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Amenities and Risk in Forest Management∗

Marielle BRUNETTE†, Stéphane COUTURE‡, and Eric LANGLAIS§

February 12, 2009

Abstract

The objective of the paper is to analyze the risk management behavior of a non-industrial
private forest owner under uncertainty about timber production. Two types of hedging strategies
with harvesting decisions are studied: a financial practice versus a physical one. We develop a
two-period model of hedging and harvesting decisions when the forest owner values the amenity
services of forest. We study the properties of optimal current and future harvesting and hedg-
ing decisions. We show that, except when both hedging instruments are perfect substitutes,
the forest owner chooses a single tool, her/his choice depending on the rate of return of the
hedging instrument. We also prove that the greater the marginal utility of amenity services,
the smaller the harvesting amount. We provide a comparative statics analysis on current and
future harvesting and on the hedging strategies. We are interested in the impact of an increase
in initial stocks (wealth and timber), timber prices (periods 1 and 2), opportunity costs of the
hedging instruments (rate of return for savings and cost of the regeneration process for physical
practice) and expected risk. We show, for example, that an increase in expected risk has a
negative impact on period 1 harvesting and the use of hedging tools for both strategies, while
the impact on period 2 harvesting is positive for savings and null for physical practice.
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1 Introduction

In many countries of Europe, forests are managed by small Non-Industrial Private Forest (NIPF)

owners with some specific characteristics that have an impact on forest management. Two main

characteristics of NIPF owners can be highlighted. The first one is that the main objective of NIPF

owners is to smooth consumption over time. They therefore face a saving-consumption problem

linked with forest management. The second one is that NIPF owners have positive utility due to

amenity functions of forests along with the revenue from timber sales. Recently it has been proved

that NIPF owners confer some private value on the amenity services of forest stock, even if there are

no financial incentives to these functions (Birch, [1] ; Butler and Leatherberry, [2]). Forests provide

a large variety of non-timber services, such as walking, landscape and mushroom crops, produced

jointly with timber and vanishing with the standing stock. The saving-consumption problem and

joint production property affect the way NIPF owners manage their forest.

Furthermore NIPF owners face natural risk that affects these two main characteristics (con-

sumption smoothing and amenity services). For several years, the frequency and severity of extreme

climatic events have seemed to increase and they have caused more and more damage in forestry

management (Schelhaas et al., [3]). Natural disasters affect the timber production of forests, but

also the amenity services to be got from standing stock. Amenities therefore reinforce the interest

of protection and hedging measures against such risk. In spite of the presence of market insurance,1

NIPF owners generally give preference to access to perfect financial markets and different forest

management practices to smooth consumption across different states of nature due to risk. Recent

exceptional natural events in Europe have focused attention on programs to give NIPF owners in-

centives to reduce the risk of damage from natural events.2 Therefore, before analyzing different

policy instruments, it is very important to understand the hedging behavior of NIPF owners.

Regarding the technology of risk exchange and the design of hedging practices, our paper mainly

focuses on the use of financial markets (savings decisions) and forest management practices (close

to self-insurance decisions). Note that from a conceptual point of view, each of these instruments

plays a specific role in the technology of risk exchange. On the one hand, financial markets allow

the reallocation of resources across different dates in order to smooth consumption inter-temporally,

possibly providing coverage against future risks (i.e. precautionary savings); thus, the use of finan-

cial markets is a matter of inter-temporal tradeoff. On the other hand, forest management practices

are a means by which NIPF owners reallocate resources across the different states of nature and re-
1It is observed in Europe that forest insurance is an unusual practice among NIPF owners to protect their forests

against natural disturbances (Brunette and Couture [4]).
2See for example CEC [5] and FAO [6] for the prevention against storm in Europe.

2



duce their exposure to natural risks (i.e. mitigate their consequences on the rate of forest growth);

thus, self-insurance decisions such as forest management practices are a matter of risk tradeoff.

This gives rise to many questions. First, how do hedging strategies affect the allocation of forests

to harvesting and amenity service purposes? Second, should NIPF owners use both practices simul-

taneously? Third, are these differences in harvesting and consumption-savings behavior dependent

on the hedging strategies selected by the forest owner? Fourth, what are the qualitative properties

of timber supply and hedging strategies when amenity services have private value? In this paper,

we provide some answers to these questions.

These issues of forest management can be analyzed in three types of modeling framework: the

basic rotation model,3 the Wicksellian single rotation model4 and the two-period biomass harvest-

ing model.5 The two-period model represents the NIPF owner’s short-run decision problem, and

explicitly deals with short-run timber supply rather than some state variable, such as stand age in

the rotation model. This model allows for the short-run fluctuations in exogenous variables such

as stumpage prices, unlike the optimal rotation model. Such variations considerably affect the for-

est owner’s decisions. It addresses the main silvicultural practices of forest management and can

be taken to represent both thinning, uneven-aged management and even-aged management with

clear-cutting. It allows for risk-management decisions, consumption-savings decisions, and their

implications on timber supply. The two-period model of consumption and savings offers a natural

way of incorporating uncertainty and risk preferences using the expected utility framework. It also

facilitates the analysis of interaction between non-timber benefits and timber ones, and implications

in optimal decisions. For our purpose, the two-period model is preferred to the optimal rotation

model as a more analytically suitable framework. While the effect of risk on timber supply has

been studied in previous works using the two-period model (Koskela and Ollikainen [18] and [19]),

the joint problems of smoothing consumption over time and managing a forest that simultaneously

produces timber and amenities under risk have been relatively little analyzed. In the two-period
3The basic rotation model represents a positive description of forest owner behavior and determines a static long-

run equilibrium. Empirical observations are never able to tract changes in the equilibrium harvesting levels predicted
by the rotation model. It is not possible to test the theoretical predictions against empirical evidence. The reliability
of policy recommendations based on the theoretical rotation framework is greatly reduced.

4Alvarez and Koskela [7], [8] and [9] have used the Wicksellian single rotation model to analyze the impact of
inter-temporally fluctuating and stochastic mean-reverting interest rate processes on the optimal harvesting threshold
and the expected length of rotation period when forest stand has been assumed to be stochastic, and landowners are
risk neutral [7] and [8] or risk averse [9].

5Lohmander [10] introduces a Fisherian consumption-savings model of a forest owner assumed to maximize her/his
utility of consumption over two periods. This last model (Koskela [11]; Kuuluvainen [12]; Ovaskainen [13]) has been
widely used as the theoretical framework in the analysis of timber supply from NIPF owners. This model is known as
the basic two-period model of timber supply analysis (see also Binkley [14]; Johansson and Löfgren [15]). It has been
extended to include owner consumption decisions, market imperfections, non-market amenities (Kuuluvainen [12]
and [16]; Kuuluvainen and Salo [17]) and taxation (Koskela [11]; Ovaskainen [13]), and risk (Koskela and Ollikainen
[18] and [19]).
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model, Koskela and Ollikainen [18] and [19] analyzed how optimal current and future harvests are

affected by risk. They did not deal, however, with the issue of hedging against forest risk, or the

issue of consumption smoothing. To our knowledge, hedging measures against natural risks have

been studied within a Faustmann rotation framework by Reed [20] and Amacher et al. [21] but not

in a two-period biomass harvesting model.

This is our concern in this paper. We investigate decision making of NIPF owners in terms of

hedging against natural hazards, and we provide a comparative analysis of the alternative advantages

produced by two different hedging measures: a financial method (savings) versus a physical one

(regeneration process). We explore harvesting and hedging behavior of forest owners when they

value amenity services of forests, and when there is uncertainty about biological timber. The

natural hazard is represented by a multiplicative risk bearing on forest growth. We show that,

except when both hedging instruments are perfect substitutes, the forest owner chooses a single

tool, with her/his choice depending on the rate of return of the hedging instrument. We also prove

that the greater the marginal utility of amenity services, the smaller the harvesting amount. The

comparative statics of current and future harvesting are developed. We show that an increase in

the current (future) timber price induces a rise in first (second)-period harvesting and a decrease in

second (first)-period harvesting.

