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Abstract

We develop a model of macroeconomic heterogeneity inspired by
the Kiyotaki-Wright (1989) formulation of commodity money, with
the addition of linear utility and idiosyncratic shocks to savings. We
consider two environments. In the benchmark case, the consumer in
a meeting is chosen randomly. In the auctions case, the individual
holding more money can be selected to be the consumer. We show
that in both environments socially optimal trading decisions (that are
individually acceptable) are stationary and solve a tractable static op-
timization problem. Savings decisions in the benchmark case are re-
markably invariant to mean-preserving changes in the distribution of
shocks. This result is overturned in the auctions case.
Keywords and Phrases: Macroeconomics with heterogeneous

savings; commodity money with linear adjustments; mechanism design;
auctions
JEL Classi�cation: E00, C00

1 Introduction

In this paper, we formulate a model of monetary exchange and use con-
strained e¢ ciency to predict a rich but tractable heterogeneity. Our model
owns its tractability to the assumption that the only asset is commodity

�Corresponding Author: Daniela Puzzello. E-mail: dpuzzell@uiuc.edu. Phone:
2173330645.
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money, and that additions or subtractions of money holdings can be done
at a linear utility cost, conditional on the realization of idiosyncratic shocks.
It is essentially a version of the Kiyotaki-Wright (1989) model, with i.i.d.
shocks to preferences and unbounded holdings. As in their model, no mar-
kets open in our model. Unlike their analysis, however, we do not need to
impose stationarity, and are able to o¤er predictions about the distribution
of money that maximizes ex-ante welfare.

The main novel feature of our model is that, unlike most of the current
literature, it does not study stationary equilibria allocations with a degen-
erate distribution of money holdings.1 Instead, the paper studies e¢ cient
allocations and derives certain stationarity properties of such allocations.
Speci�cally, we pursue a mechanism-design formulation of e¢ cient alloca-
tions and show that the optimum is constant.2

In other �elds, the idea of using linearity in order to facilitate the descrip-
tion of heterogeneity is not new.3 Most papers in monetary theory make
however an e¤ort to restore the aggregative structure of traditional macro
models, and leave potential descriptions of heterogeneity unexplored.4 La-
gos and Wright (2005) is a standard reference for a di¤erent motivation: to
impose stationarity and to appeal to quasi-linearity and markets in order
to eliminate the distribution of money and to evaluate in�ationary policies.
Shi (1997) had already pursued a model of degeneracy and policy evalua-
tion, but did so with a coordination of individuals according to �families�,
making it di¢ cult to assess optimality in his model.5 These models remain

1Some exceptions of papers that focus on dynamic equilibria are Kehoe et al. (1993)
and Lomeli and Temzelides (2002).

2Aiyagari and Wallace (1992) include an early discussion of implementation and how
private information places strong restrictions on equilibira of the Kiyotaki-Wright random-
matching model. Huggett and Krasa (1996) pursue an explicit mechanism-design approach
in a Townsend turnpike model. Cavalcanti and Monteiro (2006) provide a proof of ex-
istence of optima for the planner�s problem with pairwise meetings, aggregate shocks,
divisible goods and fairly general holdings of �at money.

3Cavalcanti and Erosa (2007), for instance, use linearity in a version of the Lucas�s tree
economy, in which the productivity of a business depends on ownership shocks, in order
to predict business turnover rates.

4Although Galenianos and Kircher (2006) sidestep questions about stationarity and
optimality to some extent, their formulation of heterogeneity is similar in spirit to the one
adopted here. In order to make that comparison easier for the reader, we have included
a section explaining how an auctions setup in the context of our environment could help
allocating resources in our model.

5One concern in models in which individuals can commit to family (or another entity
such as government) plans is that gift-giving would render money inessential. Even when
individuals are anonymous (i.e., their identities are not observable), special assumptions
are needed to rule out certain trigger strategies. See Aliprantis et al. 2006; 2007a,b.
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attractive because they can easily address policies related to the supply of
�at money, as they are usually stated, an issue that in the case of our model
would certainly require future research.

In our commodity money model, we succeed in providing a description
of optima that is remarkably simple. Instead of setting up individual choices
in sequence spaces or constructing value functions, we propose the analysis
of a simple static problem. We then show that the problem de�nes an upper
bound on average welfare of implementable allocations, and that its solution
is actually implementable as a constant sequence of consumption and savings
decisions for the whole economy. Because the optimum is shown to have low
dimensionality, we can ask what gives shape to the distribution of money,
and pursue an answer in the context of both the benchmark Kiyotaki-Wright
formulation, and what we call an auctions variation of the environment. In
the benchmark environment, the consumer in a meeting is chosen as the
realization of a random variable, as usual, while in the auction environment
we let the planner pick who is the consumer between two candidates in a
meeting (the other must be the producer). We �nd that the optimum has the
individual with largest holdings of money being the consumer because such
a choice implies the weakest constraint on average utility. The tractability
of this auction environment is evidence that the upper-bound argument can
be generalized to more applications in macroeconomics.

