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Abstract

DSGE models are currently estimated with a two step approach: data is first fil-
tered and then DSGE structural parameters are estimated. Two step procedures have
problems, ranging from trend misspecification to wrong assumption about the corre-
lation between trend and cycles. In this paper, I present a one step method, where
DSGE structural parameters are jointly estimated with filtering parameters. I show
that different data transformations imply different structural estimates; the two step
approach lacks a statistical-based criterion to select among them. The one step ap-
proach allows to test hypothesis about the most likely trend specification for individual
series and/or use the resulting information to construct robust estimates by Bayesian
averaging. The role of investment shock as source of GDP volatility is reconsidered.
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are now considered the bench-

mark for macro analysis. Models are much more complex than in the past and in the

last 10 years there has been considerable progress in estimating deep parameters of

DSGE models. These improvements allow researchers to asses the degree of fit both

in and out of sample, to test counterfactual hypotheses and to evaluate policy im-

plications. In general, DSGE models are now considered trustworthy tools for policy

analysis also because of a more rigorous econometric evaluation.

The vast majority of models nowadays is intended to capture cyclical fluctuations.

This attitude is reflected in the relative number of parameters that seize cyclical and

non-cyclical movements: indeed, in existing DSGE models almost all the parameters

are meant to describe Business Cycles fluctuations, whereas none or rather few to

explain non-cyclical movements. Since data contains fluctuations which do not need

to be cyclical, preliminary data transformations are required when the model is esti-

mated. In particular, applied researchers typically employ a ’two step’ procedure to

estimate structural DSGE parameters: in the first step, the cyclical component is ex-

tracted from the data; in the second, DSGE structural parameters are estimated using

the transformed data. The first step involves either filtering the data1 or defining a

model-based concept of non stationary fluctuations and transforming the data accord-

ingly2. In either cases, two step procedures have problems. First, an improper choice

of trend affects structural parameters estimates. Cogley (2001) shows that a wrong

trend specification leads to strong bias in parameter estimates with likelihood based

methods. Even when the reduced form of the cyclical component is correctly specified,

trend misspecification is likely to results in inconsistent estimates of ’deep’ parameters.

On the same track, Gorodnichenko and Ng (2007) show that estimates can be severely

biased when the model concept of trend is inconsistent with data or detrended data

are inconsistent with the model concept of stationarity. Second, wrong assumptions

about the correlation between cyclical and non-cyclical components may bias struc-

tural parameters estimates. In two step approaches, the typical assumption used to

identify trend and cycles is that the two are independent, but one can easily think of

theoretical and practical reasons for making them correlated (see Comin and Gertler

1See Smets and Wouters (2003), Rabanal and Rubio-Ramirez (2005), Rabanal (2007), Bouakez, Cardia
and Ruge-Murcia (2005), Christensen and Dib (2008), among others.

2See Smets and Wouters (2007, 2005), Del Negro, Schoerfheide, Smets and Wouters (2007), Justiniano
and Primiceri (2008), Rabanal (2006), among others.
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(2006) or Canova, Lopez-Salido and Michelacci (2007)). Third, unless one wants to

take a strong stand on the property of the model, e.g. the model is a representation of

HP filtered data, the uncertainty about the filter is likely to affect structural parameter

estimates.

In this paper, I propose an alternative method to estimate DSGE models, where

structural parameters are jointly estimated with trend parameters. The trend specifi-

cation is flexible enough to capture various low frequency movements. I refer to this as

the ’one step’ approach. Among other things, the one step approach has two important

by-products:

1. We can test trend specification.

One could test the most likely trend specification for individual series or for a

subset of them. Moreover, the setup is flexible enough to allow for potential

instability in the trend parameters; if one suspects that a subsets of times series

has experienced a change in its long run behavior, such a hypothesis can be tested.

2. We can construct robust structural parameters estimates via Bayesian averaging.

Besides testing specifications, the one step approach is suitable to account for

trend uncertainty. Given that we do not know the ’true’ trend generating process,

one can construct robust structural estimates by taking a weighted average of the

estimates obtained with various trend specifications, with weights given by their

posterior probability.