The paper is organized as follows. Section 2 presents the theoretical model of timber supply

when NIPF owners value the amenity services of forest stands, when there is uncertainty about

production and when the owners can take hedging measures in order to protect their forest stands

against natural risks. Two hedging tools are studied jointly. Section 3 explores properties of interior

solutions and the results from comparative statics. Section 4 analyzes corner solutions and some

extensions of the initial theoretical model. The first extension concerns the concavity of utility due

to amenity functions in order to deal with the congestion problem. The second extension is about

the timing of uncertainty because the final revenue of the NIPF owner depends on the realization

date of such risk. Finally, Section 5 contains some concluding remarks.
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2 The model with financial and forest management practices

2.1 Assumptions and timing of the model

We consider a NIPF owner who makes decisions about consumption flows6 for two periods (periods

1 and 2 hereafter). The NIPF owner is endowed with exogenous initial wealth Y1 in period 1 and

Y2 in period 2, and an even-aged forest corresponding to an initial stock Q.

The timing of decisions and the description of uncertainty, named Delayed resolution of uncer-

tainty, are represented in Figure 1, and are described as follows.

Figure 1: Timing of Decisions and Delayed resolution of uncertainty

At the beginning of period 1, the NIPF owner decides how much to harvest in the first and

second periods (denoted respectively as x1, x2). She/he obtains timber prices denoted as p1 and p2,

respectively. Both prices are known at the beginning of period 1, and do not depend on the timber

volume supplied by the owner. We consider that the NIPF owner is a price taker.7 We also assume

that there is a future timber price market which is not affected by risk occurrence.8 She/he also

considers two decisions corresponding to hedging strategies. The first decision concerns financial

practice, whereas the second one is about forest management practice. The financial practice is a

process of savings accumulation in which the forest owner can operate on a perfect capital market

and is allowed to save with no limit at a certain interest rate - we will denote as R > 1 the gross

interest rate on the capital market. The forest management practice consists, for the forest owner,
6We assume that NIPF owners use harvesting as the decision variable. An alternative decision variable which

could be used is forest stock. If NIPF owners decide upon harvesting, then consumption that depends on the revenue
of forest harvest is certain whereas forest stocks will be stochastic. If they decide upon forest stocks, then the revenues
of harvesting will become stochastic, and thereby consumption also. As the main objective of NIPF owners is to
smooth revenue, and thereby consumption over time, it seems more realistic to consider harvesting as the decision
variable.

7For small NIPF owners, stumpage prices do not depend on the volume harvested.
8Koskela and Ollikainen [18] considered that there was uncertainty about future timber price but not about future

timber stock.
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in regenerating part of the forest in the first period. This regenerated part of the forest procures

an outcome only in period 2 - the implicit assumption is that the young plantations produce no

financial and no ecological values as long as they have not yet reached a sufficient size, which only

occurs in the second period. The stock of regenerated trees is not affected by the occurrence of

natural disaster events, such that the value of the regenerated forest stock in the second period does

not depend on the realization of the random variable. Such a physical practice can be seen as a

precautionary means of protecting the forest against natural risks. Investment in the regeneration

process is represented through a constitution cost in period 1, denoted c(q) where c(q) = c.q and

c > 0, and q represents the stock of regenerated trees chosen by the forest owner.

At the time the NIPF owner takes her/his decisions, she/he observes the present and future

values for harvesting prices at each date and the various technological parameters, except for the

value of the forest stand at the beginning of period 2. This is because, during an interim period,

the final first period forest stock k1 (i.e. after the realization of the first-period harvesting) evolves

according to a process described through the function g(k1) satisfying: g(0) = 0, and for any k1 > 0 :

g′ > 1 and g′′ < 0. However, the final outcome of this (natural) process depends on the realization

of a random variable, reflecting the influence of some natural risks (biological or climatic) affecting

the value of the forest stock at the beginning of period 2 and before the implementation of the

harvesting decision for period 2.

Uncertainty is described through the random variable θ, and the value of θ is resolved at the

end of the growth process. In other words, θ is revealed and observed by the forest owner only at

the beginning of period 2, but without having the opportunity beforehand to make her/his second

period harvesting decision, such that the value of the stands at the end of the growth process and

before that harvesting takes place is θg(k1). The possible realizations for θ are described according

to a probability distribution which is supposed to be known by the forest owner at the beginning

of period 1, and represented by a cumulative function denoted F (θ) defined on
[
θ, θ̄

] ⊂ [0, 1] and

with a density f(θ) > 0 everywhere. Remark that we may choose θ as close as possible to 0, which

may be seen as the realization of a catastrophic event implying that the forest is fully destroyed.

In this case, any harvesting decision x2 > 0 set in period 1 appears not to be feasible. In contrast,

as θ → 1, the event corresponds to the best outcome for the NIPF owner, when no natural risk

damages the forest property. However, the paper does not elaborate on the issue of contingent plans

for harvesting in period 2 - we will consider only the situation where the forest owner voluntarily

makes dynamically consistent choices.

The forest owner’s preferences are defined, on the one hand, on the basis of her/his present and
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past consumption, denoted as c1 and c2 respectively, and on the other hand, of present and future

amenity services provided by forest stands, denoted as k1 and k2, respectively.9 For the sake of

simplicity, we will assume that such preferences have a representation which is additively separable

both between periods, and between consumption and amenity services at each date, such that for a

given inter-temporal flow of consumption and forest stands (c1,c2, k1, k2) the associated utility level

V is defined by:

V = u(c1) + v(k1) + δ [u(c2) + v(k2)] (1)

where δ ∈]0, 1[ is the discounting factor, u is the temporal utility function for consumption, and

v is the temporal utility function for amenity services. We will assume that u is increasing and

concave (u′ > 0, u′′ < 0), while v satisfies v′ = m =constant> 0. This last assumption10 seems

of specific concern here, since we introduce only pure individual amenities, and not collective ones:

the forest owner has the opportunity to enjoy the existence of amenity services provided by the

forest, without incurring a congestion externality effect as in the case of collective use of forest.

For example, when the owner contemplates a beautiful landscape, her/his marginal utility from

amenities is constant. However, if ten persons arrive, block owner’s view and make some noise,

then the constant marginal utility hypothesis does not hold. Consequently, this assumption can be

justified for amenity services for which congestion is not a relevant issue. This could apply to scenic

beauty or recreation.

When the forest owner has the opportunity to accumulate savings and, at the same time, to

invest in the regeneration process, the forest owner’s inter-temporal consumption decisions must

respect two basic temporal budget constraints:

c1 ≡ Y1 + π(x1)− s− c.q with π(x1) ≡ p1x1 − h(x1) (2)

c2 ≡ Y2 + R.s + π(x2) with π(x2) ≡ p2x2 − h(x2) (3)

where π(xi) for i = 1, 2 denotes the net benefit from the harvesting in period i, which is defined

as usual as the difference between harvesting revenue pixi and harvesting cost h(xi) corresponding

to the various expenditure borne by the landowner during the harvesting process; we will assume

that h(xi) = hxi with h > 0. Note that (2) and (3) concern the forest owner’s consumption and

savings decisions. In the first period, consumption (c1) is defined by the sum of initial wealth (Y1)
9We introduce the traditional assumption in which non-timber services are a function of the standing stock volume

(Max and Lehman [22]).
10Koskela and Ollikainen [18] also considered constant marginal utility in terms of amenity services.
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and the net revenue from harvesting minus savings (s) and regeneration cost cq. During the first

period, the forest owner allocates the total revenue between current consumption, savings and risk

forest-management cost. In the second period, consumption (c2) is represented by the sum of initial

wealth (Y2) and net revenue from harvesting and earnings on savings (Rs).

The joint production of timber and amenities is defined by the two following relationships, and

the associated feasibility constraints:

k1 ≡ Q− x1, with 0 ≤ x1 ≤ Q (4)

k2(θ) ≡ θg(Q− x1)− x2 + q, with 0 ≤ x2 ≤ θ.g(Q− x1) + q (5)

According to (4), the value of the stand at the end of period 1 and before the beginning of the

interim period, is the difference between initial forest stock Q and the first-period harvesting x1.