The contrast between the two environments sheds light on what the
distribution of money represents in this linear context. We learn quite a
sharp lesson about the benchmark case. Because money is costly to acquire,
the optimal allocation has individuals economizing on money holdings in a
way that aligns private and social returns. In particular, trade takes place
in pairwise meetings with all surplus going to the consumer, and all money
holdings going to the producer. Due to linearity, after-trade holdings are
valued according to an average marginal utility, which is the mean of the
i.i.d. shock distribution. At the stage of making savings decisions (before
trade), individuals know that holdings of producers are irrelevant and need
not predict the distribution of money (it su¢ ces to know what the average
marginal utility is in case they are called to produce). The conclusion is
that individual savings decisions are invariant to changes in the distribution
of shocks that preserve the mean. Consequently, the distribution of money
can be computed residually in the benchmark case.

The picture is di¤erent in the auctions environment, although previous
�ndings about stationarity apply. Society economizes resources by having
individuals with large holdings being the consumers. Therefore, the return
of money is a¤ected by the way holdings are distributed. The savings choice
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now equilibrates two forces. It equalizes intertemporal costs and returns
and, at the same time, generates the distribution of money used to compute
money returns. The analysis is still accessible. We are able to avoid a
demanding �xed-point treatment in the space of distributions. We tackle
instead a �rst-order di¤erential equation that is necessary and su¢ cient to
characterize optimal savings in some class. In other words, in the auctions
environment the entire distribution of shocks matters and not just the mean.

To summarize, this paper is concerned with tractable descriptions of
monetary frictions and the consequent heterogeneities. We are particularly
interested in how that description is facilitated by the property that savings
decisions are heterogeneous but stationary, and how such an outcome can be
derived on e¢ ciency grounds. Our �ndings suggest that it is possible to deal
with the curse of dimensionality associated with heterogeneity and faced by
the typical model of money. Thus, it is helpful in overcoming a serious
obstacle for blending monetary exchange and macroeconomic questions.

2 The benchmark environment

Our model is a version of Kiyotaky-Wright (1989) in which only one good
is durable. This good, interpreted as commodity money or capital, can be
consumed and produced by all individuals in the population. We refer to
commodity money as just �money�for simplicity.

Time is discrete and the horizon is in�nite. The economy is populated
by a continuum of individuals symmetrically divided according to an integer
number of types N , where N � 3. There are N specialized goods per date
and one common good called money. Specialized goods are assumed divisible
and perishable. Money is assumed divisible and storable. Each period is
divided into two stages, and money can only be produced or consumed in the
second stage. In the �rst stage, people meet according to uniform random,
pairwise meetings, and consumption of (specialized) goods by one person
can only be provided by the meeting partner, and only if a coincidence of
wants occurs. More speci�cally, type j enjoys good j but can only produce
good j + 1, modulo N . Since N > 2, no double-coincidence in which two
individuals consume can occur. In the second stage, each individual in
isolation consumes or produces money, according to an individual-speci�c
production function, to be de�ned below. Money can also be used in future
dates to pay for consumption of specialized goods.

Utility is separable across stages. If �rst-stage x 2 R+ is produced by
type j�1 and consumed by type j, in what we call a single-coincidence meet-
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ing, then the period utility for the consumer is u(x), and the period utility
for the producer is �v(x), independently of j. In the second stage, each
individual is hit by an idiosyncratic preference/productivity shock s distrib-
uted according to the measure �. The shock is distributed independently
and identically across individuals and over time. Production of money at the
second stage must be nonnegative, and if an individual in state s produces
m 2 R+ and consumes c 2 R+ units of money then a corresponding utility
�ow s(c�m) takes place. Individuals discount future utilities according to
the common discount factor �, where � 2 (0; 1), but there is no discounting
across stages of the same date. The functions u and v are de�ned on R+ and
assumed increasing, continuous and di¤erentiable. In addition, u is strictly
concave, v is convex, u � v is bounded from above, and u0(0) = +1. In
order to have a compact savings problem we impose a lower bound to s of
the form s > �

R
s0d�(s0). For ease of exposition, we also �nd convenient to

choose normalizing units so that u(0) = v(0) = 0 and
R
sd� = 1. Hence � is

assumed to have support in the Borel subsets of S � (�;+1).
People cannot commit to future actions and their personal histories are

private. The only assets are holdings of money. We assume that money
holdings and types are observable by participants in a meeting.

We also considered another economy in a second part of this paper.6 In
that economy, there are meetings in which both individuals can produce, yet
only one can be the producer, and the other one must be the consumer. We
shall investigate whether an allocation resembling an auction over holdings
of money can implement the optimum. Because the description of alloca-
tions in this second environment is a straightforward extension of the bench-
mark environment, we proceed with a discussion of implementability for the
benchmark environment only, and then make the necessary quali�cations in
the second part of this paper.

2.1 Allocations

An allocation is a description of what happens in all stages and dates. We
build on Cavalcanti and Monteiro (2006) and de�ne allocations as trade and
savings plans for all contingencies without imposing stationarity, but our
application turns out to be much simpler, and the proof for the existence

6 In both environments the assumption that money holdings are observable does not
play a strong role. This is a result of the optimality of the take-it-or-leave-it o¤er which
provides an incentive to reveal money holdings as payo¤s are increasing in money holdings
(see also Section 3 and Section 4).
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of an optimum is done by construction. As a result, we do not need to
de�ne the planner�s dynamic programming problem and can avoid much
the questions raised in Cavalcanti and Monteiro (2006) about compactness
and admissibility of the state space.

