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Abstract One of the central hypotheses of the neoclassical growth literature is the balanced- 

growth hypothesis, which predicts that output, consumption, and investment grow at the same rate. 

Empirically, this implies that the consumption-to-output ratio and the investment-to-output ratio 

must be stationary and that consumption and investment must be cointegrated with output. This 

paper tests these implications with respect to Germany, using unit root tests and cointegration 

techniques that allow for an endogenously determined structural break. We find that the long-run 

growth path of the German economy is consistent with the balanced-growth hypothesis if we allow 

for a structural break associated with the worldwide productivity slowdown of the early 1970s. 
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1 Introduction 

 

Since its inception, modern growth theory (e.g., Harrod 1939, and Solow 1956) has focused on 

balanced growth paths. Along such paths, an economy’s endogenous variables grow at constant, 

though not necessarily equal, rates; factors shares and the interest rate are constant, as is the capital-

output ratio. In particular, from the economy’s resource constraint, according to which the sum of 

consumption and investment is limited by output, it follows that consumption, investment, and 

output share the same steady-state growth rate. If these economic aggregates grow at the same rate, 

their ratios must be constant, or stationary, over time, in turn implying that both consumption and 

investment must be cointegrated with output.
1
 

Even though balanced growth characterises a variety of both exogenous and endogenous 

growth models, tests of balanced growth have generally been presented as tests of the neoclassical 

exogenous growth model (Attfield and Temple 2006). This literature originates with King et al. 

(1991), who find the theoretically expected cointegrating relationships using time-series data for the 

United States (US), and who interpret this result as evidence supporting the neoclassical growth 

model. Their conclusion, however, has been questioned by Neusser (1991) who, by applying unit 

root and cointegration tests to time-series data for Austria, Canada, Western Germany, Japan, the 

United Kingdom (UK), and the US, finds clear evidence in favour of the balanced-growth 

hypothesis solely for the US. Also, Harvey et al. (2003), in a unit-root and cointegration analysis for 

Canada, France, Germany, Italy, Japan, the UK, and the US, conclude that their findings are 

generally not consistent with balanced growth. This conclusion is in line with the results by Serletis 

and Krichel (1995), which reject the balanced growth hypothesis for Canada, France, Germany, 

Italy, the Netherlands, Norway, Switzerland, Japan, the UK, and the US. 

A common feature of these studies is the assumption that the determinants of the steady-

                                                           
1
 For earlier discussions of ‘great ratios’ in macroeconomics see Klein and Kosobud (1961) and Ando and Modigliani 

(1963). 
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state consumption and investment ratios are constant for the period of consideration. Other studies 

consider the possibility of structural breaks in these determinants, thereby finding more evidence for 

the balanced-growth hypothesis. Clemente et al. (1999), for example, analyse the stationarity of the 

great ratios of consumption and investment to output for 21 OECD countries, and find that allowing 

for one or two structural breaks substantially increases the number of rejections of the unit-root null 

hypothesis. Specifically, their unit-root test results suggest that the two ratios are stationary for 

Australia, Austria, Canada, Denmark, Finland, Portugal, Spain, Sweden, Switzerland, and the US. 

Similarly, Attfield and Temple (2006) examine the balanced-growth hypothesis for the US and the 

UK. Using cointegration analysis with structural breaks, they find the cointegrating vectors 

predicted by theory for both countries. Finally, Li and Daly (2009) apply unit root and cointegration 

tests to time-series data for China. Allowing for a structural break in the late 1970s, they find 

evidence of balanced growth in the pre-break period. 

Following this line of research, this paper examines whether the great ratios are stationary 

for Germany. Germany is an interesting case since it is the largest economy in Europe. Moreover, to 

date, there is no evidence to support the stationarity of the two great ratios for Germany.
2
 In fact, 

the first impression that emerges from Figure 1 is that the two ratios are not stationary; the German 

consumption-to-output ratio appears to have an upward trend, while the investment-to-output ratio 

appears to exhibit a downward trend. We argue that this first impression is due to an un-modelled 

structural change in the rate of technical progress which is associated with worldwide productivity 

slowdown of the early 1970s, and which caused a reduction in the steady state value of the 

investment ratio and—as the two are mirror images of each other—an increase in the steady state 

value of the consumption ratio.  