Thus, it may be useful to consider some natural restrictions such as 0 ≤ x1 ≤ Q which introduce

some obvious limits into the first harvesting decision: the landowner may prefer not to harvest at

all in the first period, or on the contrary to harvest all the available timber; both restrictions imply,

given the forest owner’s intrinsic preferences for amenity services, that: k1 ≥ 0. According to (5)

now,11 the value of the forest stands at the end of period 2 is the difference between the value of

the available stands after the realization of θ, and the second-period harvesting. We also have to

consider some natural restrictions: the landowner may prefer not to harvest for the second period:

thus 0 ≤ x2. However, to the extent that the harvesting decision for period 2 is made at the beginning

of period 1 - and thus, without knowing the realized value of θ - the landowner may experience

some trouble in period 2 when confronted with a decision that cannot be implemented. This occurs

when/because the owner decided ex ante for a high level of x2, but unfortunately it appears as

non-feasible ex post given a low realization of θ for example: i.e. θg(Q − x1) < x2 ⇒ k2(θ) < 0.

In order to overcome the difficulties arising from the occurrence of such dynamically inconsistent

decisions, it is natural to assume that the NIPF owner considers the worst state of nature and adopts

a disciplined approach (precautious, reasonable, or self-restrained behavior), such as not harvesting

for more than the surviving stands after the lowest value of θ is realized. Such discipline implies,

for example, that k2(θ) ≥ 0 for any θ - and when the constraint binds (the owner decides in period

11The literature usually assumes that k2 = k1 + h(k1)− x2 = k1

(
1 + h(k1)

k1

)
− x2 where h(.) is an increasing and

concave function (see Koskela and Ollikainen [18] and [19]; Ovaskainen et al. [23]), such that h(k1)
k1

corresponds to
the net forest growth rate. Remark that both specifications are equivalent to the extent that g(k1)

k1
= 1 + h(k1)

k1
corresponds to the gross forest growth rate. Our formulation simply allows more tractable expressions for the first
order conditions.
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1 on the highest possible harvesting in period 2) then k2(θ) = 0 but k2(θ) > 0 for any θ > θ.

2.2 Optimal rules of financial and physical practices

One of the main purposes of the paper is to analyze two different strategies allowing the management

of forest risks, when these risks are the sole source of uncertainty. In other words, both instruments

are designed to fulfill the same objective in the economy, and both have perfectly foreseen outcomes

in the second period. In particular, they have a deterministic influence in the sense that their use

entails no additional source of uncertainty for the NIPF owner: the interest rate and the cost of

physical practice are known with certainty. As a result, the landowner can use two instruments

which are close substitutes, differing only in terms of return/cost conditions. The issue is thus:

Should the forest owner use both instruments? We show that generally this is not the case.

Formally, the NIPF owner makes four decisions at the beginning of period 1 (x1, x2, s, q) in order

to maximize the expectation of (1) under constraints (2) to (5). The decision program of the forest

owner is the following, which explicitly deals with the non-negativity constraints on q and s:

P1





Max{x1,x2,s,q} u(c1) + mk1 + δ [u(c2) + mE(k2(θ))]

s/t

c1 = Y1 + π(x1)− s− c(q) with π(x1) ≡ p1x1 − h(x1)

c2 = Y2 + R.s + π(x2) with π(x2) ≡ p2x2 − h(x2)

k1 = Q− x1, with 0 ≤ x1 ≤ Q

k2(θ) = θg(Q− x1)− x2 + q, with 0 ≤ x2 ≤ θ.g(Q− x1) + q

q ≥ 0

s ≥ 0

Given the high number of associated constraints which may potentially be involved, we will

introduce some simplifications in order to focus on the main issues of the model. To begin with,

we may easily deal with, and thus neglect the non-negativity constraints on x1 and x2 (i.e. we

will assume that 0 < x1 and 0 < x2). Intuitively, this requires p1 and p2 to be large enough.

For example it can be verified that p1 > h + m
u′(Y1)(1 + E(θ).g′(Q)) ⇒ dEV

dx1 |x1=s=q=0
> 0 and

p2 > h + m
u′(Y2) ⇒ dEV

dx2 |x2=s=0
> 0, justifying that at least some harvesting is undertaken at each

date. Note that this also implies that pi − h > 0 is not enough to have xi > 0 for all i = 1, 2: p1

and p2 must be sufficiently greater than the marginal cost h. We will consider that such conditions

hold in the rest of the paper.

This allows us to focus on the issue of the optimal mix (q, s) under the feasibility constraints on

9



harvesting in both periods. Let us introduce four Lagrange multipliers: µ, λ, γ, σ, such that:

• µ = 0 if s > 0 and otherwise µ ≥ 0;

• λ = 0 if q > 0 and otherwise λ ≥ 0;

• σ = 0 if x1 < Q and otherwise σ ≥ 0;

• γ = 0 if x2 < θg(Q− x1) + q and otherwise γ ≥ 0.

The first order conditions defining the solutions for (P1) are the following ones:12

π′1u
′
1 −m(1 + δg′.E(θ))− σ − δγθg′ = 0 (6)

δ(π′2u
′
2 −m)− γ = 0 (7)

−u′1 + δRu′2 + µ = 0 (8)

−cu′1 + (δm + γ) + λ = 0 (9)

where π′i = π′i(xi) = pi − h for i = 1, 2. For an analysis of the second order conditions,

see Appendix A; these are met under the concavity restriction introduced on functions u and g.

Remark that (6) is written as π′1u
′
1 = m(1 + δg′.E(θ)) + σ + δγθg′; given that the RHS term in

the equality is positive, this implies that π′1 = p1 − h > 0. By a similar argument, note that (7)

is also written as δπ′2u
′
2 = δm + γ which yields π′2 = p2 − h > 0. Note that these restrictions are

obviously satisfied once we introduce the (necessary) conditions that both prices are high enough

as seen before.

The central result regarding the optimal use of savings and silvicultural practices is afforded by

the Proposition 1:

Proposition 1 All else held equal:

i) If R > p2−h
c then the solution is such that s∗ > 0 and q∗ = 0.

ii) If R < p2−h
c then the solution is such that q∗ > 0 and s∗ = 0.

iii) If R = p2−h
c then the optimal mix of q∗ > 0 and s∗ > 0 is undetermined.

12To clarify the presentation of these conditions, we simplify the writing of the functions by not clarifying the
variables which compose them.
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Proof. Mixing (7) and (8) leads to: u′1 = R
π′2

(δm + γ) + µ, while equation (9) yields: u′1 =
1
c

(
δm + γ

)
+ λ

c . Mixing both relationships and using (7) gives: δu′2
(
R − π′2

c

)
m = λ

c − µ, implying

that any solution is such that:

sign
(
R− π′2

c

)
= sign

(λ

c
− µ

)

Consequently, there are three possibilities:

1/ if R − π′2
c < 0 then λ

c < µ and it is impossible that s > 0. Indeed, s > 0 implies µ = 0 and

this requires that λ < 0, which is a contradiction. λ could be equal to zero but then, equations (7)

and (8) bring a new contradiction R = π′2
c . Thus, the sole solution is s = 0 and q > 0.

2/ if R − π′2
c > 0 then λ

c > µ and it is impossible that q > 0. Indeed, q > 0 implies λ = 0 and

this requires that µ < 0, which is a contradiction. Consequently, the only solution is s > 0 and

q = 0.

3/ if R − π′2
c = 0 then λ

c = µ and this requires that, either s = 0 and q = 0 (but we ignore

such a corner solution), or s > 0 and q > 0. But, intuitively, when s > 0 and q > 0, q and

s are redundant because (8) and (9) with R = π′2
c and µ = λ

c = 0 give the following condition:

δRu′2 = δ 1
cm ⇒ π′2u

′
2 = m which means that one of the conditions (7), (8) or (9) is redundant.

The results of Proposition 1 mean that, under our technological assumptions (i.e. constant

marginal costs for both harvesting and silvicultural practice), the landowner uses the financial

practice if it represents the best return/cost condition compared to the silvicultural one
(
namely:

R >
π′2
c

)
, or she/he only uses silvicultural practice in the opposite case

(
when: R <

π′2
c

)
. But

if R = π′2
c , the forest owner is facing two perfectly substitutable instruments in relation to which

she/he is indifferent; in this case, she/he may use only one of the instruments, or any mix of both.

This allows us, in the next paragraph, to focus on situations where the landowner only chooses a

single practice, and we analyze the general properties of harvesting decisions.

