceptable to all sellers, the buyer’s

payoff will be δ
1+δ if n = 2, and negative if n ≥ 3. Thus, part (a) of the proposition follows.

To prove part (b) of the proposition, we need

Lemma 4 For δ large, starting from any history ht with exactly two active sellers, there is an

equilibrium where the buyer obtains C
δ at t even.

While the formal proof of this lemma is available in Appendix B, let us provide a sketch of

the construction. Let P̃ = δ
1+δ −

C
δ . At any t even with two active sellers, the sellers ask for

1
1+δ and δP̃ respectively. The buyer accepts both these offers. No seller asks for more since, in

that case, the buyer will reject both offers and there is transition to a phase where the buyer’s

present discounted payoff is δ3

1+δ . Whereas if the sellers do not deviate, then the buyer’s payoff

is C/δ if he accepts both offers, C if he opts out and δC if he rejects, but continues.

We now continue with the proof of part (b) of the Proposition. We number the sellers 1

through n and given any seller set S, the highest ranked seller is referred to as the first seller,

while the lowest ranked seller is referred to as the last seller.

We first describe the action profile of the players along the equilibrium path: at t = 1, the

buyer offers zero to all sellers. All sellers but the first one accept. In period 2, the first seller

asks for 1
1+δ which is accepted by the buyer and the grand project is implemented at the end of

period 2.

To describe the equilibrium strategy profile, suppose that these have been defined for all

histories ht that start with m active sellers where m = 1, 2, . . . , n− 1 and let m = n. If t is odd,

the buyer offers zero to all active sellers.

To define the acceptance/rejection decision of a seller, consider any arbitrary offer vector

(P1, . . . , Pn). Consider t odd. If P1 ≥ δ
1+δ , the first seller accepts P1, while the acceptance

decision of the sellers numbered 2 through n is the same as their decision for a history with

seller set {2, ..., n}, for the offer vector (P2, , ..., Pn). On the other hand, if P1 <
δ

1+δ , the first

seller rejects while the rest of the sellers accept any non negative offer.
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If t is even, every seller asks for a price of 1. The buyer rejects all these offers. Furthermore,

if there is an unilateral deviation by one seller who asks for P > 0, the buyer continues to reject

all of the offers.7

Finally, if at the end of any period, if the buyer has acquired n objects, the project is

implemented. If he has acquired n − 1 objects, he continues. In all other cases, he exits and

collects his outside option C.

Since offers are publicly observed, it becomes possible for the buyer to make an acceptable

offer to n− 1 sellers in a given period and this increases the bargaining power of the buyer and,

as Proposition 1 shows, allows him to capture approximately half of the total surplus.

Remark 1 While the preceding proposition focuses on establishing the maximum payoff that

a buyer can obtain in an equilibrium, it leaves open the question as to whether, it is possible

to support (in equilibrium) any buyer payoff in (C, 1
2)? Given the folk theorem like results in

Chatterjee et al. (1993) and Herrero (1985), this question is of natural interest. It turns out that

a buyer payoff of x at t = 2, where C < x < 1/2, can be supported as follows. The equilibrium

involves the buyer making unacceptable offers at t = 1, and the sellers all asking for ε, where

1 − (n − 1)ε = x at t = 2. The buyer accepts all such offers. In case any seller asks for more,

the buyer rejects all offers and plays the equilibrium prescribed in Proposition 1.

Remark 2 Interestingly, inefficient equilibria exist as well. For example, for n = 2, we can

sustain an equilibrium where the buyer makes unacceptable offers at t = 1 and opts for his

outside option at t = 1. This is sustained by using the idea in Lemma 4 where if the buyer

continues negotiation at t = 1, his equilibrium payoff from t = 2 perspective is exactly C/δ at

t = 2.

Thus there is a range of equilibria all of which are asymptotically efficient. While inefficient

equilibria exist as well, the results show that any inefficiency in outcome must be traced to

coordination failures.

Remark 3 Interestingly, C can be provided an alternative interpretation in terms of ε-rationality.

Consider a scenario where there is no outside option, but the agents are indifferent between any
7To define the strategies of the buyer for any arbitrary history, let V (t,m) denote the continuation

payoff of the players at the end of period t when m sellers remain and players play according to the

strategies specified above. Consider now a history with m ≥ 3 sellers and the offer vector (P1, . . . , Pm).

If the buyer accepts the offers made by the seller set S′ with |S′| = s, then his continuation payoff is

Y (S′) = V (t,m − s) −
∑

i∈S′ Pi. Let S∗ maximize this payoff and let s∗ = |S∗|. The buyer accepts the

offers in S∗ if and only if Y (S∗) ≥ 0. He rejects all offers otherwise.
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outcomes that involve a difference of less than C. It can be shown that Proposition 1 goes through

under this alternative interpretation.8

We then show that when the buyer has no outside option, i.e. C = 0, the holdout problem

is extremely severe as the buyer’s payoff in any equilibrium approaches zero when δ is close to

1.