Specifically, this paper makes the following contributions. First, in the theoretical part, we 

                                                           
2
 Clemente et al. (1999) find that the investment-to-output ratio is stationary for Germany; they find no evidence of a 

stationarity consumption-to-output ratio. The latter could be due to their relatively small sample size. In fact, unit root 

tests have low power with short time spans of data and, therefore, failure to reject the unit root null should be 

interpreted with caution. 
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introduce a CES technology into a standard neoclassical growth model to derive the steady-state 

investment ratio as a function of solely structural parameters. Second, we derive the restrictions 

required for a drop in productivity growth to yield a reduction in the investment rate, and we verify 

that such conditions apply to Germany. Third, because standard unit-root tests are biased towards a 

non-rejection of the null of a unit root in the presence of structural breaks, we use the Perron and 

Vogelsang (1992) approach in our empirical analysis. This approach permits a formal evaluation of 

the time-series properties in the presence of an endogenously determined structural break. Fourth, 

since standard cointegration tests too often incorrectly fail to reject the null of no cointegration 

when there is a break in the cointegrating vectors, we examine the cointegrating rank using the 

Johansen et al. (2000) maximum likelihood method. This method is explicitly designed to allow for 

a structural break. Fifth, taking into account the endogenously determined structural break, we 

estimate the long-run relationship between consumption and output, as well as between investment 

and output, and test whether the estimates are consistent with their theoretically predicted values. 

To preview the main result: We find that the long-run growth path of the German economy is 

consistent with the predictions of the neoclassical growth model if we allow for a structural break 

associated with the worldwide slowdown in productivity at the beginning of the 1970s.  

The rest of the paper is organised as follows: Section 2 discusses the theoretical framework, 

the empirical analysis is presented in Section 3, and Section 4 concludes.  

 

 

2 Theoretical considerations 

 

In this section we outline a discrete-time, deterministic, rational-expectations model of neoclassical 

exogenous growth. We adopt the framework proposed by King, Plosser and Rebelo (2002) (KPR 

hereafter) and we apply it to the case of CES production functions. After analysing the conditions 
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under which CES technology and neoclassical growth are compatible, we derive the steady state 

investment rate of the economy as a function of solely structural (preferences and technology) 

parameters. We use this derivation to obtain a restriction for the investment rate to react negatively 

to a drop in the rate of growth of technical change, and, finally, we verify that this restriction 

applies to the German case. 

 

 

1.1 The economy 

 

The economy is populated by a large number (normalised to 1) of identical agents whose 

preferences over consumption streams { }∞

=0ttC  can be ordered according to ∑∞
== 0 )(

t t
t

CuU β , 

where ∈β  (0,1).   

Output at time t is produced through a constant-returns technology by employing capital and 

labour as inputs, ),( tttt NKFY = . For the moment, we do not impose all of the standard regularity 

conditions of neoclassical production functions upon (.)F ; we only assume differentiability, 

leaving a more thorough discussion of technology to Section 2.2. Output can either be consumed or 

invested to increase the capital stock available for production in the next period. In turn, we have 

ttt ICY +=  and ttt IKK +−=+ )1(1 δ , where I represents gross investment and δ  is the rate of 

capital depreciation. Finally, each agent is endowed with one unit of labour input, which is supplied 

inelastically ( 1=tN ). 

Since we focus on balanced growth, we make the following assumptions to ensure that 

steady states (i.e. paths along which endogenous variables grow at constant rates) do exist: 

- the inter-temporal elasticity of substitution is constant, so that the instantaneous utility 

function is given by 
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- technical change is Harrod-neutral, so that the production function can be written as 

)1,( tt KF = ),( ttt XKF , where X represents labour efficiency. 