We assume that the economy starts at the second stage of date zero, and
with zero money endowments. Part of the planner�s problem is to choose a
sequence of Borelean measures f�tg1t=1 describing the distribution of money
holdings in R+ at the start of all dates.

In order to �x ideas, let us take date t and assume that the initial dis-
tribution of money, �t, has already been chosen. An allocation plan (for
date t) is a trade plan for the �rst stage, (g; h), and a savings plan for the
second stage, f . More formally, the function g : R2+ ! R+ determines the
quantity of output produced by producers for each kind of single-coincidence
meeting (m;n), where the consumer is type j and has m units of money,
and the producer is type j � 1 (modulo N) and has n units of money. The
function h : R2+ ! R+ determines the corresponding after-trade holdings of
the consumer in these single-coincidence meetings. As a result, in meeting
(m;n), the after-trade holdings of the producer is n + m � h(m;n). The
function f : S � R+ ! R+ describes �nal holdings for an individual at the
end of the second stage, and is de�ned over pairs (s;m), where s 2 S is the
productivity state at the second stage and m is the holdings of money at
the beginning of the second stage.

It should be clear that an allocation plan fully describes what happens
in a date. In the �rst stage, trade takes place in single-coincidence meetings
according to (g; h). An individual starting the second stage with state (s;m)
and leaving with holdings m0 = f(s;m) has consumed c = maxfm�m0; 0g
and enjoyed utility s(m�m0). A plan is said feasible if h(m;n) � m for all
(m;n) 2 R2+.

We restrict attention to allocation plans that are continuous and thus
measurable functions. Similar arguments to those applied by Cavalcanti and
Monteiro (2006) would then show that an allocation plan maps a Borelean
measure �t into another Borelean measure �t+1 in the obvious way. In
particular, at t = 0, the economy starts at the second stage without money
endowments, and a date-0 savings plan f0, together with �, generates �1.
More generally, we say that the sequence fft�1; htg1t=1 generates f�tg1t=1. An
allocation, and thus a complete description of what happens in all meetings,
is a sequence of feasible plans fft�1; gt; htg1t=1. We also include f�tg1t=1
among the objects associated to an allocation whenever it is clear from the
context that f�tg1t=1 is implied by a particular sequence fft�1; gt; htg1t=1.
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2.2 Implementability

When an allocation is �xed, a game is formed with individuals in each stage
choosing an agree/disagree strategy at each contingency in response to the
plan prescribed by the allocation. Hence we only allow individual defections.
There are also two implications of sequential individual-rationality: individ-
uals who disagree at the �rst stage are allowed to preserve any holdings
brought to a meeting; and individuals who disagree at the second stage, are
free to deviate from the plan (f) and choose di¤erent holdings m0 2 R+ as
the state for the next date. An allocation is implementable if it is feasible
and if agree in all contingencies is a subgame perfect equilibrium.

2.3 The welfare criteria

The planner�s problem is to �nd an implementable allocation that maxi-
mizes average discounted utility. The goal is to �nd a savings and goods
exchange path that achieves the highest average discounted utility under
implementability.

We express average utility by parts with the help of some simplifying no-
tation. Let us use u�g and v�g to denote utility �ows, for each (m;n), when
the output is g(m;n). With respect to the law of motion of holdings, f �h in
general, and (f � h)(s;m; n) in particular (which is short for f(s; h(m;n))),
describe �nal holdings of an individual after being the consumer in meeting
(m;n) and drawing productivity s. Using also ~h(m;n) � n +m � h(m;n),
with the composition f � ~h it is understood that the individual was the pro-
ducer. For completeness, we let the function i denote the projection with
respect to the �rst coordinate of pairs (m;n), so that i(m;n) = m and,
hence, (f � i)(s;m; n) describes the law of motion for those in no-coincidence
meetings. Finally, in our application, double integration with respect to
m and n can be written in a compact form as integration with respect to
the product measure � , where �(A�B) is de�ned as �(A)�(B) for cartesian
products of Borel sets A and B in R+.

Let us consider the consequences of allocation plan (f; g; h) for average
utility at some date in which �; and thus � , are �xed. In single-coincidence
meetings, the sum of the �ow of utilities accruing to the consumer and pro-
ducer in meeting (m;n) is u(g(m;n))� v(g(m;n)). Hence, using a compact
notation, we write the average over m and n asZ

(u � g � v � g)d� .

The average utility, in the second stage, for those who were consumers in
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those meetings is Z Z
s(h� f � h)d�d�

That average for those who were producers isZ Z
s(~h� f � ~h)d�d�,

while the average utility for those experiencing no-coincidence meetings isZ Z
s(i� f � i)d�d�:

An individual �nds a single coincidence meeting as consumer with prob-
ability 1

N , as producer with probability
1
N , and none of the above with

probability
�
1� 2

N

�
. Since

R
(h+ ~h)d� = 2

R
id� thenZ Z �

1

N
sh+

1

N
s~h+ (1� 2

N
)si

�
d�d� =

Z Z
sid�d�.

Thus, second-stage average utility isZ Z
s

�
i�

�
1

N
(f � h+ f � ~h) + (1� 2

N
)f � i

��
d�d�.