Proposition 2 Suppose that C = 0. Fix ε > 0, then there exists δ(ε) < 1 such that if δ > δ(ε),

the buyer’s payoff in any equilibrium is strictly less than ε.

While we relegate the proof of this proposition to Appendix C, we provide the intuition for

the result when n = 2. First, we note that if the buyer makes an offer of δ
1+δ to each of the sellers,

these offers will be accepted by the sellers and thus when n = 2, the buyer’s payoff can not be

less than 1−δ
1+δ , which is strictly positive. Thus, if C = 0, the requirement of subgame perfection

implies that in any equilibrium, the buyer must implement the grand project. However because

of Lemma 2, if the buyer has to make an acceptable offer at any date to both of the sellers, each

seller must get at least δ
1+δ . Thus 1−δ

1+δ is also the maximum payoff that the buyer can receive if

he has to make an acceptable offer. Proposition 2 thus follows for δ large.9

Comparing Propositions 1 and 2, we find that the results are dramatically different depending

on whether the buyer has an outside option (however small), or not. While C > 0 is clearly the

case of interest, it is useful to understand the intuition behind this difference. When C = 0,

the buyer has a strong incentive to conclude negotiations with the n-th seller whenever he has

reached an agreement with n − 1 sellers. This reduces the buyer’s bargaining power, hence

Proposition 2. However for C > 0, no matter how small, the buyer has a credible exit option

which allows the buyer to extract approximately half of the surplus. The strength of Proposition

1 lies in that this intuition goes through for any positive outside option, no matter how small.10

Remark 4 It is important to stress that when n > 2,11 Proposition 2 is critically dependent

on our assumption that the players (especially the sellers) are not allowed to randomize in their

accept/reject decisions. To see why this is so, consider the situation with n ≥ 3 sellers. Assume

8The proofs for Remarks 1-3 are available on request.
9Of course, this argument is incomplete as it leaves open the possibility of an equilibrium outcome

where the agreement with the sellers takes place sequentially. The proof in the Appendix formally rules

out such possibilities in an equilibrium.
10Another paper (though in the context of bargaining with Myersonian obstinate agents) where the

presence of even small outside options has a significant impact is Compte and Jehiel (2002).
11For n = 2, however, the proposition holds even when players are allowed to randomize in their choice

of strategies.
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that in period 1, the buyer makes an offer of P ′ < 1/n to each seller, where 1− nP ′ > C: each

seller accepts this offer with probability r∗ strictly less than 1. Furthermore, the buyer continues

negotiation with probability one only if no fewer than two sellers have accepted his offer and he

opts out otherwise. Given these strategies, if a seller rejects the current offer P ′, she now faces

the risk of getting zero if at least two other sellers reject because in that event, the buyer exits

the game. On the other hand, when no more than one other sellers reject her offer, this seller’s

payoff will be strictly higher than P ′. It thus follows that there exists a value of r∗ for which

each seller is indifferent between accepting the offer P ′, or rejecting it. We, however, note that

such outcomes are necessarily inefficient as with strictly positive probability, the buyer must exit

the game without implementing any project and thus even if mixed strategies are available, when

offers are secret, it is impossible to achieve asymptotic efficiency in any equilibrium.

4 Perfect Complementarity: The Secret Offers Case

In this section we consider an alternative bargaining protocol where each seller can observe

only her component of the buyer’s offer and does not know what offers are received by other

sellers. We call this the ‘secret offer’ case. (Chatterjee and Dutta (1998) refer to this as the

telephone bargaining setup.) While the public offers case is very natural (and widely adopted in

the coalitional bargaining literature), it may be argued that in the context of holdout the secret

offers protocol seems equally natural. It is thus of interest that in this case the results appear

to be markedly different. In fact, for any sufficiently large discount factor there is complete

breakdown of bargaining with the buyer opting for his outside option.

Proposition 3 Fix C. Then there exists δ(C) such that if δ > δ(C), then in any equilibrium,

the buyer opts out in period 1.

The intuition for this proposition can be understood by considering n = 2. First, observe

that if the buyer obtains a payoff strictly greater than C, then because of strict complementarity,

it must be true that the buyer implements the grand project. From Lemma 2, it then follows

that if the buyer has to make an acceptable offer to both the sellers, then each seller must be

given at least δ
1+δ leaving at most 1−δ

1+δ for the buyer. Of course, for δ close to 1, this payoff is

strictly lower than C. It is interesting to note that since the offers are secret, there can not be

an equilibrium, where the buyer first makes an acceptable offer to only one of the sellers (say

seller 1) and then once it is accepted, negotiates with the the second seller. This is because the

buyer can always offer the second seller δ
1+δ along with the equilibrium offer to the first seller.