Let jg  be the steady-state growth factor of variable j. It follows from the constraint on 

output uses and from the constraint on capital accumulation that Yg  = Cg  = Ig  = Kg  . Moreover, 

constant returns to scale technology with no population growth imply Yg  = Xg  (see KPR 2002, 

92). 

 

 

2.2 Equilibrium 

 

The assumption of a representative agent implies that in competitive equilibrium there will be no 

exchange. In turn, equilibrium allocation will coincide with the sequence { }∞

=+ 01,
ttt KC  which, for 

an initial 0K , maximises U subject to the economy's resource constraints. Following KPR (2002, 

89), we can write the Lagrangian of this problem as: L = ∑
∞

=

−

+
−0

1

1t

tt C

ϑ
β

ϑ

 

∑∞
= + −+−−0 1 ])1(),([

t tttttt KKCXKF δλ , where tλ  is the Lagrangian multiplier at time t. An 

equilibrium path can be found by solving a system made up of the transversality condition, 

0lim 1 =+∞→ ttt Kλ , and the first order conditions with respect to ( ttt KC λ,, 1+ ): 

tt
t
C λβ ϑ =− ,                                                                                                                           (1) 

ttKt F λδλ =−+
++ )]1([
11 ,                                                                                                        (2) 

0)1(),( 1 =−+−− + ttttt KKCXKF δ ,                                                                                   (3)  
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for ∞= ,...,1,0t . Eq.s (1) and (2) can be used to derive the Euler equation: 

)]1([
1

1 δβ

ϑ

−+=







+

+
tK

t

t F
C

C
.                                                                                                (4) 

Notice that since constant returns imply )1,(),( KXFXKF = , then 
KK FF = , where ‘bar’ 

variables denote variables divided by X. Such normalisation is necessary to move to steady states as 

there is no steady state level of K  in Eq. (4). On the contrary, since K and X grow at the same rate, 

there exists a stationary level of their ratio K . In what follows we will denote *j  as the steady-

state value of variable j. In turn, focusing on steady states in Eq. (4), we have: 

  [ ]( ) XCKKK
ggF ==−+=

ϑδβ
1

*
)1( .                                                                                      (5) 

From Eq. (3) we obtain tttt KKKI /)1(/ 1+=−+ δ , which calculated in steady states yields 

)1()1(*/* δδ −−=−−= XK ggKI . Finally, the steady-state investment rate is given by 

[ ]
*

*
)1(

*

*

*

*

*

*
*

Y

K
g

Y

K

K

I

Y

I
s Xi δ−−=== . We now aim at calculating the steady-state capital-output 

ratio when a CES technology is assumed. 

 

 

2.3 Exogenous growth with CES production function 

 

CES production functions can be written as ( ) ρρ

1

])1([, tttttt NXaaKANXKF −+= , with 1≤ρ  and 

with 0)1/(1 ≥−= ρσ  being the constant elasticity of substitution between capital and labour. In 

per-effective-worker terms, we can write ( ) ρρ

1

)]1([)(1, aKaAKfKF tt −+=≡ .
3
 We want to impose 

                                                           
3 We have adopted the original formulation of CES function proposed by Arrow et al. (1961). In recent years a renewed 

interest in the relation between CES productions function and growth theory has arisen; in this context, the idea of 

normalised CES functions elaborated by Klump and de La Grandville (e.g., de La Grandville 1989, and Klump and de 
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restrictions which assure the existence of steady states on ρ . The marginal product of capital is 

ρ

ρ

ρ

−

−−+=

1

])1([)(' KaaAaKf . First, consider the case 0>ρ . Since ( ) ρ

1

'lim AaKf
K

=∞→  the 

second Inada condition is violated and a steady state may not exist. In particular, since ( ) 0'' ≤Kf  

for 10 ≤< ρ , if )1(/

1

δβϑρ −−> XgAa  Eq. (5) can never be satisfied: accumulation will never 

come to an end and neoclassical exogenous growth will not be feasible. In the Appendix we show 

that this event requires )1(/ δβϑ
−−> XgA  (intuitively, capital productivity must be high) and >ρ  