The objective to be maximized in the planner�s problem is the date-0 dis-
counted sum of average utility, or W , de�ned as

W (fft�1; gt; htg1t=1) = �
Z
sf0(s; 0)d�+

1X
t=1

�t
Z Z

Atd� td�,

where the term At inside the integral is

si+
1

N
(u � gt � v � gt � sft � ht � sft � ~ht)� (1�

2

N
)sft � i.

In the right-hand side of the equation de�ningW , the �rst term is the social
cost at date t = 0 of savings decisions leading to the initial distribution of
money, and the second is the present value of stage-1 and stage-2 utilities
for t � 1.
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Remark 1 If, for all t, ft is constant in its second argument (varies only
with s) then consumption at t+ 1 of ft(s; �) units of commodity at marginal
utility s0 gives average utility

R
s0ft(s; �)d�(s0) = ft(s; �) since, as assumed,R

s0d�(s0) = 1. Integrating now ft(s; �) over s, then average utility at t + 1
from consumption of time-t investment can be written in simple terms asR
sft(s; �)d�, so that the expression for W becomes

�
Z
(s� �)f0(s; 0)d�+

1X
t=1

�t
�
1

N

Z
(u� v) � gtd� t �

Z
(s� �)ft(s; �)d�

�
.

Notice also that by treating u�gt�v �gt as identically equal to zero at t = 0,
this expression for W can be further simpli�ed to

1X
t=0

�t
�
�
Z
(s� �)ft(s; �)d�+

�

N

Z
(u� v) � gt+1d� t+1

�
.

When ft is constant in its second argument, � t+1 is uniquely determined by
� and ft for all t. Thus, in this case, W corresponds to a discounted sum
of independent terms.

3 Optimality

We shall construct a constant allocation (f�; g�; h�) and show that it is
optimal. All three functions in the constructed allocation are constant in
the second coordinate, so that output and after-trade holdings of consumers
do not depend on holdings of producers, and savings do not depend on
stage-1 outcomes. We shall �rst present (f�; g�; h�) as continuous solutions
of particular problems, assuming that such solutions exist, and then show,
in a lemma below, that the allocation is actually well de�ned. We then �nish
the section with the statement about optimality.

The construction proceeds in two steps. First, given some money hold-
ings m of the buyer, the optimal exchange of goods in a single-coincidence
meeting involves the maximization of the joint surplus under the constraint
that there is enough money for the producer to be compensated for his
disutility (see P1 below). Second, given this optimal trading decision, the
optimal savings decision m0 given some shock s is determined. This choice
is pinned down by trading o¤ the bene�t with the cost of money (see P2).
More details are provided next.

Consider the sum of stage-1 utility �ows in a single coincidence meet-
ing in which the consumer has m and the producer has n units of money.
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Consider now the problem of maximizing this over choices of output g(m;n)
restricted to v(g(m;n)) � m. Let now g�(m;n) be a continuous, constant-
in-n, solution to

max
y
fu(y)� v(y) : v(y) � mg . (P1)

We construct h� as the slack in the constraint of the problem de�ning g�,
that is, h�(m;n) = m � v(g�(m;n)) for all m and n. We next consider a
one-period savings problem, for a given realization s > �, in order to de�ne
f�(s;m) as a continuous solution to

max
m0

�
�(s� �)m0 +

�

N

�
u(g�(m0; n))� v(g�(m0; n))

��
: (P2)

In P2 the values ofm and n are immaterial. Notice that the interpretation of
P2 as a �savings�problem applies in the sense that a choicem0 implies forgone
present utility sm0, a possible future expected �ow 1

N (u � g
�� v � g�) , and a

residual expected future utility m0 R s0d�(s0). Applying then � to discount
the future and using the normalization

R
s0d�(s0) = 1 yields the objective in

P2. Clearly, P2 suggests that savings decisions are di¤erent depending on
the costs of savings s that agents face.

Lemma 2 There exists a continuous and bounded solution g� to P1 so that
(f�; g�; h�) are well de�ned and constant with respect to their second coordi-
nates.

Proof. The objective in P1 is a continuous and concave function bounded
from above. Existence follows because the constraint set is compact for
s 2 S, that is, for s > �. Uniqueness and continuity of g� for m in [0; v(�y)),
where �y = argmaxyfu(y)� v(y)g, follows from the strict concavity of u� v
and a straightforward application of the theorem of the maximum. For m �
v(�y), continuity requires that g�(m;n) = �y. Hence h� is also continuous.
That g�(m;n) and h�(m;n) are bounded and constant in n is trivial. Since
g� is bounded and continuous then f� is continuous and well de�ned.7

Proposition 3 (i) The constant allocation (f�; g�; h�) is implementable,
(ii) W is bounded from above by W (f�; g�; h�) on the set of implementable
allocations and, therefore, (f�; g�; h�) is optimal.