Since offers are secret, such an action will not affect the acceptance decision of the first seller.

The buyer must be better off from this deviation since the project is implemented one period
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earlier and thus saves on the discounting cost. Thus the buyer has the option of implementing

the grand project at t = 1 (when he obtains 1−δ
1+δ ), or opting for his outside option and getting

C. For δ close to 1, opting out is the preferred choice.

Proof of Proposition 3. Given C, let δ̂ satisfy C = 1−δ̂
1+δ̂

. Choose now δ > max{δ∗, 1/2, δ̂}.
Since δ > δ∗, Lemmas 1-3 hold. Let YB(m, δ) denote the supremum of the continuation payoff

to the buyer in any equilibrium, starting from a history when m sellers are active. We first

show that YB(m, δ) ≤ max{1−δ
1+δ , C} for m ≥ 2. We first note that if t is odd, then the buyer

can always make an offer of δ
1+δ to each of the sellers. By Lemma 3, both sellers must accept

yielding a payoff of 1−δ
1+δ to the buyer. Opting for the outside option of course gives C to the

buyer.

We first prove this result for m = 2.

If the claim is false, then there exists an equilibrium in which the buyer’s payoff is arbitrarily

close to YB(m, δ), which in turn is strictly greater than max{1−δ
1+δ , C}. Given strict complemen-

tarity, it must be that the buyer implements the grand project in equilibrium.

Clearly, in such an equilibrium, the payoff to at least one of the remaining active sellers

(label her seller 1) must be strictly less than δ
1+δ . Let t be the date at which an agreement with

seller 1 takes place. Clearly both sellers must be present at that date by Lemma 1. Now if at t,

seller 1 herself was making an offer, she could have asked for a slightly higher price, the buyer

could not have rejected since his payoff in this equilibrium was arbitrarily close to YB(m, δ).

Therefore, this offer was made by the buyer. Furthermore, at that date, the buyer could not

have made an acceptable offer to seller 2 as well. Since then by Lemma 2, seller 1 could have

rejected his offer and obtained δ/(1 + δ) in the next period. The proof is now complete because

if the buyer were to make an immediate offer of δ
1+δ + ε to the second seller along with the

prescribed equilibrium offer to seller 1, seller 1 will continue to accept and, because of Lemma

3, seller 2 must accept it as well. Since the agreement now takes place in that period itself, the

buyer will save on the discounting cost and thus for ε small, this must be a profitable deviation.

This proves that YB(m, δ) ≤ max{1−δ
1+δ , C} for m = 2.

Assume now as an induction hypothesis that the result is true for all m = 2, . . . , n − 1

and let m = n. If the claim is false, then there is an equilibrium in which the grand project

is implemented at some date t giving the buyer a payoff strictly greater than max{1−δ
1+δ , C}.

Because of the induction hypothesis, the number of active sellers at that date must be either

m = n, or m = 1.

First consider the case m = n. Since n ≥ 3, and δ > 1/2, it follows from Lemma 2 that

the buyer could not have made an acceptable offer at that date. Thus, it is the sellers who are

making the offers. But then any seller can ask for a slightly higher price which must be accepted
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by the buyer.

Thus, m must equal 1. Label this seller 1. Now at t−1, all n sellers must have been present,

otherwise, the induction hypothesis would have applied. Now if t is odd, then at t− 1, seller 1

was making an unacceptable offer and the rest were making acceptable offers. If seller 1 at t− 1

asked for P ∈ ( δ2

1+δ ,
δ

1+δ ), the buyer would have accepted this offer. This would thus have been

a profitable deviation for seller 1. Therefore t must be even and at t − 1, the buyer is making

an acceptable offer to only n− 1 sellers. This, however is impossible since the buyer could have

secretly offered δ
1+δ to seller 1 along with specified equilibrium offers to the rest of the sellers.

All sellers must accept and this will be a profitable deviation for the buyer as he implements

the project a period earlier and saves on the discounting cost.

Thus, the continuation payoff to the buyer in any equilibrium is at most C.

Propositions 1 and 3 together provide an important insight for the holdout problem:

Holdout is severe when buyer offers are secret, but much less so if buyer offers are transparent,

i.e. public.

5 Complementarity: The General Case

We now extend our earlier analysis to allow for technologies other than perfect complementarity,

so that v(s) is not necessarily zero whenever s < n. Given that in this case the buyer has an

additional threat of implementing a partial project, it is important to enquire whether the results

for the perfect complementarity case is robust to this extension. We first show that our results

are completely analogous to those for the perfect complementarity case when v(n− 1) < 1/2.

5.1 v(n− 1) < 1/2

When v(n− 1) < 1/2 and offers are public, an exact analogue of Proposition 1 holds; for δ close

to 1, there exists an equilibrium that is asymptotically efficient and in which the buyer’s payoff

is arbitrarily close to 1/2. The results, however are somewhat modified when offers are secret.