I show through Monte Carlo experiments that the one step approach has appealing

properties in small samples. When trend is correctly specified, parameter bias is larger

in the two step then in one step approach both in the deterministic and in the stochas-

tic setup. The procedure displays also desirable features under misspecification. In

particular, the one step estimates are robust to two types of misspecification: (a) when

the trend specification is wrong, i.e. ’true’ trend is deterministic and estimated as

if it were stochastic (and viceversa), (b) when the assumption about the correlation

between trend and cycles is wrong. The intuition for these results is as follows. The

first of the two step involves the estimation of the trend parameters, and the residuals

of the trend estimation are then the cycles. Thus, in the first step we are neglecting

the information that the cycles have a specific structure, i.e. the solution of the DSGE

model. The one step approach treats trend and cycles as unobserved states, and their

parameters are jointly estimated; thus, all the information is jointly processed. More-

over, in almost all the cases the procedure is able to recover the true trend generating
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process through posterior weights.

When we apply the procedure to actual data interesting results emerge. First,

since different data transformations imply different cycles (see Canova (1998)), data

transformation affects the estimates of structural parameters. In this respect, the

estimates of the exogenous processes (persistence and magnitude) mimic the duration

and the amplitude of the cyclical component: indeed, the deeper are the cycles the

larger the standard deviations are, and the longer are the cyclical fluctuations the

more persistent the shocks are. Moreover, different structural parameter estimates

produce different implications of the model, i.e. different impulse responses or distinct

contributions of the structural shocks to the volatility of the observable variables. While

the two step procedure lacks a statistical-based criterion to select among them, the

one step approach provides a natural benchmark to choose among different structural

parameter estimates, and allows also to construct DSGE estimates robust to the trend

uncertainty. Finally, applying the two approaches to a medium scale DSGE model

different implications arise in terms of sources of GDP volatility at business cycles

frequencies. I find that with a two step approach the main sources of GDP volatility are

markup shocks, regardless of the type of filter employed. With a one step approach the

GDP variance decomposition changes substantially according to trend specifications;

I obtain that the most likely contribution to GDP volatility is given by investment-

specific shocks.

Since the seminal paper of Cogley (2001), few papers have analyzed the impact of

trend specification on structural parameter estimates. Fukac and Pagan (2007) propose

a limited information method to deal with the treatment of trend in DSGE estimations.

While their analysis is confined to a single equation framework, Gorodnichenko and

Ng (2007) extend the Cogley’s analysis and propose a robust approach exploiting all

the cross-equations restrictions of the DSGE model. They use simulated method of

moments, which are prone to severe identification problems (see Canova and Sala

(2006)). Even though I share with them an ’agnostic’ view about the non-cyclical

properties of the data, my approach differs in two respects. First, I consider ’off-

model’ trends; this makes the structure able to capture not only linear deterministic

and unit root trends, but also higher order integrated smooth trends. Moreover, the

proposed setup is flexible enough to permit several hypothesis testing, such as testing

for correlation among trends or for trend parameters instability. Second, I employ a

structural times series approach and likelihood based methods, as in Canova (2008);
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this avoids any data transformation before or during estimation. While he focuses on

a unique representation of the non-cyclical component that encompasses various low

frequencies behavior, the proposed estimation strategy exploits the posterior weights

of potentially many specifications, and by averaging across them structural parameters

are robust to trend uncertainty.

The paper is organized as follows. Section 2 presents the econometric methodology

with emphasis on the two approaches. In Section 3 the two procedures are confronted

under various Monte Carlo experiments; results and biases are reported. Section 4

presents results and conclusions using actual data; two DSGE models are considered

for estimation. A ’small’ scale DSGE model is used to provide straight intuitions for

the results and a more densely parameterized model is employed. Section 5 concludes.