2.3 Optimal harvesting decisions : pure interior solutions

Here, we concentrate on the interior solutions for optimal harvesting decisions in the first and second

periods. Note that whatever the specification of the model, the second-period harvesting rule is

restricted in order to maintain dynamically consistent decisions. The NIPF owner is assumed not

to harvest more than the surviving stands after the lowest value of θ is realized. We forward to

the last section of the paper the analysis of the solution where the feasibility constraint on second

period harvesting binds.
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2.3.1 Harvesting decisions in the savings model

First, let us assume that the financial practice has a higher return/cost ratio than the silvicultural

one
(
i.e. R − π′2

c > 0
)
. Therefore the landowner only uses savings to reallocate resources between

the two periods. Formally, the decision program of the forest owner is described by (P1) with q = 0,

and will be termed the “savings model" in the rest of the paper.

In this case, let us denote the optimal choice as (x∗1, x
∗
2, s

∗)13. Using conditions (6), (7) and (8),

the first order conditions for a (interior) solution with s > 0, x1 > 0 and x2 < θ.g(Q−x1) are given

simply by the next three equations (since µ = σ = γ = 0 and condition (9) is irrelevant in the sense

that it gives only λ > 0):

(A) : π′1.u
′
1 = m(1 + δg′.E(θ))

(B) : π′2.u
′
2 = m

(C) : u′1 = δRu′2

Condition (C) is the common inter-temporal arbitrage condition, saying that savings are set in

order to make the marginal rate of substitution between current and future consumption and the

gross interest rate equal. Condition (B) means that the optimal second-period harvesting rule is

reached when the marginal benefits of harvesting expressed in utility terms (π′2u′2) are equal to

its marginal cost corresponding to the decrease in amenity services (m). Finally, condition (A)

now shows that the first-period harvesting rule makes the value of the marginal benefits in utility

terms (π′1u′1) associated with harvesting proceeds equal to the value of its (composite) marginal cost

(m(1 + δg′.E(θ))), since harvesting more in the present period reduces the value of the first-period

amenity services, but also reduces the expected outcome of the natural growth process for the forest

between the two periods.

Rearranging (B) and (C) yields respectively u′1 = δR
π′2

m and u′2 = m
π′2
, and then substituting in

(A), we can write the system (A)-(B)-(C) as follows:
13We focus on solutions where s > 0, thus requiring that the conditions for ∂EV

∂s |s=0
> 0 are satisfied; basically,

this is the case if we introduce the restriction that R > u′(Y1)
δu′(Y2)

which is usual in savings models.
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(A′) : g′ =
1

E(θ)
.
(
R

π′1
π′2
− 1

δ

)

(B′) : u′2 =
m

π′2
(C ′) : u′1 = δR

m

π′2

These conditions call for two remarks. First, note that according to (A’), a necessary condition

required for a solution with x1 > 0 is that R
π′1
π′2

> 1
δ . Second, given our technological assumptions

and given (2), (3), (4) and (5), we obtain a hierarchical resolution of this system: the period 1

harvesting decision is obtained thanks to condition (A’), then the optimal savings amount is given

by (C’) and, finally, condition (B’) yields the period 2 harvesting rule.

Proposition 2 summarizes our findings:

Proposition 2 In the savings model, assume that R
π′1
π′2

> 1
δ ; in a pure interior solution, the period

1 harvesting rule satisfies:

g′(Q− x∗1) =
1

E(θ)
.
(
R

π′1
π′2
− 1

δ

)
(10)

and the period 2 harvesting rule satisfies the following condition:

u′2(Y2 + R.s∗ + π(x∗2)) =
m

π′2
(11)

with a s∗ > 0 satisfying (C’).

2.3.2 Harvesting decisions in the silvicultural practice model

Second, let us assume that the higher return/cost ratio is for the forest management practice (i.e.

R− π′2
c < 0); then the NIPF owner implements this approach. Formally, the decision program of the

forest owner is now described by (P1) with s = 0, and it will be termed the “silvicultural practice

model" in the rest of the paper. The NIPF owner makes three decisions (x1, x2, q) at the beginning

of period 1 in order to maximize her/his inter-temporal satisfaction level.

In the silvicultural practice model, let us denote the optimal choice as (x∗1, x
∗
2, q

∗)14. Once more,

using conditions (6), (7) and (9), the first order conditions for an interior solution with q > 0, x1 > 0

14Once more, we focus on solutions where q > 0, thus requiring that the conditions for ∂EV
∂q |q=0

> 0 are satisfied;
basically, this is the case if we assume that the marginal cost of silvicultural practices is low enough, such that:
c < δm

u′(Y1)
. Note that more generally speaking, any model with self-protection activities usually considers such a

restriction.
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and x2 < θ.g(Q−x1) + q (since σ = λ = γ = 0 and condition (8) is now irrelevant in the sense that

it only gives µ) are:

(H) : π′1.u
′
1 = m(1 + δg′.E(θ))

(I) : π′2.u
′
2 = m

(J) : cu′1 = δm

It is obvious that the system is formally close to the one defined by (A)-(B)-(C), except with respect

to the last condition. Thus using (I) and (J) in (H), we may now substitute system (H)-(I)-(J) with:

(H ′) : g′ =
1

E(θ)
.
(π′1

c
− 1

δ

)

(I ′) : u′2 =
m

π′2
(J ′) : u′1 = δ

m

c

This also suggests at least that the same comments apply here regarding the resolution of the

model. First, note that a necessary condition required to have x1 > 0 is that now π′1
c > 1

δ . Second,

the period 1 harvesting decision is obtained directly using condition (H’) while silvicultural practices

are given by (J’) and the second-period harvesting decision is given by (I’).

Proposition 3 summarizes our findings:

Proposition 3 In the silvicultural practice model, assuming that π′1
c > 1

δ ; in a pure interior solution,

then the period 1 harvesting rule satisfies:

g′(Q− x∗1) =
1

E(θ)
.
(π′1

c
− 1

δ

)
(12)

and the period 2 harvesting rule satisfies the following condition:

u′2(Y2 + π(x∗2)) =
m

π′2
(13)

with a q > 0 given by (J’).
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2.3.3 Comparison

The comparison between the savings and silvicultural practice models yields a first consequence

which is that:

Corollary 4 The silvicultural practice model leads to a larger amount of harvesting in the second

period than the savings model, all else held equal.

Proof. Simply given that for all x2 > 0 and any s > 0 then Y2 + R.s + π(x2) > Y2 + π(x2);

thus by the concavity of u, we obtain u′(Y2 + R.s + π(x2)) < u′(Y2 + π(x2)): this implies that for

any value of x2 the Left Hand Side (LHS) in (11) is smaller than the LHS in (13). As a result,

given that both LHS are decreasing functions in x2, while in addition both RHS in (11) and (13)

are identical and constant (they do not depend on x2), then the equilibrium value for x2 is smaller

in (11) than in (13).

In contrast, note that a direct comparison of first-period harvesting decisions between the two

models does not really make sense. However, it is worth noting that there is a positive relationship

between x1 and
(Rπ′1

π′2
− 1

δ

)
in the savings model, or

(π′1
c − 1

δ

)
in the silvicultural practice one: this

leads to the intuition of the functioning of both models, which runs as follows. When R >
π′2
c , then

comparing (10) and (12) shows that the NIPF harvests more in the first period when he accumulates

savings than when he undertakes silvicultural practices; then, the savings enable them to transfer

a part of the first-period harvesting proceeds in the future in order to finance more consumption

in the future, although the NIPF harvests less at this date. On the contrary, when R <
π′2
c , the

comparison between (10) and (12) now shows that the NIPF harvests more in the first period

when she/he undertakes silvicultural practices than when she/he accumulates savings. Then, the

harvesting proceeds are used to finance silvicultural practices, which allow for more forest growth;

this gives the opportunity to harvest more in the future in order to finance more consumption at

this date.

Thus, depending on the sign of R− π′2
c , our results simply suggest that the NIPF makes decisions

which yield the most efficient strategy in terms of consumption smoothing.

Now, putting together the results of Propositions 1 to 3, we obtain a second interesting conse-

quence which is that both instruments may in fact have equivalent consequences in terms of con-

sumption smoothing. Consider two different economies, having the same characteristics in terms of

the value of δ, p1, p2 and the technological parameters such as the forest growth process g, proba-

bility distribution F (θ) and cost function h. In the first economy, forest owners have access to a
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perfect financial market paying a gross interest rate R. In the second one, forest owners have no

access to a capital market, but invest in a costly regeneration process at a marginal cost c. Then, if

the ratio of the period 2 marginal profit to the marginal cost of silvicultural practice is constant and

satisfies π′2
c = R, then in both economies forest owners reach the same inter-temporal consumption

profile, choose the same harvesting rules and obtain the same value for amenity services.