As the following Proposition shows that unlike in the perfect complementarity case, there exists

equilibrium outcome which are asymptotically efficient.

Proposition 4 (a) Suppose that C ≥ v(n− 2), then there exists δ(C) such that for δ > δ(C),

in any equilibrium the buyer opts out at t = 1.

(b) Suppose that C < v(n − 2), then for any ε > 0, there exists δ(ε) such that if δ > δ(ε),

there exists an equilibrium, in which the buyer implements the grand project at t = 2 and

in which his payoff is greater than v(n− 2)− ε.
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The intuition behind Proposition 4(b) is that with v(n− 2) > C, the buyer has the credible

threat of implementing a project of size n− 2. This allows us to support an asymptotic efficient

equilibrium in which no offers are accepted in period 1, but in period 2, all sellers ask for x such

that 1− nx = δv(n− 2) which are accepted by the buyer and the grand project is implemented

at t = 2. If any seller asks for more, the buyer rejects all offers and makes acceptable offer to

exactly n− 2 sellers next period and obtain v(n− 2). The formal proof follows.

Proof of Proposition 4. To prove this proposition, one first establishes that for discount

factor close to 1, the maximum payoff to the buyer in the secret offer can be no more than

max{C, v(n−2)}. The proof for this follows the same line as that of Proposition 3. Thus, when

C > v(n−2), in any equilibrium, the buyer must opt out at t = 1. However, when v(n−2) > C,

there exists an equilibrium outcome (for δ close to 1) in which along the equilibrium path, the

buyer makes an offer that is rejected by every seller. In period 2, each seller then asks for x

where 1− nx = δv(n− 2). The buyer accepts all these offers and implements the grand project

at t = 2.

We now formally describe the equilibrium strategy profiles for the players.

Fix a history ht that ends with the active seller set S and |S| = m. When m = 1, the

strategies are specified in Lemma 1 and thus assume that m ≥ 2.

If t is odd, the buyer offers zero to all sellers. The first two sellers accept an offer Pi if and

only if Pi ≥ δ
1+δ . All other sellers accept any nonnegative offer for all t ≥ 3. For t = 1, however,

these sellers accept an offer Pi if an only if Pi ≥ 1−δ
1+δ

If t is even and t 6= 2, each seller asks for P such that 1−mP = v(n−m). While at t = 2,

each seller asks for P 0 where 1− nP 0 = v(n− 2). The buyer is supposed to accept these offers.

If any seller asks for more, the buyer rejects all offers.

Finally, consider the implementation decision of the buyer at the end of any period t where

the buyer has acquired k objects. The buyer implements the project of size k if and only if

v(k) > 0. It continues negotiation otherwise.

We observe that given the specified strategies, all sellers in period 1 rejects the buyer’s offer.

In period 2, each seller offers P 0 and these offers are accepted by the buyer and the grand project

is implemented in period t = 2.

We note that at t = 2, if any seller demands P > P 0, the buyer is better off rejecting such

an offer. This is because by rejecting all offers at that period, the buyer hopes to get v(n − 2)

next period since his offer of zero will be accepted by the last n − 2 sellers. Thus, rejection

yields a payoff of δv(n− 2) to the buyer. If the buyer were to accept the deviating seller’s offer

of P > P 0, his payoff is necessarily less than δv(n− 2). Thus, no seller at t = 2 has a profitable

deviation. It is also straightforward to check that given the acceptance strategies of the sellers,
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the buyer can not hope to make an acceptable offer to a group of sellers and get a higher payoff.

Finally, we note that for δ large, v(n−2) > 1−δ
1+δ and thus given the offer/acceptance decision

of the sellers, for any t ≥ 3, it is always optimal for the buyer to implement the project of size

n− 2 rather than continuing negotiation with the remaining two sellers.

5.2 v(n− 1) > 1
2

If v(n−1) > 1/2, then, an efficient equilibrium exists where the grand project is implemented in

period 1 itself, with the buyer extracting the entire surplus. The intuition for this result is the

following. Given that v(n − 1) > 1/2, in any continuation game with exactly one active seller,

the buyer can credibly threaten to exit, resulting in a zero payoff for the remaining seller (see

Lemma 5). Thus, no seller wants to hold out. This allows the buyer to come to an immediate

agreement with all of the sellers.

The argument critically relies on the buyer having a credible exit threat once he has acquired

n− 1 of the objects. The following lemma does exactly that.

Lemma 5 Suppose that v(n − 1) > 1
2 and δ > v(n − 1). Consider any history that starts at

t with exactly one active seller. Then there is a continuation equilibrium such that at every t

even, the buyer’s payoff is v(n−1)
δ .