( ) +≡−−− ρδβϑ
]log)1(//[loglog Aga X 0> . If, to the contrary, 0<ρ , then ( )Kf

K
'lim

0→
 ρ

1

Aa= ; 

the first Inada condition is violated. Returns to capital may be so low that the accumulation process 

does not even begin and that no 0* >K  exists. Again, using Eq. (5) and 0)('' <Kf  for 0<ρ , we 

conclude that we will face a growth trap when )1(/

1

δβϑρ −−< XgAa . For this condition to be 

satisfied, )1(/ δβϑ
−−< XgA  and <ρ /loga ( ))1(/[log δβϑ

−−Xg  ]log A− 0<≡ −ρ must hold 

(see Appendix).
4
  

This analysis restricts the values of the elasticity of substitution compatible with the 

neoclassical exogenous growth to
5
 







−−<−≥

−−>−≤
=

−

+

)1(/)1/(1

)1(/)1/(1

δβρ

δβρ
σ

ϑ

ϑ

X

X

gAif

gAif
. 

                                                                                                                                                                                                 

La Grandiville 2000) has found wide support. They normalise the CES function in such a way that the technological 

parameter A and the distributional parameter b can be expressed as functions of σ. Since we are not interested in the 

effects of changes in the elasticity of substitution we can develop our analysis by adopting the original CES functional 

form (see Klump and Saam (2008) for a discussion of normalised CES functions and calibration). 
4
 We have denoted ρ+ and ρ– as the two threshold values for endogenous growth and for no growth to emphasise that 

even though they are characterised by the same analytical expression, the former is positive and the latter is negative. 
5
 We also rule out ρ → – ∞ otherwise the function may tend to a fixed coefficient Leontief technology, which is not 

differentiable. 



 9

Restricting our attention to the values of the elasticity of substitution, for which steady states exist, 

we look for the steady state capital-output ratio. In the Appendix, we show that substituting 

ρ

ρ

ρ

−

−−+=

1

])1([)(' KaaAaKf  into Eq. (5) and solving for *K  yields 
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and, finally, the capital-output ratio is 

)1(
*)(

* 1

1

1

δ
β

ϑ

ρρ

ρ

−−

=
−−

Xg

aA

Kf

K
. 

In turn, we can go back to the steady-state investment ratio to obtain
6
 

ρ
ϑ

ρρ

ρ

δ
β

δ

−

−−














−−
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=

1

1

1
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1
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g
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The model is consistent with Germany reducing its investment ratio in response to a slowdown in 

productivity growth if 0/* >Xi dgds . This condition does not always hold; it can be easily verified 

that it requires 
ϑβδδϑσϑσ −

−>−+− XX gg )1(/)1(1 .
7
 In order to check the inequality we have 

assumed standard values such as 1.0=δ , 96.0=β , =Xg 1.16.  We have also used two alternative 

                                                           
6 Smetters (2003) and Gòmez (2008) derive an analogous result for the continuous time case. 
7
 We have proceeded analogously to Attfield and Temple (2006, pp 11-12) but assuming CES technology allows us to 

consider explicitly the influence of the elasticity of substitution on the investment rate. 
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estimates of the factors elasticity of substitution McAdam and Willman (2008) provided for 

Germany: =1σ 0.87, =2σ 0.55.
8
 

If we calculate the ratio between investment rate and capital share, ω , in steady state we 

obtain ( ) /)1(*/* δω −−= Xi gs ( ))1(/ δβϑ
−−Xg  (see the Appendix for a derivation). We set 

24.0* =is  since it is the average value of the investment ratio for the period 1953 through 1972; in 

the next section, we find that the break of the investment ratio series is 1972. If we assume a steady-

state value of capital share 4.0* =ω , we can solve for ϑ  as the only unknown left in the equation.
9
 

The last equation returns 66.1=ϑ , which for both values 1σ  and 2σ  of the elasticity of 

substitution, satisfies the condition required for 0/* >Xi dgds . In turn, the negative response of the 

German investment rate to a negative shift in the growth rate of productivity appears consistent with 

the prediction of the neoclassical growth model. 