An alternative way of interpreting this result may be obtained if we write R = π′2
c as p2

R = h
R + c,

and consider that public authorities regulate the timber price market. As a result, assuming that

all NIPF have the same technology for harvesting and for silvicultural practices:

Corollary 5 Let us define as p̂ = h + R.c. Then, if the regulator sets p2 > p̂ any forest owner will

invest in silvicultural rather than in financial practice; in contrast, if the regulator sets p2 < p̂ any

forest owner will accumulate savings rather than investing in regeneration process.

We have seen before that p̂ = h + Rc is the second-period timber price market for which the

NIPF is indifferent between savings and silvicultural practice strategy. Thus, raising (lowering) p2

above (respectively, under) p̂ gives incentives to a NIPF to choose the savings strategy (respectively,

silvicultural practices).

Note that the same kind of intuition is obtained when public authorities are assumed to subsidise

the silvicultural practices, thus defining as ĉ = π′2
R the marginal cost for silvicultural practices

for which the NIPF is indifferent between savings and silvicultural practice strategy. If public

authorities allocate a subsidy to NIPF such that c < ĉ, then any one will prefer silvicultural practices

to accumulating savings; but in contrast, if the subsidy is not large enough such that c > ĉ, then

any NIPF will prefer to accumulate savings rather than undertaking silvicultural practices.

3 Properties of pure interior solutions

3.1 Mitigation effects of amenity services

In this paragraph, we analyze the impact of the value of amenity services on optimal harvesting

decisions, and also on financial or physical practice.

Proposition 6 A) In the savings model, the first-period harvesting amount does not depend on

the level of amenity services; on the contrary, all else held equal, the larger the marginal utility of

amenity services, the smaller the second-period harvesting amount, but the larger the savings.

B) In the silvicultural practice model, the first-period harvesting amount does not depend on

the level of amenity services; on the contrary, all else held equal the larger the marginal utility of
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amenity services, the smaller the second-period harvesting amount, but the larger the silvicultural

practices.

Proof. A) Regarding the fact that the first-period harvesting rule does not depend on m, this

is obvious using (10). Now, given that the LHS in (11) is a decreasing function of x2 (and also of

s) and that the LHS in (C’) is increasing in s, it is easy to verify that an increase in m leads to a

decrease in x2 but an increase in s.

B) The same arguments apply for the silvicultural practice model using (12), (13) and (J) (except

that the LHS in (13) does not depend on q).

3.2 Other comparative static results

Table 1 summarizes the set of comparative static results for an interior solution. The proof of these

results is given in Appendix B for the savings model, and is available from the authors for the

physical practice model.

Table 1: Comparative static results

Financial practice silvicultural practice
x∗1 x∗2 s∗ x∗1 x∗2 q∗

Initial wealth, period 1: Y1 − − + − 0 +

Initial wealth, period 2: Y2 − − − 0 − 0

Initial forest stock: Q + − + + 0 +

Timber price, period 1: p1 +a − + +a 0 +

Timber price, period 2: p2 − +a − 0 +a 0

Rate of return on savings: R +a − +a

Cost of regeneration process: c +a 0 −

Expected risk : E(θ) − + − − 0 −

a These results are obtained if the partial risk aversion coefficient is less than 1 otherwise ambiguous results emerge.

A major difference appears between the two instruments. The comparative static results for the
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silvicultural practice model show a lot of zero values, i.e. several parameters have no effect on the

decision variables (x1, x2 or q), as compared to the savings model. This difference is due to our

assumption concerning the utility afforded by amenity services. Indeed, the savings decision acts on

the utility of second-period consumption, assuming as usual a decreasing marginal utility u′′ < 0.

In contrast, the silvicultural practices (regeneration process) act on the utility of future amenity

services, which is supposed to satisfy the constant marginal utility assumption: v′(.) = m > 0 and

v′′ = 0. We will relax this assumption later on.

• Income and stock effects

Our results concerning the impact of an increase in first-period income Y1 and initial forest stock

Q on decisions about protection instruments are traditional. We find positive income/stock effects

for s and q. This result means that savings and regeneration process are superior goods. Concerning

an increase in Y2, the effect on the accumulation of savings s is negative, due to the fact that the

forest owner anticipating an increase in her/his second-period income decides to reduce savings in

period 1 in order to keep the consumption level constant in period 2.

• Price effects

An increase in the wood price in the first period leads to an increase in the first-period harvesting

and in the use of savings and the regeneration process as a means of protecting against natural

disasters. We observe positive price effects on savings and the regeneration process. The impact

of an increase in first-period prices on first-period harvest can be broken down into two effects: a

negative income effect
(

dx1
dY1

< 0
)
and a positive substitution one. The use of the partial risk aversion

coefficient allows us to assert that, if this coefficient is smaller than 1, then the substitution effect

is greater than the income one, so the forest owner increases first-period harvesting to be wealthier.

The higher level of income allows the owner to reduce second-period harvesting, while keeping

her/his second-period consumption constant, as we observed for savings. An increase in first-period

price gives the owners incentives to adopt savings or the regeneration process. Consequently, the

implementation of minimum prices for wood products may guarantee the owners that the wood

prices will not fall below this threshold. This artificial support may prevent prices from collapsing.

An increase in the wood price in the second period reduces the first-period harvesting and the

recourse to financial practice for the savings model, while these two effects are null for the silvicul-
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tural practice model. The impact of an increase in second-period price on second-period harvesting

is positive for savings and the regeneration process. We have a negative income effect
(

dx2
dY2

< 0
)

and a positive substitution one. If the partial risk aversion coefficient is less than 1, then the sub-

stitution effect dominates the income effect, so owners increase second-period harvesting.

• Opportunity cost effects

Table 1 shows that the impact of an increase in the rate of return on savings is positive on first-

period harvesting and the accumulation of savings, while this effect is negative on second-period

harvesting. Although these two effects are opposite (negative income effect and positive substitution

one), if the partial risk aversion coefficient is less than 1, we can report that when forest revenue

rises, owners increase first-period harvest in order to be wealthier.

The effect of an increase in the cost of the regeneration process on first-period harvesting is

positive if the partial risk aversion coefficient is less than 1, null on the second-period harvest and

finally, negative on the use of the silvicultural practice. As the cost rises, the owners reduce the

stock of regenerated trees, because it becomes more and more expensive for them to regenerate a

part of the forest.

• Risk effect

Given that the objective function in (P1) is linear in θ, any increase in the risk affecting the

probability density function of θ, either in the first stochastic dominance or second stochastic dom-

inance sense, simply yields a decrease in E(θ). Consequently, we conduct our static comparative

analysis of a shift in risk focusing directly on an increase in E(θ).

We observe that an increase in E(θ) reduces first-period harvest and the recourse to savings

or regeneration. We also remark that an increase in E(θ) generates an increase in second-period

harvesting. The information about θ was revealed at the beginning of second period, so when the

owners learn that E(θ) is higher, they increase second-period harvesting in order to reduce the

potential losses in case of disaster.

To conclude, except for the null effects of comparative statics results for the regeneration process,

all the others results are identical for the two instruments. These results confirm Proposition 1

according to which, savings and regeneration process could be substitutes.
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4 Corner solutions and extensions

4.1 Harvesting rules with binding constraints in the second period

This paragraph deals explicitly with cases where the feasibility constraint for second-period har-

vesting rules binds. Such a constraint plays the role of a self-restraint mechanism or precautionary

behavior which commits the NIPF not to harvest more than the worst (smallest) existing stock of

timber that should arise at the beginning of period 2 (i.e. in cases where the realized forest growth

is lowest).

In the savings model according to conditions (6), (7) and (8), the first order conditions for a

(corner) solution with s > 0, x1 > 0 but x2 = θ.g(Q− x1) are given by the next three equations:

(D) : π′1.u
′
1 = m(1 + δg′E(θ)) + γθg′

(E) : π′2.u
′
2 −m =

γ

δ

(G) : u′1 = δRu′2

since µ = σ = 0 but γ > 0 as the associated feasibility constraint binds (and condition (9) is still

irrelevant).