While the formal proof can be found in Appendix D, an informal discussion of the action

profiles in this equilibrium may be useful. At every t even, the seller asks for 1− v(n−1)
δ , which

the buyer accepts, whereas at every t odd, the buyer offers the seller δ − v(n − 1), which the

seller accepts. If the seller asks for an amount higher than 1 − v(n−1)
δ , the buyer rejects and

there is transition to a state where at every t odd the buyer asks for 1 which the seller accepts

since otherwise the buyer exits from the game and implements the project of size n− 1.

Using this lemma, one can now show the existence of an equilibrium in which negotiation is

concluded in period 1 with the buyer receiving the entire surplus from trade. The strength of

this proposition arises from the fact that it holds for all v(n− 1) > 1
2 , and not just for v(n− 1)

close to 1.

Proposition 5 Suppose v(n − 1) > 1/2 and δ > v(n − 1). For both public, as well as secret

offers, there exists an equilibrium where the buyer implements the grand project at date t = 1

and receives a payoff of 1.12

12Observe that if v(s) is super-additive, v(n − 1) > 1/2 must imply that n ≥ 3 since v(n) = 1. The

proof of the proposition however does not rely on this implication.
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While the proof can be found in Appendix D, here we outline the structure of the equilibrium

profile. At every t even, the sellers all make unacceptable offers, whereas at every t odd, the

buyer offers a payoff of zero to all sellers. At t odd, the sellers all accept. If the buyer faces

exactly one active seller, he exits the game and implements a project of size n − 1. Lemma 5

plays a critical role here in ensuring that in this case the buyer is actually indifferent between

exiting the game, and continuing to bargain.

Remark 5 Can any payoff in (0, 1) be supported in an equilibrium when v(n− 1) > 1/2? The

answer is in the affirmative as long as v(s)
s is increasing in s. When this condition fails however,

say when n = 3, C = v(1) = 2/5 and v(2) = 3/5, a payoff of 1/15 is impossible to support in

an equilibrium where the grand project gets implemented.

6 Conclusion

This paper characterizes the conditions under which holdout (i.e. bargaining inefficiency) may,

or may not be significant in a two-sided, one-buyer-many-seller model with complementarity.

The central insight is that the transparency of the bargaining protocol, formalized by whether

offers are publicly observable or secret, as well as the extent of complementarity, play a critical

role in generating efficiency. Holdout seems to be largely resolved whenever the bargaining

protocol is public, and/or the marginal contribution of the last seller is not too large, but

not otherwise. Interestingly, this view finds some support in the empirical literature on land

acquisition. Benson (2005), for example, discusses examples where private railroads managed

to collect the required plots without any government intervention. In the Indian context, for

example, while the Nano project in Singur, West Bengal ran into problems, around the same

time there were many instances of trouble free land acquisition by private agents, even in West

Bengal.

In a somewhat broader context, this paper has some implications for the Coase theorem.

While it is well known that informational problems can lead to inefficiencies, the literature on

coalitional bargaining has identified strategic issues that may, even in the absence of informa-

tional issues, cause the Coase theorem to fail.13 While one response to such strategic inefficiency

has been to study random bargaining protocols, e.g. Okada (1996), another line of research ex-

amines bargaining protocols with renegotiation, Seidmann and Winter (1998), Hyndman and

Ray (2007), etc. In this paper, however, we examine a deterministic (though symmetric) bar-

gaining protocol that does not allow for renegotiation. Remarkably enough, even then we find
13Chatterjee et al. (1993), Bloch (1996) and Ray and Vohra (1997, 1997), among others, have pointed

out the role of renegotiation in this context.
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that there is some equilibrium that is asymptotically efficient, as long as the buyer offers are

publicly observable. Further, this holds even with perfect complementarity.

The analysis in this paper focuses on simple ‘unconditional cash offer contracts’ in which if

a seller accepts an offer by the buyer, the seller sells the object and exits the game. This leads

to the holdout problem. The results (for the public offer case) are thus strong in that even

in the class of these simple contracts, it is possible to support efficiency, as well as a strictly

positive payoff for the buyer. Clearly, in such situations, use of complex contracts is unnecessary.

For situations where the holdout problem does bite (as in the secret offer case with perfect

complementarity) however, it may be of interest to know whether alternative contractual forms

may restore efficiency. The answer to this question is in the affirmative. Consider a situation

where the buyer can make ‘conditional offer’ to the sellers. Under a conditional offer, the buyer

buys only when every seller agrees to sell, and not otherwise. Such contracts completely mitigate

the holdout problem as one can show that for sufficiently patient players, for any x ∈ [0, 1] > 0,

it is possible to support an equilibrium where the grand project is implemented in period 1 and

the buyer’s payoff is x.14

7 Appendix

7.1 Appendix A: Lemma 3

Proof of Lemma 3. By Lemma 1, the result is clearly true for m = 1. So assume an induction

hypothesis that the result is true for histories that begin with m = 1, . . . , n − 1 active sellers.

Consider now an history that begins with m = n active sellers.