7The optimization problem P1 is an optimization problem in parametric form, where
the parameter is given by the consumer�s money holdings. Depending on the values of
the parameter m, the set of maximizers is a correspondence. In this paper, without loss
of generality we focus on a continuous selection.
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Proof. We start discussing implications of second-stage deviations for im-
plementability. Let an arbitrary implementable allocation fft�1; gt; htg1t=1
be �xed, and consider a given date t. Since individuals can freely deviate
from ft at the second stage, and such deviations produce a linear payo¤, the
continuation utilities associated to after-trading in the �rst-stage must be
linear in money holdings. As a result, producers in a single-coincidence meet-
ing (m;n) say agree if and only if �v(gt(m;n))+ ~ht(m;n)

R
s0d� � n

R
s0d�,

and consumers say agree if and only if u(gt(m;n)) + ht(m;n)
R
s0d� �

m
R
s0d�. Since

R
s0d� = 1, the participation constraints implied by lin-

earity and individual rationality are equivalent to

u(gt(m;n)) � m� ht(m;n) � v(gt(m;n)). (1)

Moreover, since continuation utilities are linear in after-trade holdings, then
linearity of the payo¤ on savings decisions imply that only one-period devia-
tions need to be considered at a time. In particular, the payo¤Rt�1 at t�1
from a stage-2 deviation to m0, when the shock is s and the distribution at
t is �t, can be written as

Rt�1(m
0; s; �t) = �sm0 + (1� 2

N
)�m0 + (2)

�

N

Z h
u(gt(m

0; n)) + ht(m
0; n)� v(gt(n;m0)) + ~ht(n;m

0)
i
d�t(n).

Hence, fft�1; gt; htg1t=1 is implementable if and only if (1) holds and ft(s; �)
maximizes Rt(m; s; �t+1) in m at all dates.

We now argue that (f�; g�; h�) is implementable. It is straightforward
to verify that. Because g� solves problem P1, then y = g�(m;n) and x =
h�(m;n) solve

max
(x;y)

fu(y)� v(y) : u(y) � m� x � v(y)g.

Hence g� and h� satisfy the participation constraints (1), and individuals say
agree to (f�; g�; h�) in all �rst-stage meetings. We now claim that individuals
agree with f� at the second stage of all dates. This follows because f� is
constructed as the maximizer of problem P2, and because (2) coincides with
the objective in P2 on [0; �y] (de�ned in the proof of Lemma 1) when gt+1 = g�

and ht+1 = h� (because n drops out in this case from (2) the value of �t+1
becomes irrelevant): Hence individuals also say agree to (f�; g�; h�) at the
second stage in all dates and the proof to the �rst part of the proposition is
complete.
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We now show that W (f�; g�; h�) is an upper bound on welfare of imple-
mentable allocations. Let us again �x an alternative, implementable alloca-
tion fft�1; gt; htg1t=1 and assume that f� tg1t=1 is its corresponding sequence
of meetings distributions. Let t � 0 be arbitrary. Because (g�; h�) was con-
structed so as to maximize u� v subject to participation constraints in any
meeting (m;n), it follows that

(u� v) � g� � (u� v) � gt+1:

Integrating the objective in problem P2 with respect to � implies that f� is
such that, for any m and n,Z �

�(s� �)f�(s; �) + �

N
(u� v) � g�(f�(s; �); �)

�
d�(s)

�
Z �

�(s� �)ft(s;m) +
�

N
(u� v) � g�(ft(s;m); �)

�
d�(s)

�
Z �

�(s� �)ft(s;m) +
�

N
(u� v) � gt+1(ft(s;m); n)

�
d�(s):

Changing now variables in both the �rst and the third integrals yields

�
Z
(s� �)f�(s; �)d�+ �

N

Z �
u(g�(m0; �))� v(g�(m0; �))

�
d�f��1(m0)

� �
Z Z

(s� �)ft(s;m)d�d!t(m) +
�

N

Z
(u � gt+1 � v � gt+1)d� t+1,

where !t is the distribution of after-trade holdings associated with
fft�1; gt; htg1t=1, and �f��1 is the measure of end-of-stage-2 holdings induced
by f� [that is, if A is Borel subset of R+ then �f��1(A) = �(f��1(A))]. For
this last step, we use the fact that !t and ft must generate � t+1. It is now
trivial to verify that this inequality implies

W (f�; g�; h�) �W (fft�1; gt; htg1t=1):

The proof of the proposition is thus complete.

Remark 4 This result shows that the simple problem P2 gives an upper
bound on average discounted welfare for any allocation that is individually
rational. Since it can be implemented in an individually rational way, the
solution to P2 provides an optimal plan.8

8Another implication of this result is that optimal trading exchanges involve the con-
sumer take-it-or-leave-it o¤er. In other words, we show that the consumer take-it-or-leave-
it trading rule is optimal among all the incentive compatible trading rules (including also
the ones arising under Nash bargaining).
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The constraint on the �rst part of the problem P1 relies on the expected
value of money, thus the optimum is invariant to mean preserving changes
in the distribution of shocks. This is no longer the case in the environment
with auctions considered next.

4 The environment with auctions

We change the environment in order to allow for a selection of consumers in
some meetings.

4.1 Mixing standard and auction meetings

For each meeting (m;n) there is now a realization of a Bernoulli shock. Its
distribution is iid over meetings and dates. With probability (1� �) con-
sumption and production must take place as in the benchmark environment;
that is, there is a single coincidence only if the consumer is type j and the
producer is type j � 1, for some j. With probability �, however, both indi-
viduals can produce the good that the meeting partner likes, but only one
of the traders can be the producer.

Our goal is to show that a modi�cation of the upper-bound argument
used to construct the optimum in the benchmark case can also be used to
describe the optimum in this new environment. As we shall see, an inter-
esting aspect of the optimum is that it is desirable to choose the individual
holding the largest quantity of money to be the consumer, as if that choice
is the result of a �rst-price auction (i.e., the probability of being a buyer
or a seller is endogenous). The reader can verify that the essence of this
optimum would be preserved in extensions where the number of people in
a meeting is larger than two, provided that only one individual can be the
consumer, and only one of the remaining participants in the meeting can be
the producer.