 

 

3 Empirical analysis 

 

3.1 Preliminary considerations 

 

If the great ratios of consumption and investment to output are constant along the steady-state 

growth path, both the difference between the logarithm of consumption and the logarithm of output, 

tt yc − , and the difference between the logarithm of investment and the logarithm of output, tt yi − , 

become stationary processes. If the logarithms of output, consumption, and investment behave as 

                                                           
8 The two results are obtained under different assumptions on technical change. The authors find σ1 = 0.87 when 

assuming factors augmenting technical change, and σ1 = 0.55 with labour augmenting. It is a widely known result in 

production theory, specifically, the ‘impossibility theorem’, and due to Diamond and MacFadden (see Diamond, 

MacFadden and Rodriguez 1978), that it is impossible to simultaneously estimate the elasticity of substitution and the 

bias of technical change. The usual way out of this impasse consists in assuming some restriction on the structure of 

technical change. 
9
 The result is robust against the choice of smaller values of capital share. 
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random walks or integrated processes of order 1, stationarity of the great ratios, in turn, implies two 

linearly independent cointegrating vectors and thus the following matrix of cointegrating vectors 

when the variables are ordered  ct, it, yt:
10

  










−

−
=

110

101
'β                                                                                                                      (6)     

Important to note is that these considerations apply to the case of constant Xg . However, the 

dramatic worldwide productivity slowdown of the early 1970s indicates that productivity growth 

has not been constant. The relatively sudden drop in productivity growth in the early 1970s could 

have, in fact, caused a major structural break in the data. Therefore, it might be more reasonable to 

assume a structural shift in Xg  has occurred. Possible explanations for the drop in productivity 

growth are: (i) the two oil shocks in 1973 and 1979, (ii) the recessions in 1974 to 1975 and 1980 to 

81, (iii) the end of the post-war golden age of the 1950s and 1960s, (iv) the general slowdown in the 

process of tariff reduction compared to the substantial reduction in tariffs between 1950 and 1970, 

and (v) a tendency towards increased government regulations from the beginning of the 1970s 

(Maddison 1987). Thus, the exact break date is not known a priori and we accordingly model the 

average growth rate of total factor productivity with a structural break at an unknown break date. 

Let τtD  denote a dummy variable defined by  





≥

<
=

,,1

,0

τ

τ
τ

tif

tif
Dt                                                                                                          (7) 

where the unknown parameter τ , T∈τ , denotes the time at which the change occurs. Average 

productivity growth with a structural break can then be expressed as:
 11

   

    τθµ tX Dg +=−1 ,                                                                                                         (8) 

where µ  is the average growth rate of total factor productivity before the break, and θ  denotes the 

                                                           
10

 We have named β both the discount factor and the matrix of cointegrating vectors. We made this choice as no 

possible confusion can arise and the symbol is standard in the respective literature for each. 
11

 Average productivity growth rate is gX – 1, because we have denoted steady state growth factors by g (= 1 + growth 

rate), while in Eq. (8) we talk about rates. 
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change in average productivity growth at the time of the break. 

From Eq. (8), it follows that output, consumption and investment still share a common 

growth rate, but the growth rate of the pre-break period differs from that of the post-break period. 

Empirically, this implies 

(i) that the logarithmic differences between output, consumption, and investment, tt yc −  

and tt yi − , are stationary with a structural break,  

(ii) that in the trivariate system of ct, it, and yt, there are two cointegrating relationships with 

a structural break, and 

(iii) that the cointegrating vectors in the system are ),1,0,1(' 11 θβ −=  and 

),1,1,0(' 22 θβ −= , where 1θ and 2θ are the parameters for the structural break, which is 

assumed to coincide with the worldwide productivity slowdown in the early 1970s. 

In the following, we test these implications using German time-series data. 