(i) We first argue that Yi(n, δ) ≤ 1
1+δ for any seller i. Suppose not. Then there exists some

seller i for whom Yi(n, δ) > 1
1+δ . This implies that there is an equilibrium outcome in which an

offer Pi is agreed upon by the buyer and seller i at some date t (following this history) giving

seller i a payoff that is arbitrarily close to Yi(n, δ) which in turn is strictly greater than 1
1+δ .

Now because of the induction hypothesis, all sellers must be active at this date.

Now if the buyer was making this offer, then by Lemma 2, each of the remaining seller j

must be getting an offer Pj ≥ δ
1+δ . If the buyer deviates by offering Pi − η to seller i, seller i

must accept for η small. Now if the remaining sellers were offered Pj + ε where (n − 1)ε < η,

then all such sellers must accept it also. Clearly, this will constitute a profitable deviation for

the buyer.

Therefore, it is seller i who is asking for Pi which is accepted by the seller. We first claim

that the game must be over after this date with the buyer implementing a project. Otherwise,

14A proof is available on request.
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the game continues in the next period, when, by our induction hypothesis, the buyer’s payoff

in the continuation equilibrium is at most δ/(1 + δ). Since Pi > 1
1+δ , the buyer’s payoff in this

equilibrium is thus negative. Now we claim that all of the remaining sellers must be making an

acceptable offer at this date as well. Otherwise, the buyer is implementing a partial project, and

moreover, since v(n− 1) < 1/2, the buyer’s payoff then is negative in this equilibrium. Thus, at

this date, all sellers make acceptable offers of Pj resulting in a payoff of 1−
∑
j Pj . Suppose the

buyer deviates, rejects seller i’s offer, but accepts the rest of the offers. Then in period t + 1,

the buyer will offer δ
1+δ to seller i which, by Lemma 1, must be accepted by seller i. Such a

deviation will yield a payoff of δ
1+δ −

∑
j 6=i Pj . Since Pi > 1

1+δ , the buyer will be better off from

this deviation. This establishes that the supremum of equilibrium seller payoff for any seller is
1

1+δ .

(ii) We now show that YB(n, δ) ≤ 1
1+δ . Otherwise, YB(n, δ) > 1

1+δ and thus there is an

equilibrium outcome in which an agreement is reached in period t with the buyer getting a payoff

arbitrarily close to YB(n, δ), which in turn is strictly greater than 1
1+δ . Since v(n − 1) < 1/2

and the payoff to each seller must be non-negative, it must be that in this equilibrium, the

buyer implements the grand project. Furthermore, at t, the number of active sellers must be

n, otherwise, the induction hypothesis will apply. Now if t is odd, then it is the buyer who is

making an acceptable offer to all of the n active sellers. Since n ≥ 2, by Lemma 2, the buyer’s

payoff is no more than 1−δ
1+δ , a contradiction. Therefore, at t, it is the sellers who are making

these acceptable offers. Since the payoff to the buyer is more than 1
1+δ and n ≥ 2, at least one

of the sellers is making an offer Pj that is strictly less than δ
1+δ . If this seller deviates and asks

for a slightly higher price, the buyer must accept. This is because by accepting all the offers,

his payoff will be arbitrary close to YB(n, δ) while if he rejects all offers, then his payoff is at

most δYB(n, δ). Finally, if he accepts only a subset and continues, by induction hypothesis, his

payoff from tomorrow is at most δ
1+δ . Thus, seller j has a profitable deviation.

7.2 Appendix B: Lemma 4

Proof of Lemma 4. Choose δ such that δ3

1+δ > C.

For any history with m = 1 active seller, the strategy is given by Lemma 1. Consider now

any history ht that starts with m = 2 active sellers and at the start of t − 1, the number of

active sellers is greater than two.

Let P̃ satisfy δ
1+δ − P̃ = C

δ . Since C < 1/2, for δ close to 1, P̃ is strictly positive. The

strategies of the players in the continuation equilibrium will depend on the phase it is in, A or

B. The first period always starts in phase A.

Strategies in Phase A.
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If t is odd, the buyer offers zero to the first seller and δP̃ to seller 2. The first seller accepts

an offer P1 if and only if P1 ≥ δ
1+δ . Seller 2 accepts an offer P2 if and only if P2 ≥ δP̃ and

P1 <
δ

1+δ .

If t is even, the first seller asks for 1
1+δ , while seller 2 asks for P̃ . These offers are accepted

by the buyer. If any seller asks for more, the buyer rejects both the offers.

In this phase, the buyer always continues negotiation if he has not acquired all objects and

the period is odd.

If however, the period is even and the buyer has less than n − 1 objects, he will continue

negotiation only if one of the sellers in that period have deviated and asked for a higher price.

He will opt out otherwise. Thus, if the sellers did not deviate from their offer strategies but the

buyer rejected both of the offers, the buyer will opt out.