Let us call this new kind of meeting, an event that happens with proba-
bility �, an auction meeting, and call the other realization, that happens with
probability 1��, a standard meeting. We restrict the set of allocations as fol-
lows. An allocation is now fet; ft�1; gt; htg1t=1, where the last three sequences
can be given the same interpretation as before, while et : R2+ ! f0; 1g de-
�nes a selection of who is the consumer in auction meetings. If type j holds
m, type k holds n, and the meeting is an auction, then et(m;n) = 1 means
the consumer is the one holding the largest amount (if the holdings are not
equal) and et(m;n) = 0 means the consumer is the one holding the least
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amount. (For completeness, one can assume that the consumer is chosen
according to a randomization device with probability 1

2 when m = n).
If m _ n denotes maxfm;ng and m ^ n denotes minfm;ng then, after

the consumer is selected in an auction meeting, output is

qt(m;n) = et(m;n)gt(m _ n;m ^ n) + [1� et(m;n)]gt(m ^ n;m _ n)

while the after-trade holdings of the consumer are

pt(m;n) = et(m;n)ht(m _ n;m ^ n) + [1� et(m;n)]ht(m ^ n;m _ n):

The set of allocations is restricted because we are not allowing (g; h) to vary
across auctions and standard meetings, but this restriction imposes no loss
of generality as it follows that the optimum features et = 1 in all auction
meetings. Before we present the argument, we conclude the presentation
of the environment with the de�nition of implementability and the welfare
criteria.

If fft�1; gt; htg1t=1 is implementable in the benchmark environment, then
fet; ft�1; gt; htg1t=1 is implementable in the new environment because saying
agree or disagree to et presents no new participation constraints.

Hence fet; ft�1; gt; htg1t=1 is implementable if and only if fft�1; gt; htg1t=1
is implementable in the benchmark environment. The expression for average
utility W (fet; ft�1; gt; htg1t=1) is the same as that for W (fft�1; gt; htg1t=1),
with the exception that the term At inside the integral is now extended to

(1� �)At + �(u � qt � v � qt + 2si� sft � pt � sft � ~pt),

with the understanding that ~pt(m;n) = n+m� pt(m;n).
We assume that � has a density bounded away from zero on the interval

�S � (�; �s), for some �s > �.

4.2 The upper bound

As before, we �rst construct a particular candidate, and show later that
it is in fact an optimal allocation. In our construction, the candidate is
stationary (constant in t). On the one hand, in all auction meetings, e = 1.
On the other hand, in both standard and auction meetings, trade takes
place according to g� and h�, as in the exchange scheme for the benchmark
allocation (but now, in auction meetings g�(m;n) and h�(m;n) are applied
to m � n). The novelty is that the optimum savings function, now denoted
fa, is chosen among possibly many solutions to a �xed-point problem.

14



We �nd it convenient to limit ourselves to smooth and monotone solu-
tions as follows. A function f : �S � R+ ! R+ is a candidate optima if it
is di¤erentiable, strictly decreasing in the �rst argument, constant in the
second, and solves moreover

max
m

�
�(s� �)m+ (1� �) 1

N
R(m) + �F (m)R(m)

�
(P3)

where, for all m � 0,

R(m) = �max
y
fu(y)� v(y) : v(y) � mg

and
F (m) = �(fs 2 �S : f(s; �) � mg). (FP)

In P3, the function R is a short representation for �(u � g� � v � g�).
It follows that when � = 0, the unique candidate is f = f�, and thus
fa = f�. For � > 0, however, problem P3 di¤ers from P2 because now the
distribution of money is relevant. For each candidate f , in allocations of the
kind (e; f; g; h) = (1; f; g�; h�) a savings level m is payo¤-relevant in auction
meetings only when the producer has n � m, an event taking place with
probability F (m).

4.3 Existence and uniqueness

In this subsection we present su¢ cient conditions for the existence of a
unique solution to P3. We examine optimality in the next subsection.

Lemma 5 Let D denote the cdf of � and let f�1 denote the inverse of f
(with respect to s). Then f is a solution to P3 if and only if D � f�1 = x
for x : I ! [0; 1] solving

x0 =

�
1� �
�N

+ 1� x
�
R0

R
� 1

�R

�
D�1(x)� �

�
, (DE)

together with the auxiliary condition

x(m0) = 1 , (IC)

where I = [m0;m
�) is de�ned by R0(m0) = (�s��)N=(1��) and R0(m�) = 0:
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Proof. Recall that R0 is strictly decreasing, with R0(0) = +1 and R0(m�) =
0. Moreover, if f is continuous then F is di¤erentiable and the solution m =
f(s; �) for each s must be interior and satisfy the tangency condition

s� � = (1� �) 1
N
R0(m) + �[R0(m)F (m) +R(m)F 0(m)].