More specifically, remark that condition (E) implies π′2.u
′
2 > m at x∗2 = θ.g(k∗1) meaning that the

owner’s satisfaction level (inter-temporal expected utility) increases at x∗2 = θ.g(k∗1). As a conse-

quence, when the (self-restraint) constraint on second-period harvesting is relaxed (or if we assume

it totally vanishes), the owner will enjoy the opportunity to increase the second-period harvesting

a little further, since this will make them better off. In a sense, condition (B) suggests that the

smaller the value of the marginal utility of amenity services (m), the easier or the more likely it is

that this corner solution will occur.

In the silvicultural practice model, the corner solution with q > 0, x1 > 0 and x2 = θ.g(Q−x1)+q

is associated with the next three conditions:

(K) : π′1.u
′
1 = m(1 + δg′E(θ)) + γθ.g′

(L) : π′2.u
′
2 = m +

γ

δ

(M) : cu′1 = δm + γ
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where λ > 0, since σ = 0, λ = 0, but γ > 0 (and condition (8) is still irrelevant).

The next Proposition 7 and Corollary 8 summarize our findings. First, focusing on first-period

harvesting rules, we have shown that:

Proposition 7 A) In the savings model, assuming that R
π′1
π′2

> 1
δ , then in a solution with x2 =

θ.g(k1), the period 1 harvesting rule satisfies:

g′(Q− x∗1) =
[(π′2u

′
2

m

)
.R

π′1
π′2
− 1

δ

]
×

[((π′2u
′
2

m

)
− 1

)
θ + E(θ)

]−1

(14)

knowing that s∗ is given by condition (G).

B) In the silvicultural practice model, assuming that π′1
c > 1

δ , then in a solution with x2 =

θ.g(k1) + q, the period 1 harvesting rule satisfies:

g′(Q− x∗1) =
[(π′2u

′
2

m

)
.
π′1
c
− 1

δ

]
×

[((π′2u
′
2

m

)
− 1

)
θ + E(θ)

]−1

(15)

knowing that q∗ is given by condition (M).

Proof. A) In the savings model:

Let us substitute (E) in (D) to eliminate γ > 0, then use (G) and rearrange to obtain:

(D′) : g′ =
[(π′2u

′
2

m

)
.R

π′1
π′2
− 1

δ

]
×

[((π′2u
′
2

m
)− 1

)
θ + E(θ

)]−1

Note that according to (E) we obtain π′2u′2
m > 1, and thus R

π′1
π′2

> 1
δ is still a sufficient (stronger

than needed) condition for having a x1 > 0 satisfying condition (D’). Finally, solving (D’)-(G) gives

the first-period harvesting rule and the optimal level of saving, while the value for γ results from

condition (E).

B) In the silvicultural model:

Using (L) and (M) we obtain u′1 = δ
π′2
c .u′2, then substituting in (K) yields:

(K ′) : g′ =
[(π′2u

′
2

m

)
.
π′1
c
− 1

δ

]
×

[((π′2u
′
2

m

)
− 1

)
θ + E(θ)

]−1

Once more, given that according to (L) we have π′2u′2
m > 1, then π′1

c > 1
δ is still a sufficient
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(stronger than needed) condition to have x1 > 0 satisfying (K’). Solving now simultaneously (K’)-

(L)-(M) gives the optimal harvesting rule for the first period, the optimal silvicultural practice and

γ.

Moreover, we obtain the next result:

Corollary 8 A) In both the savings and silvicultural practice models, the first-period harvesting

amount is larger when the feasibility constraint on second-period harvesting binds than when it does

not.

B) In the savings model, the savings accumulated are larger when the feasibility constraint on

second-period harvesting binds than when it does not.

C) In the physical model, the level of physical practices undertaken is larger when the feasibility

constraint on second-period harvesting binds than when it does not.

Proof. A) Let us give the explicit argument for the savings model. It amounts to comparing

the RHS in (14) and (10). Under the condition R
π′1
π′2

> 1
δ , it can be verified that the next inequality:

1
E(θ)

.
(
R

π′1
π′2
− 1

δ

)
<

[(π′2u
′
2

m

)
.R

π′1
π′2
− 1

δ

]
×

[((π′2u
′
2

m

)
− 1

)
θ + E(θ)

]−1

is equivalent to:

−θ

δ
< (E(θ)− θ)R

π′1
π′2

once the condition has been simplified in order to remove the term π′2u′2
m − 1 > 0 from both sides.

But this last inequality is still true since E(θ) > θ. As a result, given that the LHS in both (10)

and (14) is an increasing function of x1, the equilibrium value for x1 satisfying (10) is smaller than

the one satisfying (14).

B) Simply, since mixing (E) and (G) yields u′1 = δR
π′2

(
m+ γ

δ

)
> δR

π′2
m; thus comparing with (C’),

the value of s which satisfies (G) is larger than the one satisfying (C’).

C) A similar argument may be used for q; this is left to the reader.

Corollary 8 implies that, should the NIPF impose a self-restraint constraint on his second-period

harvesting rule of his own choice, then this leads him to compensate with a higher level of cutting

in the first period. At the same time, the available instrument (savings or silvicultural practices)
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is increased to a higher level since it is used to transfer the additional harvesting income to the

second period, in order to allow for the smoothing of consumption. This shows that the choice of a

harvesting strategy and hedging strategy is designed to reach the best smoothing of consumption

flows between both periods.

4.2 Concave amenity services

In this paragraph, we assess the impact of the shape of the utility derived from amenity services,

assuming a concave utility function. Comparing our results to the previous case with a constant

marginal utility allows us to enhance the role of different NIPF owner preferences. In order to

remove redundancies, we will focus only on the interior solution in the savings model, but the same

analysis may be performed in the silvicultural practice model, and/or when the feasibility constraint

binds.

To begin with, note that the results displayed in Proposition 6 are true whether or not the future

value of amenities is known with certainty: given the (positive) terminal value corresponding to the

utility of amenity services, the forest owner voluntarily limits harvesting in both periods. But as

m → 0, the owner behaves more and more closely to a profit-maximizing individual. In contrast,

considering the case where the forest owner has a concave utility for amenity services means that

the forest owner is averse to the uncertainty associated with the value of future stands, since she/he

does not like spreading the shock θ in
[
θ, θ̄

]
.

Proposition 9 In the savings model, all else held equal, the harvesting rules for both periods (in a

pure interior solution with x2 < θ.g(k1)) may lead to a higher level of cutting with a concave utility

for amenity services, as compared to the linear case. But the opposite result may also hold.

Proof. Assume that v the utility function for amenity services is concave. Relaxing the assump-

tion of a constant marginal utility for amenity services yields the following first order conditions in

the savings model:

(N) : π′1.u
′
1 = v′1 + δg′.E(θ.v′2)

(O) : π′2.u
′
2 = E(v′2)

(P ) : u′1 = δRu′2

which substitutes with the system (A)-(B)-(C). Note that using (O) and (P) in (N) yields:

23



R
π′1
π′2
− 1

δ

v′1
Ev′2

= g′.
E(θ.v′2)

Ev′2
> 0

⇓

R
π′1
π′2
− 1

δ

v′1
Ev′2

= g′.
[
E(θ) +

cov(θ, v′2)
E(v′2)

]

where cov(θ, v′2) < 0. But the concavity of the amenity services modifies the psychological costs (or

opportunity costs) of harvesting as compared to the linear case in several ways.

On the one hand, it reduces the owner’s individual assessment of the risk-adjusted marginal

product of the forest growth process since g′.
[
E(θ) + cov(θ,v′2)

E(v′2)

]
< g′.E(θ): given the concavity of v,

the dispersion of shock θ is seen as a cost (the price of risk) which affects her/his perception of the

natural productivity for the growth process; as a result, this first effect has a negative impact on

the period 1 harvesting decision.

On the other hand, a non-linear utility for amenity services modifies the tradeoff between amenity

services in period 1 and those of period 2, through the ratio E(v′2)
v′1

≷ 1. However, these effects are

ambiguous. Thus, the specific result depends in particular on the characteristics of the risk, and on

the properties of function v.

At the same time, according to condition (O), the result for x2 depends on whether m ≶ E(v′2).

Once more, this requires more restriction on function v and on the probability distribution of σ.

4.3 Delayed versus early resolution of uncertainty

Let us assume once more that v′ = m, but introduce another representation of uncertainty, named

early resolution of uncertainty, which is associated with the random variable σ, the value of which

is resolved at the beginning of the growth process, as illustrated in Figure 2.