Transition.

If t is even, and one of the sellers deviate from the above strategies and the buyer rejects

both of the offers, there will be a transition from phase A to phase B.15 By construction, in

phase B, it is the buyer who has to make an offer.

Strategies in Phase B.

The buyer makes an offer of zero to both players. Seller 2 accepts any non-negative offer if

P1 <
δ

1+δ . While seller 1 accepts an offer if and only if P ≥ δ
1+δ .

In stage B, at the end of the period, the buyer continues negotiation only if he has acquired

n− 1 objects. He will opt out otherwise.

The state stays in phase B for precisely one period and will revert to phase A in the following

period.

Observe that in phase A, the payoff to the buyer is exactly C when t is odd, and it is C
δ , if t is

even. Thus, at the end of an odd period, the buyer’s discounted payoff by continuing is exactly

C. He also gets C by opting out, and thus it is optimal for him to continue in odd periods. If t

is even, however and the sellers did not deviate from their equilibrium strategies, phase A will

continue and thus if the buyer continues he will get exactly δC whereas by opting out he gets

C, thus, he is better off opting out. Finally, if t is even and the state is going to be in phase

B, then by rejecting all offers today and continuing next period, the buyer expects to get δ3

1+δ

which is strictly greater than C
δ and thus the buyer will be better off continuing negotiation.

To check that the strategies of the sellers are optimal, it is sufficient to consider seller 2’s

offer when t is even. If she asks for any price greater than P̃ , given that seller 1 is asking for
15It is important to note that the transition to phase B takes place only if one or both sellers deviate

from their prescribed strategies.
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1
1+δ , phase A will transit to phase B. In phase B, the buyer will offer zero to her and the buyer

will exit at the end of phase B if the seller rejects. Note that if at the end of phase B, the set

of active seller continues to number two, the buyer will opt out.

7.3 Appendix C: Proposition 2

Proof of Proposition 2. We will show that YB(m, δ), the supremum of buyer’s payoff in any

equilibrium is in fact bounded above by 1−δ
1+δ for all δ > δ∗ and m ≥ 2.

So let m = 2. Since δ > δ∗, Lemmas 1-3 hold. In particular, by Lemma 1, we have that in

any equilibrium with a positive payoff for the buyer, the grand project must be implemented.

We will show that YB(2, δ) ≤ 1−δ
1+δ for all δ > δ∗. We first note that if t is odd, then the buyer

can always make an offer of δ
1+δ to each of the sellers. By Lemma 3, both sellers must accept

and the buyer has a positive payoff. Thus, in any equilibrium, the buyer can never exit without

acquiring any object as that will give him a zero payoff.

If the claim is false, then there exists an equilibrium in which the buyer’s payoff is arbitrarily

close to YB(2, δ), which in turn is strictly greater than 1−δ
1+δ .

Clearly, in such an equilibrium, the payoff to at least one of the sellers (label him seller 1)

must be strictly less than δ
1+δ . Let t be the date at which an agreement with seller 1 takes

place. Clearly both sellers must be present at that date by Lemma 1. Now if at t, seller 1

herself was making an offer, she could have asked for a slightly higher price, the buyer could not

have rejected since his payoff in this equilibrium was arbitrarily close to YB(2, δ). Therefore,

this offer was made by the buyer. Furthermore, at that date, the buyer could not have made an

acceptable offer to seller 2 as well. Since then by Lemma 2, seller 1 could have rejected his offer

and obtained δ/(1 + δ) in the next period. Thus, agreement with seller 2 takes place at t+ 1. If

P is the price offer made to seller 1, the payoff to the buyer in this equilibrium, then, is given

by

K = −P +
δ2

1 + δ
.

This follows since at t+1, the seller makes the offer and by Lemma 1, the buyer obtains δ/(1+δ).

Since K is arbitrarily close to YB(2, δ) > 0, we must have

P <
δ2

1 + δ
. (1)

Suppose seller 1 rejects the buyer’s offer. Since the buyer can not exit the game without

acquiring the object, at t+1, let seller 1 make a counter offer of P ′ = P
δ + ε. Clearly, acceptance

of this offer will be a profitable deviation for seller 1. We now argue that this offer will be

accepted by the buyer for ε small. If the buyer were to accept seller 1’s offer, his overall payoff
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(from period t+ 1 perspective) can not be less than

Y =
−P
δ
− ε+

δ

1 + δ
.

This is because the buyer can always reject seller 2’s offer and in t + 2 offer δ/(1 + δ) to her

which, by Lemma 1, will be accepted by seller 2. On the other hand, if he were to reject this

offer, then the maximum that he can obtain is δP ∗δ which is arbitrarily close to δK. It is easy

to check that Y > δK if and only if P < δ2

1+δ which is true because of (1).

This proves that YB(2, δ) ≤ 1−δ
1+δ .