Since f is decreasing, F (f(�s; �)) = 0. Thus, taking into account the de�nition
of m0, if f(�s; �) 6= m0 then

�(�s� �)m0 + (1� �)
1

N
R(m0) > �(s� �)f(�s; �) + (1� �)

1

N
R(f(�s; �)),

contradicting that f is a solution to P3. Hence f(�s; �) = m0 and a similar
argument shows that f(�+; �) = m�. Let now h : I ! (�; �s] be the inverse of
f with respect to the �rst coordinate. Since the FP condition is equivalent to
F (m) = 1�D[h(m)], where D is the cdf of �, then F 0(m) = �d(h(m))h0(m)
for m in the image of f , where d is the density of �. Changing variables
once again with x : (m0;m

�) ! (0; 1), x(m) = D(h(m)) then, because
s = D�1(x(m)) and F 0 = �x0, this �rst order condition can be written as
the di¤erential equation (DE ), with the understanding that x; x0, R; and R0

are functions of m. Because f(�s; �) = m0, then an initial condition for (DE )
is (IC ).

Lemma 6 The initial value problem (DE)-(IC) has at most one solution.
If the distribution of shocks is uniform, or �s is su¢ ciently low, then it has
a solution.

Proof. As it is standard, in order to examine existence and uniqueness of
solutions to (DE-IC) on the interval I, we let

H(t; r) =

�
1� �
�N

+ 1� r
�
R0(t)

R(t)
� D

�1(r)� �
�R(t)

denote the function de�ned by the right-hand side of (DE) with r = x and
t = m, with the understanding that R and R0 are continuous and bounded
functions on I (since � < 1 implies m0 > 0 and R0(m0) < 1). If � is
uniform then D is linear, and so H is also linear in r. As a result, (DE)
de�nes a linear ordinary di¤erential equation with nonconstant coe¢ cients.
A basic result in the theory of linear ordinary di¤erential equations is that
initial value problems are uniquely solvable, and solutions are de�ned on all
of I.
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Even if D is not linear, because H and @H
@r are bounded (since the density

of � is assumed bounded away from zero), then another basic result on the
theory of �rst-order di¤erential equations is that the initial value problem
(DE-IC) has at most one solution (see Theorem 2 in Brauer and Nohel,
1986, p. 400). In this case, existence on some interval can be demonstrated
according to details of the bounds on H according to the Picard-Lindelöf
theorem (see Theorem 1 in Brauer and Nohel, 1986, p. 389). To do that,
we have to �nd bounds of the right-hand side of (DE) so that the interval
around m0 for which the theorem applies includes (m0;m

�). We state below
the theorem for completeness.

Theorem. Assume that M is a bound for jHj, that a = m� �m0, and
that b = 1. Suppose that H and @H

@r are continuous and bounded in the
rectangle f(t; r) : t�m0 < a; 1� r < bg with jHj �M . Let � = minfa; bM g.
Then the successive approximations �j given by

�0(t) = 1;

�j+1(t) = 1 +

Z t

m0

H(m;�j(m))dm (j = 0; 1; 2; :::)

converge (uniformly) on the interval ft : t�m0 < �g to a solution � of DE
that satis�es initial condition IC.

We now provide a bound M for H such that � implies (m0;m
�) �

ft : t�m0 < �g. On the one hand, since D�1 � � and r � 0, then

H(t; r) �
�
1� �
�N

+ 1

�
R0(t)

R(t)
�
�
1� �
�N

+ 1

�
R0(m0)

R(m0)
.

On the other hand, since r � 1,

H(t; r) � 1� �
�N

R0(t)

R(t)
� D

�1(r)� �
�R(t)

� � �s� �
�R(m0)

.

Hence

jHj � 1

�R(m0)
max

��
� + (1� �) 1

N

�
R0(m0); �s� �

�
;

and since, by construction, �s� � = (1� �) 1NR
0(m0), then jHj �M , where

M =

�
� + (1� �) 1

N

�
R0(m0)

�R(m0)
.

Since

� = minfa; b
M
g = minfm� �m0;

1

M
g;
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in order to have � � m� �m0, as desired, it su¢ ces to have m0 su¢ ciently
large so that �

� + (1� �) 1
N

�
R0(m0)

�R(m0)
� 1

m� �m0
:

Making now explicit the dependence of R on parameters, we �nd that

R0(m0)

R(m0)
=

1

u(y0)� v(y0)

�
u0(y0)

v0(y0)
� 1
�

and

�s� � = (1� �) �
N

�
u0(y0)

v0(y0)
� 1
�
,

where y0 = v�1(m0): Hence, if �s! � then m0 ! m�. Thus � = m� �m0 if
�s� � is su¢ ciently low. The proof is now complete.

4.4 Optimality with auctions

We compare solutions to P3 in terms of the average payo¤ !, de�ned for
each f as

! =

Z �
�(s� �)f(s; �) + 1� �

N
R(f(s; �)) + �F (f(s; �))R(f(s; �))

�
d�(s).

Proposition 7 (i) If f solves P3 then (1; f; g�; h�) is implementable. (ii) If
fet; ft�1; gt; htg1t=1 is implementable and �! is an upper bound on the average
payo¤ in P3 then W (fet; ft�1; gt; htg1t=1) � �!=(1� �).

Proof. The same reasoning of the proof of Proposition 1 applies to state-
ments (i) and (ii). Let us suppose f solves P3 and let us �x allocation
(1; f; g�; h�). Since individuals take the distribution of money as given (cdf
F de�ned in P3), individual rationality is equivalent to having f maximize
the right-hand side of P3, as assumed. Thus (1; f; g�; h�) is implementable.