This means that σ is now revealed and observed by the forest owner at the end of period

1 (at the beginning of the interim period), and thus before the realization of the second-period

harvesting decision, such that the value of the stand at the end of the growth process and before

that harvesting takes place is g(σk1). The possible realizations for σ are described according to

a probability distribution which is assumed to be known by the forest owner at the beginning of

period 1, and represented by a cumulative function denoted L(σ) defined on [σ, σ̄] ⊂ [0, 1] and with

a density l(σ) > 0 everywhere. Remark once more that we may choose σ as close as possible to

0, which may be seen as the realization of a catastrophic event implying that the forest is fully

destroyed. In this case, any harvesting decision x2 > 0 set in period 1 appears not to be feasible. In
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Figure 2: Early resolution of uncertainty

contrast, as σ → 1, the event corresponds to the best outcome for the NIPF owner, when no natural

risk damages the forest property. Note that we develop the analysis explicitly in the savings model;

however, it can be verified that the same kind of results are obtained in the silvicultural practice

model.

The optimal first-period harvesting rule for the financial practice model is defined as follows:

i) If x2 < θ.g(k1), then the optimal first-period harvesting decision satisfies:

R
π′1
π′2
− 1

δ
= E(σ.g′(σ.k∗1)) (16)

ii) if x2 = θ.g(k1), then the optimal first-period harvesting rule satisfies:

(π′2u
′
2

m

)
.R

π′1
π′2
− 1

δ
=

((π′2u
′
2

m

)
− 1

)
g′(σ.k∗1).σ + E(σ.g′(σ.k∗1)) (17)

while the first order conditions for the optimal second-period harvesting and savings decisions are

identical. We prove the next result:

Proposition 10 In the savings model, whether x2 < θ.g(k1) or x2 = θ.g(k1) holds, then, all else

held equal, the period 1 harvesting rule leads to a higher level of cutting with the delayed resolution

of uncertainty than with the early resolution of uncertainty.

Proof. The result holds whatever the model, since for any two random variables X, Z, we have

by definition E(X.Z) = E(X).E(Z)+ cov(X, Z). Thus, let us consider for example the model with
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savings, and its solution when the feasibility constraint does not bind. Assume more particularly

that the probability distribution of both θ and σ have the same mean E(θ) = E(σ). Using the

RHS of condition (16), we may write: E(σ.g′(k∗1)) = E(σ).E(g′(σ.k∗1))+ cov(σ, g′(σ.k∗1)) > 0. Given

the concavity of g, as σ increases then g′(σ.k∗1) decreases, implying that cov(σ, g′(σ.k∗1)) < 0. As a

result:

R
π′1
π′2
− 1

δ
= E(σ.g′(σ.k∗1))

= E(σ).E(g′(σ.k∗1)) + cov(σ, g′(σ.k∗1))

< E(σ).E(g′(σ.k∗1))

and under the assumption that E(θ) = E(σ), then the LHS in (10) is larger than the one in (16),

yielding a larger amount for period 1 harvesting with delayed resolution of uncertainty.

Coming back to the previous analysis of the amenity effect, the intuition of the result is that

the psychological costs associated with the early resolution of uncertainty are larger with delayed

resolution of uncertainty than with an early one.

5 Conclusion

Some empirical studies suggest that NIPF owners produce timber income and non-timber benefits

jointly. Utility-maximization recognizes that forest owners may gain non-pecuniary benefits such

as aesthetics, recreation and wildlife habitat from the forest stands on their land, in addition to

the value of timber. In many cases, landowners still appear to have an interest in producing both

timber income and forest amenities jointly. The substitution between harvesting and non-timber

preferences has been of particular interest. In this article, we develop a dynamic theoretical model

to analyze the NIPF owner’s behavior in risky forest management. We study two hedging activi-

ties that the forest owner can undertake to protect the forest against natural hazards: the savings

and the regeneration processes. In this work, there are several contributions. First, we extend the

two-period biomass harvesting model by integrating the hedging strategies. In this framework, we

demonstrate that under some assumptions, the accumulation of savings and the regeneration process

may be seen as perfectly substitutable for forest owners. Second, we analyze the impact of amenity

services on optimal harvesting decisions. Third, we develop the comparative statics of harvesting

strategies by studying the effect of each parameter and uncertainty on the optimal decisions. For

example, we show that, when the expected risk increases, the owner reduces first-period harvesting
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and the use of hedging strategies (whatever the measure) while she/he increases second-period har-

vesting in the savings model and has a null effect in the silvicultural practice one.

Several extensions are worth discussing for this research. First, our assumption of a constant

marginal utility for amenity services could be seen as a limit of this paper, but this assumption

makes the analysis much more transparent. We can easily generalize our analysis assuming that

the marginal utility is not constant, but we know that we can expect to obtain ambiguous results

of comparative statics. This extension is analyzed in the paper by considering a concave marginal

utility for amenities.

Our results cannot be challenged without introducing some frictions or imperfections in the model.

For example, the basic two-period model we use implies that both financial (savings) and silvi-

cultural (regeneration process) practice are held for the same (short-term) horizon. However, due

to imperfections in the financial markets on the one hand (asymmetrical information, borrowing

constraints, different interest rates for lenders and borrowers), and on the other hand, given the

existence of a natural delay between the plantation of the trees and their harvesting, the horizon

of decisions in financial markets may be shorter than for decisions connected to the regeneration

process. Moreover, the production process in forestry may be more or less lengthy, depending on

the choice of tree species.

In the same way, another extension consists in the possibility for the forest owners of learning the

state of the world (gathering information on the weather, and thus on θ). We can expect that

when information has a positive value, it will be used by forest owners in order to plan both their

harvesting decisions and their risk management ones. These important extensions are left for future

research.
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A Second order conditions

Consider the savings model. The matrix of the second order derivatives is:

∆ =

∣∣∣∣∣∣∣∣∣

Vx1x1 Vx1x2 Vx1s

Vx2x1s Vx2x2s Vx2s

Vsx1 δVsx2 Vss

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

Vx1x1 0 Vx1s

0 Vx2x2 Vx2s

Vsx1 δVsx2 Vss

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

(π′1)
2 u′′(c1) + mδE(θ)g′′(k1) 0 −π′1u

′′(c1)

0 (π′2)
2 u′′(c2) Rπ′2u

′′(c2)

−π′1u
′′(c1) δRπ′2u

′′(c2) u′′(c1) + δR2u′′(c2)

∣∣∣∣∣∣∣∣∣
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The second order conditions are verified if the minors alternate in signs:

Vx1x1 < 0∣∣∣∣∣∣
Vx1x1 Vx1x2

Vx2x1 Vx2x2

∣∣∣∣∣∣
> 0

∣∣∣∣∣∣∣∣∣

Vx1x1 Vx1x2 Vx1s

Vx2x1 Vx2x2 Vx2s

Vsx1 δVsx2 Vss

∣∣∣∣∣∣∣∣∣
< 0

It is easy to verify that the restrictions on u, and g (u′′ < 0, g′′ < 0) are sufficient.

B Comparative statics results

Consider the savings model with an interior solution. Given that ∆ < 0 (Appendix A), we have:

1/ A change in period 1 exogenous income: Y1

dx1

dY1
=

1
∆

∣∣∣∣∣∣∣∣∣

−π′1.u
′′
1 0 Vx1s

0 Vx2x2 Vx2s

u′′1 δVsx2 Vss

∣∣∣∣∣∣∣∣∣
< 0

dx2

dY1
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 −π′1.u
′′
1 Vx1s

0 0 Vx2s

Vsx1 u′′1 Vss

∣∣∣∣∣∣∣∣∣
< 0

ds

dY1
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 0 −π′1.u
′′
1

0 Vx2x2 0

Vsx1 δVsx2 u′′1

∣∣∣∣∣∣∣∣∣
> 0

2/ A change in period 2 exogenous income: Y2

dx1

dY2
=

1
∆

∣∣∣∣∣∣∣∣∣

0 0 Vx1s

−π′2.u
′′
2 Vx2x2 Vx2s

−δRu′′2 δVsx2 Vss

∣∣∣∣∣∣∣∣∣
< 0
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dx2

dY2
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1s 0 Vx1s

0 −π′2.u
′′
2 Vx2s

Vsx1 −δRu′′2 Vss

∣∣∣∣∣∣∣∣∣
< 0

ds

dY2
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1s 0 0

0 Vx2x2 −π′2.u
′′
2

Vsx1 δVsx2 −δRu′′2

∣∣∣∣∣∣∣∣∣
< 0

3/ A change in initial forest stock: Q

dx1

dQ
=

1
∆

∣∣∣∣∣∣∣∣∣

δmg′′(k1)E(θ) 0 Vx1s

0 Vx2x2 Vx2s

0 δVsx2 Vss

∣∣∣∣∣∣∣∣∣
> 0

dx2

dQ
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1s δmg′′(k1)E(θ) Vx1s

0 0 Vx2s

Vsx1 0 Vss

∣∣∣∣∣∣∣∣∣
< 0

ds

dQ
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1s 0 δmg′′(k1)E(θ)