Assume now as an induction hypothesis that the result be true for all m = 2, . . . , n−1. If the

claim is false, then there is an equilibrium in which the grand project is implemented at some

date t giving the buyer a payoff arbitrarily close to YB(m, δ), which in turn is strictly greater

than 1−δ
1+δ . Because of the induction hypothesis, the number of active sellers m can be either

m = n, or m = 1.

First consider the case m = n. Since n ≥ 3, and δ > 1/2, it follows from Lemma 2 that

the buyer could not have made an acceptable offer at that date. Thus, it is the sellers who are

making the offers. But then any seller can ask for a slightly higher price which must be accepted

by the buyer.

So it must be that m = 1. Label this seller 1. Now at t − 1, all n sellers must have been

present, otherwise, the induction hypothesis would have applied. Now if t is odd, then at t− 1,

seller 1 was making an unacceptable offer. If seller 1 at t − 1 asked for P ∈ ( δ2

1+δ , δ/(1 + δ)),

the buyer would have accepted this offer. This would thus have been a profitable deviation for

seller 1. Therefore t must be even. Thus seller 1 is asking for P = 1
1+δ at date t. The buyer’s

payoff from t− 1 onwards is thus δ2

1+δ −
∑
i 6=1 Pi. Since Pi ≥ 0 and the buyer’s payoff is strictly

greater than 1−δ
1+δ , for every seller i 6= 1, we have

Pi <
δ2

1 + δ
− 1− δ

1 + δ
. (2)

If any of these sellers (say seller 2) rejected the buyer’s offer at period t−1, given that the other

sellers are accepting their respective offers, the next period would begin with exactly two active

sellers. In the continuation game, with exactly two sellers present, the buyer will offer exactly

δ/(1 + δ) to each of them. Thus, the worst payoff to seller 2 following this deviation is that the

agreement takes place in t + 1 with the buyer making an offer of δ/(1 + δ) to seller 2. Thus,

from the perspective of period t− 1, seller 2 can assure himself a payoff of δ3

1+δ . Since δ < 1, it

follows that δ3

1+δ >
δ2

1+δ −
1−δ
1+δ > P2. The last inequality follows from (2). This will thus be a

profitable deviation for player 2.
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7.4 Appendix D: Lemma 5 and Proposition 5

Proof of Lemma 5. The proof involves constructing an equilibrium where at every t even, the

seller asks for v(n−1)
δ , which the buyer accepts. The strategies are conditional on whether the

game is in either of two phases A, or B.

In phase A, at every t odd the buyer offers δ − v(n− 1) to the seller, and the seller accepts

if and only if she obtains at least δ − v(n − 1). Whereas at every t even, the seller asks for

1− v(n−1)
δ . The buyer accepts if and only if he obtains at least v(n−1)

δ .

In this phase, the buyer always continues negotiation in case an offer is rejected.

Finally, there is transition to phase B if the seller asks for more than 1− v(n−1)
δ .

In phase B, at every t odd the buyer offers (1, 0), and the seller accepts if and only if she

obtains at least 0. Whereas at every t even, the seller offers (δ, 1− δ). The buyer accepts if and

only if he obtains at least δ,

If t is even and an offer is rejected by the buyer, the buyer continues negotiation.

If however, t is odd and the seller rejects buyer’s offer, the buyer implements the project

of size n − 1. In this case, if the buyer fails to implement the project and continues, phase B

transits to phase A.

Proof of Proposition 5. The proof involves constructing equilibrium profiles such that at

every t even, the sellers all make unacceptable offers, whereas at every t odd, the buyer offers

a payoff of zero to all sellers. At t odd, the sellers all accept since otherwise the other sellers

accept, and the buyer exits the game and implements a project of size n− 1. We now formally

describe the strategies.

For any history that starts with exactly one active seller, the strategies of the players are

as specified in the proof of Lemma 5. For any history that starts with m sellers, m > 1, the

strategies are as follows:

If t odd, the buyer offers zero to each of the active sellers. Each seller accepts any non-

negative offer.

At the end of period t where t is odd, the buyer implements the project only if he has

acquired at least n− 1 objects. He continues otherwise.

If t even, each seller asks for P = 1. Given any offer vector P = (P1, P2 . . . , Pm), let

Z = 1 −
∑
i∈M Pi, where M is the set of active sellers. The buyer accepts every offer if Z ≥ δ.

If Z < δ, he rejects all offers.

At the end of period t, where t is even, the buyer implements the project only if he has

acquired all the objects. He proceeds to the next period otherwise.

Consider a subgame with t odd, where n− 1 of the offers have been accepted by the sellers.

The buyer’s payoff from implementing a project is v(n−1), whereas if he continues to negotiate,
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then he obtains v(n−1)
δ in the next period (Lemma 5), so that opting out immediately is optimal.

Further, note that these strategies work for the secret, as well as the public offer game.
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