 

 

3.2 Data  

 

The data are from the International Financial Statistics of the International Monetary Fund. Output 

is measured by real GDP, the consumption variable is represented by real private and government 

consumption, and real gross fixed capital formation is the measure of investment employed. Given 

that only nominal data are available over a sufficiently long time span, the values are converted into 

real terms using the consumer price index. All data are annually reported and cover the period from 

1953 to 2007, implying that our analysis includes 55 annual observations (T = 55). Indeed, quarterly 

series are also available, but only for a shorter time period. Because, however, the power of unit 

root and cointegration tests depends far more on the time span than on the number of observations 
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(Shiller and Perron 1995, Hakkio and Rush 1991, Lahiri and Mamingi 1995), we have chosen to use 

annual data.  

  

 

3.3 Univariate analysis 

 

Standard unit root tests as well as Perron structural change tests suggest that ct, it, and yt are 

integrated of order 1 (results are not reported here to save space). Thus, the first step is to 

investigate the stationarity properties of the great ratios tt yc −  and tt yi − . As already noted, the 

most striking feature of the plots in Figure 1 is that tt yc −  and tt yi −  do not, at first glance, appear 

to be stationary. This first impression is examined formally using a simple ADF test. As can be seen 

from Table 1, the ADF test fails to reject the null hypothesis of a unit root in the great ratios, thus 

seeming to confirm our first impression. 

[Figure 1 about here] 

[Table 1 about here] 

 However, standard unit root tests are biased in favour of identifying data as integrated if 

there is a structural break, as noted at the beginning of the paper. In fact, Figure 1 shows a change in 

both the consumption-to-output and the investment-to-output ratio in the early 1970s, suggesting a 

major structural break. Therefore, we use the Perron and Vogelsang (1992) procedure, which allows 

us to test the unit root null hypothesis against the alternative of stationarity except for an 

endogenously determined change in the mean of the series. More specifically, we estimate the 

innovational outlier model where the structural change occurs gradually rather than suddenly: 

∑
=

−− +∆++++=∆
k

j
tjtjtttt zczdDvz

1
1 ζαδγ τ ,                                                                         (9) 
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where zt stands for the great ratios (zt = tt yc −  or tt yi − ) and τtD  and td  are indicator dummy 

variables for the break at time τ . The step dummy τtD  is defined as in Section 3.1, while the 

impulse dummy td  is constructed as: td  = 1 if t = τ  and 0, otherwise. The break point is 

determined by estimating the model for each possible break date in the data set, and τ  is selected as 

the value which minimises the t-statistics for testing 0=α :  

Min α̂t (τ , k),  

where α̂t  (τ , k) is the t-statistic for testing 0:0 =αH  against 0:0 <αH with a break date τ  and 

truncation lag parameter k. Alternatively, the break year can be determined by maximising the 

absolute value of the t-statistics on the coefficient of τtD : 

Max γ̂t  (τ , k). 

The computed t-values of γ̂  and α̂  are presented in Figure 2. For both tt yc −  and tt yi − , 

the maximum and minimum values, respectively, are attained in 1972, implying a shift in the mean 

of the series associated with that year. Accordingly, the timing of the structural break coincides with 

the worldwide productivity slowdown of the early 1970s. The associated t-statistics for testing the 

unit root null against the alternative of stationarity with a break in 1972 are presented in Table 2. 

Given that α̂t  (τ , k) exceeds in absolute value the five-percent critical value for both Min α̂t (τ , k) 

and Max γ̂t  (τ , k), the null hypothesis of a unit root is rejected. Thus, the great ratios are 

stationary around a broken mean, suggesting that the balanced-growth hypothesis is valid for 

Germany. 

[Figure 2 about here] 

[Table 2 about here] 

Finally, to exclude the possibility of further regime shifts in the mean of tt yc −  and tt yi − , 

we compute the CUSUM-of-squares test statistics for the corresponding mean shift models 
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ttt eDvyc ++=− 72φ  and ttt eDvyi ++=− 72φ , where D72 is a step dummy for the break in 

1972. The results are presented in Figure 3. The CUSUM-of-squares statistics do not cross the five-

percent significance lines, suggesting that the estimated models are stable. Thus, there is no reason 

to assume that there is more than one break. This break obviously occurred in 1972, as the Perron-

Vogelsang procedure suggests, so that in the following, the date of the break can be assumed to be 

known.  