Regarding part (ii), it is straightforward to show the producer con-
strained is weakened by increases in holdings of the consumer. More for-
mally, that (u � v) � g�(m;n) is weakly increasing in m and constant in n.
Hence, the social payo¤ u � v is bounded from above by the choice e = 1
and g = g�. As in the proof of Proposition 1, integrating individuals�payo¤s
resulting with respect to � yields again an aggregate payo¤ ! that coincides
with the average objective in P3. As a result, (1��)W (fet; ft�1; gt; htg1t=1)
is bounded above by any �! bounding the average payo¤of the set of solutions
to P3.
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Remark 8 As in the benchmark case, the savings choice is determined by
trading o¤ bene�ts and costs. Now, there is an additional term in the bene�ts
re�ecting the fact that the probability of being a buyer is endogenous and is
captured by the cdf of money holdings. Thus, the entire distribution of money
holdings matters and it arises as a solution of a di¤erential equation.

5 Conclusions

We have constructed a model of macroeconomic heterogeneity, inspired by
Kiyotaki and Wright (1989) and driven by i.i.d. shocks to a linear-utility
savings decision to hold a commonly desired medium of exchange. By apply-
ing mechanism design with individual defections we have shown that a static
maximization problem yields an algorithm for constructing the optimum.

The essence of the planner�s problem in this paper is to design an e¢ cient
distribution of money for every date. More money allows a higher trade
volume in meetings, but the trade-o¤ is the higher cost of making that level
of liquidity available. The planner reaches a second best with a compromise:
provided that shocks are i.i.d., so that all individuals have the same after-
trade valuation of money holdings, trade gets reduced below the �rst-best
level in order to save some resources in money creation and distribution.
Individuals realizing shocks that correspond to low opportunity costs are
allocated more money and, consequently, get closer to �rst-best consumption
when trading as consumers. Because trade falls below the �rst best, average
welfare is maximized by allocating all trade surplus to consumers, since their
marginal utilities exceed those of producers in absolute values.

The distribution of shocks in the population is therefore translated into
distributions of money and consumption in meetings, but there is no disper-
sion in shares of trade surpluses. It follows that the optimum resembles an
allocation in which all the "bargaining power" goes to the consumer. Notice,
however, that the algorithm for constructing that optimum could be easily
modi�ed for generating alternative stationary equilibria like those described
in models with bargaining. For we could impose an incentive-feasible bar-
gaining game in each meeting, given an allocation of money holdings, and
then design the best distribution of money to go along with this game. By
shifting bargaining power to producers, the equilibria so constructed would
reduce the incentives to save commodity-money and reduce the quantity of
money in circulation.

We conclude that other games cannot implement better allocations than
the optimum described. To put this �nding into perspective it helps to
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understand that, in our setup, individuals can anonymously readjust the
quantity of money brought to meetings, as the planner tries to keep money
as valuable as possible, by giving all the surplus to consumers. Giving
money a value above that point is ine¢ cient because that would distort the
allocation of money which is costly to undertake.

We have seen that the property that savings are invariant to alterna-
tive, mean preserving distributions of shocks, is not robust to a simple
and appealing change in our model. In situations where a choice over
consumer/producer status is physically feasible, allocating consumption to
wealthy individuals is in fact socially optimal. We have shown that a dif-
ferential equation can be used to describe the optimum in a class of smooth
allocations. The shape of the optimal distribution of money re�ects two
forces. First, di¤erent people face di¤erent savings opportunities. Since
output in meetings is divisible, there is an intensive margin to be explored,
and a consequent dispersion in money holdings. This is the benchmark ex-
planation for heterogeneity. Second, because consumption opportunities are
scarce, it is optimal to allocate consumption according to wealth, so that
savers explore the distribution of holdings when making decisions. This is
the auctions or extensive-margin explanation for heterogeneity.

We have thus linked heterogeneity and optimality.9 Our upper-bound ar-
gument may be used in future research to demonstrate that in some models
with divisible �at money and linear utility of money adjustments (see La-
gos and Wright 2005) stationary allocations are indeed desirable.10 Future
research will also have to examine the extent to which the guess-and-verify
approach of our upper-bound argument can be extended to cases where
shocks are persistent, as one might be led to assume in applications.

9The �directed search�literature (see Burdett and Judd, 1983) has coordination failures
generating price dispersion when consumers sample prices from subsets of sellers. This
equilibrium emphasis appears in the auction models of Julien et al. (2006), with indivisible
money and bids in output quantities, and Galenianos and Kircher (2006), with divisible
money and �xed consumption in meetings. Since a seller can only serve one buyer at a
time, allocations are similar in spirit to those in our auction setup.
10We suspect that that a �xed rate of money growth in such models would translate

into a �xed s in our model, and thus optimality could be stated relative to a �xed s. A full
discussion of optimality, however, would have to address whether levels of s su¢ ciently
close to � are feasible, like in the Friedman rule, and it is not clear that this is an interesting
application of the upper-bound argument, at least because the optimum with near zero-
opportunity cost of holding money is well known. The analysis of Lagos and Rocheteau
(2008) also implies that the coexistence of commodity and �at monies is not interesting
in linear models like ours. Commodity money would be driven out of the economy if the
opportunity cost of �at money can be made su¢ ciently low.
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