0 Vx2x2 0

Vsx1 δVsx2 0

∣∣∣∣∣∣∣∣∣
> 0

4/ A change in period 1 harvesting price: p1

dx1

dp1
=

1
∆

∣∣∣∣∣∣∣∣∣

−u′1 − π′1.u
′′
1.x1 0 Vx1s

0 Vx2x2 Vx2s

u′′1.x1 δVsx2 Vss

∣∣∣∣∣∣∣∣∣

=
−δu′1

∆

∣∣∣∣∣∣
Vx2x2 Vx2s

Vsx2 Vss

∣∣∣∣∣∣
+

dx1

dY1
.x1

The sign of dx1
dp1

is ambiguous because we have a negative income effect associated with a positive

substitution effect. Nevertheless, if we turn to the partial risk aversion coefficient, we find that x1

increases when p1 rises.
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Indeed, the last expression can be rewritten as follows:

dx1

dp1
=

1
∆

{
π′′(x2)u′(c2)δR2u′′(c2)[−u′(c1)− π′(x1)u′′(c1)x1]− u′(c1)u′′(c1)Vx2x2

}

The term [−u′(c1)− π′(x1)u′′(c1)x1] is ambiguous and can be rewritten as follows:

u′(c1)
[
−1 +

(
−u′′(c1)

u′(c1)
π′(x1)x1

)]

This last expression allows us to observe a partial risk aversion coefficient: −u′′(c1)
u′(c1) π′(x1)x1. If

this coefficient is less than 1, then dx1
dp1

> 0. The substitution effect is stronger than the income

effect.

dx2

dp1
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 −u′1 − π′1.u
′′
1.x1 Vx1s

0 0 Vx2s

Vsx1 u′′1.x1 Vss

∣∣∣∣∣∣∣∣∣

=
−u′1
∆

Vx2s.Vsx1 +
dx2

dY1
.x1 < 0

ds

dp1
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 0 −u′1 − π′1.u
′′
1.x1

0 Vx2x2 0

Vsx1 δVsx2 u′′1.x1

∣∣∣∣∣∣∣∣∣

=
−u′1
∆

Vx2x2 .Vsx1 +
ds

dY1
.x1 > 0

4/ A change in period 2 harvesting price: p2
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dx1

dp2
=

1
∆

∣∣∣∣∣∣∣∣∣

0 0 Vx1s

−u′2 − π′2.u
′′
2.x2 Vx2x2 Vx2s

δRu′′2.x2 δVsx2 Vss

∣∣∣∣∣∣∣∣∣

=
−u′2
∆

Vx1s.Vx2s +
dx1

dY2
.x2 < 0

dx2

dp2
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 0 Vx1s

0 −u′2 − π′2.u
′′
2.x2 Vx2s

Vsx1 δRu′′2.x2 Vss

∣∣∣∣∣∣∣∣∣

=
−u′2
∆

∣∣∣∣∣∣
Vx1x1 Vx1s

Vsx1 Vss

∣∣∣∣∣∣
+

dx2

dY2
.x2

The sign of dx2
dp2

is ambiguous because we have a negative income effect associated with a positive

substitution effect. Nevertheless, if we turn to the partial risk aversion coefficient, we find that x2

increases when p2 rises.

Indeed, the last expression can be rewritten as follows:

dx2

dp2
=

1
∆

{
u′′(c1)[π′′(x1)u′(c1) + δmθg′′(k1)][−u′(c2)− π′(x2)u′′(c2)x2]

}

The term [−u′(c2)− π′(x2)u′′(c2)x2] is ambiguous and can be rewritten as follows:

u′(c2)
[
−1 +

(
−u′′(c2)

u′(c2)
π′(x2)x2

)]

This last expression allows us to observe a partial risk aversion coefficient: −u′′(c2)
u′(c2) π′(x2)x2. If

this coefficient is less than to 1, then dx2
dp2

> 0. The substitution effect is stronger than the income

effect.

ds

dp2
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 0 0

0 Vx2x2 −u′2 − π′2.u
′′
2.x2

Vsx1 δVsx2 δRu′′2.x2

∣∣∣∣∣∣∣∣∣

=
u′2
∆

Vx1x1 .δVsx2 +
ds

dY2
.x2 < 0
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5/ A change in rate of return: R

dx1

dR
=

1
∆

∣∣∣∣∣∣∣∣∣

0 0 Vx1s

−π′2.u
′′
2.s Vx2x2 Vx2s

−δRu′′2.s− δu′2 δVsx2 Vss

∣∣∣∣∣∣∣∣∣

=
δu′2
∆

Vx1s.Vx2x2 +
dx1

dY2
.s

The sign of dx1
dR is ambiguous because we have a negative income effect associated with another

effect which is positive. Nevertheless, if we turn to the partial risk aversion coefficient, we find that

x1 increases when R rises.

Indeed, the last expression can be rewritten as follows:

dx1

dR
=

1
∆

{
π′′(x2)u′(c2)π′(x1)u′′(c1)[−δu′(c2)− δRu′′(c2)s]− δu′(c2)π′(x1)u′′(c1)(π′(x2))2u′′(c2)

}

The term [−δu′(c2)− δRu′′(c2)s] is ambiguous and can be rewritten as follows:

δu′(c2)
[
−1 +

(
−u′′(c2)

u′(c2)
Rs

)]

This last expression allows us to observe a partial risk aversion coefficient: −u′′(c2)
u′(c2) Rs. If this

coefficient is less than 1, then dx1
dR > 0. The positive effect is stronger than the income effect.

dx2

dR
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 0 Vx1s

0 −π′2.u
′′
2.s Vx2s

Vsx1 −δRu′′2.s− δu′2 Vss

∣∣∣∣∣∣∣∣∣

=
δu′2
∆

Vx1x1 .Vx2s +
dx2

dY2
.s < 0

ds

dR
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 0 0

0 Vx2x2 −π′2.u
′′
2.s

Vsx1 δVsx2 −δRu′′2.s− δu′2

∣∣∣∣∣∣∣∣∣

=
−δu′2

∆
Vx1x1 .Vx2x2 +

ds

dY2
.s

The sign of ds
dR is ambiguous because we have a negative income effect associated with an another

effect which is positive.

Nevertheless, if we turn to the partial risk aversion coefficient, we find that s increases when R rises.
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Indeed, the last expression can be rewritten as follows:

ds

dR
=

1
∆

{
Vx1x1 + δπ′′(x2)u′(c2)[−u′(c2)−Ru′′(c2)s]

}

The term [−u′(c2)−Ru′′(c2)s] is ambiguous and can be rewritten as follows:

δu′(c2)
[
−1 +

(
−u′′(c2)

u′(c2)
Rs

)]

This last expression allows us to observe a partial risk aversion coefficient: −u′′(c2)
u′(c2) Rs. If this

coefficient is less than 1, then ds
dR > 0. The positive effect is stronger than the income effect.

6/ A change in expected growth: E(θ)

dx1

dE(θ)
=

1
∆

∣∣∣∣∣∣∣∣∣

δmg′(k1) 0 Vx1s

0 Vx2x2 Vx2s

0 δVsx2 Vss

∣∣∣∣∣∣∣∣∣
< 0

dx2

dE(θ)
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 δmg′(k1) Vx1s

0 0 Vx2s

Vsx1 0 Vss

∣∣∣∣∣∣∣∣∣
> 0

ds

dE(θ)
=

1
∆

∣∣∣∣∣∣∣∣∣

Vx1x1 0 δmg′(k1)

0 Vx2x2 0

Vsx1 δVsx2 0

∣∣∣∣∣∣∣∣∣
< 0

35