[Figure 3 about here] 

 

 

3.4 Multivariate analysis 

 

To provide further evidence in support of the balanced-growth hypothesis, we test for the number of 

cointegrating vectors among the three variables ct, it, and yt, and estimate the cointegrating 

parameters. We use the Johansen et al. (2000) maximum likelihood approach for this purpose,
12

 

which is based on reformulating an n-dimensional and kth-order vector xt to a vector error 

correction model (VECM): 

tit

k

i
iit

k

i
ittt dxDxvx εθβα +Φ+∆Γ+−+=∆ −

−

=
−

−

=
−− ∑∑ 72)72'(

1

0

1

1
11 ,                                                 (10) 

where xt is an n × 1 vector of endogenous variables ( )',,( tttt yicx = , n = 3), D72 is, as before, a 

step dummy variable for the break in 1972, d72 is an impulse dummy for the year 1972, β  is a n × 

r matrix whose r columns represent the cointegrating vectors among the variables in xt, α  is a n × r 

matrix whose n rows represent the error correction coefficients, iΓ  is a n × r matrix of short-run 

                                                           
12

 The Johansen et al. (2000) approach treats the break point as known. Because the Perron-Vogelsang procedure 

suggests that the break occurred in 1972, and because theory suggests that the worldwide productivity slowdown of the 

early 1970s did have a major impact, the dating of the break point can be assumed to be known. Thus, the Johansen et 

al. (2000) approach should be applicable, although, admittedly, the endogenous selection of the break date may affect 

the distribution of the likelihood ratio test for cointegration. 
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coefficients, and iΦ  represents a n × r matrix of coefficients on d72t-i. In order to test for 

cointegration, we use the trace test, which tests the rank r of the n × n product matrix 'αβ  such that 

the reduced rank, 0 < r < n, implies cointegration. The corresponding critical values can be 

calculated using the response surface estimates of Trenkler (2008). 

The lag length of the VECM, 1−= kp , is determined by the Schwarz criterion (p = 1); the 

trace statistics are adjusted by the small-sample correction factor proposed by Reinsel and Ahn 

(1992), (T – n×p) / T, to account for the small size of the sample. 

Both the adjusted and the unadjusted trace statistics are reported in the top part of Table 3. 

They indicate the presence of two cointegrating vectors, as theory predicts; these vectors are 

presented in the middle of Table 3. The point estimates are close to )',1,0,1( 1θ−  and )',1,1,0( 2θ− , 

and the dummy variables are highly significant, indicating that a structural break in 1972, in fact, 

exists. Finally, in the bottom of the table, we report the results of a Wald test for the hypothesis that 

the parameters on yt are –1. As can be seen, this restriction is not rejected at the five-percent level, 

implying that our results are broadly consistent with balanced growth.  

[Table 3 about here] 

 

 

 

5 Conclusion 

 

This paper has examined the balanced-growth hypothesis using time-series data for Germany. We 

found that the long-run growth path of the German economy is consistent with the balanced growth 

hypothesis if we allow for an endogenously determined structural break in 1972. This finding can 

be interpreted as evidence of a drop in the common average growth rate of output, consumption, 

and investment due to the worldwide productivity slowdown of the early 1970s. Of course, these 

results are not necessarily representative of other countries. Further country-studies that account for 
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possible structural breaks are needed before definitive conclusions about the general validity of the 

balanced-growth hypothesis can be drawn. 