2 Econometric Methodology

In this section, I develop the statistic framework I use to estimate the structural DSGE

parameters. I first present the traditional two step approach, followed by the one step

method I propose. The main idea of the one step approach is to compute the likelihood

of a system that embodies a reduced form representation for the trend and a structural

form for the cycles. More precisely, I assume that the linearized solution of the model

provides a representation for the cyclical movements of the variables. These cyclical

movements are combined with a parametric representation of non-cyclical fluctuations,

and structural and non-structural parameters are jointly estimated. The general repre-

sentation is flexible enough to allow as special cases various low frequency specifications

of the trends.

I assume that we observe y = {yt}T
t=1, the log of a set of times series. As in Harvey,

Trimbur and Dijk (2004), I assume that the data is made up of a non-stationary trend

component, yτ , and a cyclical component, yc, so that

y = yτ + yc (1)

I also assume that the log-linear solution of the DSGE model represents the cyclical

behavior of the data, i.e.

yc
t = RR(θm)xt−1 + SS(θm)zt (2)

xt = PP (θm)xt−1 + QQ(θm)zt (3)

zt+1 = NN(θm)zt + νt+1 (4)
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where PP,QQ, RR, SS are matrices which are functions of the structural parameters

of the model, θm; xt−1 and zt are the state vectors of the model, endogenous and

exogenous respectively. νt+1 are mutually uncorrelated zero mean innovations.

In a two step approach, the cyclical component is first extracted from the data.

Then, the likelihood of the data, conditional on the DSGE model, M, is computed

L(yc|θm;M)

With the one step approach, we compute the likelihood of the observed data, given a

system that embodies the solution of the model and a specification for the trend, i.e.

L(y|θ;M,F)

where θ = (θm, θf ) is the joint vector of structural and filtering parameters, and F is

a functional specifications for the filter.

The likelihood of a model is usually computed using the Kalman filter after having

defined a linear state space3, of the form

Yt = H(θ)st + ut (5)

st+1 = F (θ)st + G(θ)ωt+1 (6)

where ut and ωt+1 represent the measurement and the process noise, respectively.

ut and ωt+1 are uncorrelated and normally distributed with zero mean and constant

covariance matrix. Equation (5) is the measurement equation, which relates a set of

observable variables, Yt, to a set of (latent) state variables, st. State evolves along time

according to equation (6).

2.1 Two step approach

With the two step (2s) approach data is first filtered and then structural DSGE pa-

rameters estimated.

• 1st step:

Assume that F(yt; τ,M) is the filter that extracts the trend yτ
t from the data,

given the model M. Then, the cyclical component is

yc
t = yt −F(yt; τ,M)

3Non linear state space can be found in Fernandez-Villaverde and Rubio-Ramirez (2005)
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Notice that when a statistical filter is used F(yt; τ,M) = F(yt; τ), while when a

model-based filter is used F(yt; τ,M) = F(yt;M). For example, a DSGE model

with a unit root with drift in the technology process would imply real variables

to grow at the same rate, the technology growth rate. Therefore, the model-

based filter would require to take first difference on real variables data and leave

unchanged the remaining ones.

In both the one step and the two step approach, I consider only statistical filters,

thus F(yt; τ,M) = F(yt; τ) ≡ Fτ (yt). In particular, I consider three types of

trends, τ : a linear trend, a unit root and a smooth integrated trend. Therefore,

the appropriate filters are a linear detrending filter, a first order difference filter,

and the unobserved component (Hodrick-Prescott) filter.

• 2nd step:

When yc
t is obtained, the system of equation, (2)-(4), fit the state space represen-

tation, (5) and (6), by setting

Yt = yc
t

st =
(

xt−1 zt

)′

F =
(

PP QQ
0 NN

)

G =
(

0 I
)′

H =
(

RR SS
)

ωt+1 = νt+1

The choice of the filter, F(yt; τ,M), affects the statistical properties of the cycles (see

Canova (1998)), and consequently also the shape of the likelihood. This implies that

the estimated structural parameters might be (statistically) different depending on the

filter used (see Canova (2008)).
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2.2 One step approach

In the one step approach (1s) the likelihood is computed directly from the observables,

yt, that is

yt = yτ
t + yc

t

yτ
t = F(yt; τ)

yc
t = RRxt−1 + SSzt

xt = PPxt−1 + QQzt

zt+1 = NNzt + νt+1

The following specifications fit the state space system, equations (5)-(6). Details are

reported in the appendix.