 

 

 

Appendices 

 

 

A Threshold values for ρ 

 

We start by discussing 0>ρ . Notice that 1

1

<ρa , as 1<a . )1(/ δβϑ
−−> XgA  is therefore a 

necessary condition for the inequality, )1(/

1

δβϑρ −−> XgAa , to be satisfied. Taking logs, 

)]1(/log[log/1log δβρ ϑ
−−>+ XgaA , hence ]log)]1(/[log[log Aga X −−−> δβρ ϑ

 and, since 

0log)]1(/log[ <−−− Ag X δβϑ
, multiplying both sides by it yields 

0]log)]1(//[log[log >−−−> Aga X δβρ ϑ
 as 0log <a . 

When 0<ρ , 1

1

>ρa . In turn, )1(/

1

δβϑρ −−< XgAa  can occur only if 

)1(/ δβϑ
−−< XgA . Taking logs yields )]1(/log[log/1log δβρ ϑ

−−<+ XgaA , or 

Aga X log)]1(/log[log/1 −−−< δβρ
ϑ

 . Since ρ  is negative, multiplying both sides by ρ  and 

rearranging yields 0]log)]1(//[log[log <−−−< Aga X δβρ ϑ
 as 0log)]1(/log[ >−−− Ag X δβϑ

. 
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B Steady state capital-output ratio and capital share 

 

In order to solve for *K  from Eq. (5), we set )1(/]*)1([

1

δβϑρ

ρ

ρ −−=−+

−

−
XgKaaAa . Raise 

both sides to 
ρ

ρ

−1
 and rearrange to get a
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Plugging *K  into *)(Kf  yields
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Finally, the capital-output ratio is 
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Since )1(/*)(' δβ
ϑ

−−= XgKf , we can calculate the steady state capital share as 

ρ
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Notice that calibrating ϑ  through this equation is particularly convenient as the technological and 

distributive parameters A and a disappear from the equation and, in turn, the normalisation issues 

discussed in footnote 2 do not apply. 
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Fig. 1 Great ratios 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Sequential unit root tests 

 

 

 

 

 

 

 

 

 

t-values of γ̂  (---)  and α̂  (––). Following common practice, we computed the t-statistics for each breakpoint in the 

interval 0.10T – 0.90T. 
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Fig 3 Stability analysis: CUSUM of squares and 5% significance bounds 
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Table 1 ADF unit root test 

Variables Test  statistic 5% critical value Number of Lags 

ct – yt -1.62 2.91 0 

it – yt -2.53 2.91 1 

The number of lags was determined by the Schwarz criterion. Critical values are from MacKinnon (1996).  
 

 

 

 

 

 

 

 

Table 2 Perron and Vogelsang (1992) unit root tests 

Variables Break 

point 

Test statistic 

α̂t (τ, k) 

5% (1%) critical value 

Min α̂t (τ , k) 

5% (1%) critical value 

Max γ̂t  (τ , k) 

Number of lags 

(k) 

ct – yt 1972 -4.58 -4.44 (-4.95) -4.19 (-4.73) 0 

it – yt 1972 -4.49 -4.44 (-4.95) -4.19 (-4.73) 1 

The number of lags was determined by the Schwarz criterion. Critical values are from Perron and Vogelsang (1992). 

 

 

 

 

 

 

 

 

Table 3 Johansen et al. (2000) approach 

Cointegration rank test 

Null hypothesis Trace statistics Adjusted trace statistics 1% (5%) critical value 

r = 0 159.88*** 150.99*** 45.87 (40.9) 

r = 1 33.75*** 31.87*** 29.01 (24.77) 

r = 2 12.62 11.91 16.62 (12.73) 

Estimated cointegrating vectors 

Variables 
1β̂  2β̂  

ct 1 0 

it 0 1 

yt -0.982*** 

(125.81) 

-0.992*** 

(29.86) 

D72 0.200** 

(2.75) 

-0.054*** 

(-3.18) 

Wald test of balanced growth restrictions 

χ
2
(2) (p-value) 

5.82 0.055 

t-statistics in parenthesis beneath the estimated coefficients. *** (**) denote the 1% (5%) level of significance. D72 is 1 

from 1972 onwards and 0 otherwise. The number of degrees of freedom υ in the χ2(υ) tests correspond to the number of 

restrictions.  