2.2.1 Linear-Trend-DSGE setup

In this specification, I assume that the non-stationary component of the data is driven

by a linear trend, i.e.

yτ
t = A + B ∗ t + ηt (7)

where A and B are column vectors. ηt is a white noise normally distributed with

zero mean and variance covariance matrix, Ση. Therefore, the filter parameters to be

estimated are θlt = [A,B,Ση]. I will refer to this specification as lt-dsge setup.

2.2.2 First-Difference-DSGE setup

In this specification I assume that the data displays a unit root pattern, and that

yτ
t = γ + Γyt−1 + ηt (8)

where γ is the drift and Γ is a diagonal matrix, that have zeros or ones on the main

diagonal. ηt is a white noise normally distributed with zero mean and variance covari-

ance matrix, Ση. Therefore, the filter parameters to be estimated are θfd = [γ, Ση]. I

will refer to this specification as fd-dsge setup.

2.2.3 Hodrick-Prescott-DSGE setup

Here, I assume that the trend, yτ
t , is an integrated random walk, i.e.

yτ
t+1 = yτ

t + µt (9)
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µt+1 = µt + ζt+1 (10)

where ζt+1 ∼ N(0, Σζ), and Σζ is diagonal. Harvey and Jaeger (1993) have shown

that the HP filter is the optimal trend extractor, when the trend, yτ
t , is specified as

in (9) and (10). The set of shocks, ωt+1, of the state space model is composed by the

structural innovations of the model, νt+1, and the stochastic part in the trend, ζt+1.

To make the link with the HP filter clearer, note that the ratio between the variance

of innovations in trend and the variance of the cycles gives the smoothing parameter

of the HP filter, λ. Usually, the smoothing parameter is set to 1’600 for quarterly val-

ues, but there is little reason for this choice. To account for the uncertainly in setting

λ, Trimbur (2006) proposes a Bayesian HP filter where λ is estimated with a Gibbs

sampler; he shows that depending on the times series λ can be statistically different

from 1’600. In the hp-dsge set up the ratio of the variances is estimated along with

the structural parameters of the DSGE model; this allows the statistical framework to

be quite flexible. The filter parameters to be estimated are θhp = Σζ . I assume that

Σζ is diagonal, but it is straightforward to consider a general matrix (allowing for cor-

relation among trends), or a rank deficient one (so that the non stationary component

is common across series). I will refer to this specification as hp-dsge estimates.

2.3 Estimation

Bayesian methods are employed to obtain the posterior distribution of the structural

and non-structural parameters. For both approaches, posterior distributions are a

combination of prior distribution of the parameters, and sample information, which is

given by the likelihood of the model. In general, posterior distributions are computed

using the Bayes theorem

g(θ|Y ;M) =
g(θ)L(Y |θ;M)

p(Y |M)
∝ g(θ)L(Y |θ;M)

where L(Y |θ;M) is the likelihood of the data, Y , given a model, M; θ is the vector of

parameters of the model and g(θ) is the prior distribution of the parameters.

In the 2-step approach, we compute the posterior distribution of the parameters con-

ditional on filtered data, yc, and on the DSGE model, M. Thus, M = M, Y = yc and

θ = θm, and the posterior distribution of parameters is

g(θm|yc;M) ∝ g(θm)L(yc|θm;M)
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In the 1-step approach, we compute the posterior distribution of the parameters con-

ditional on the raw data, on the DSGE model and on the trend specification, F . Thus,

M = {M,F}, Y = y and θ = (θm, θf ), and posterior distribution of parameters is

g(θm, θf |y;M,F) ∝ g(θm, θf )L(y|θm, θf ;M,F)

Given the large number of parameters involved, we can not compute analytically the

posterior distribution, and we need to use posterior simulators based on Monte Carlo

Markov Chain (MCMC) methods. The main idea of MCMC simulators is to define a

transition distribution for the parameters that induce an ergodic Markov chain. After

a large number of iterations, draws obtained from the chain are draws from the limiting

target distribution. Following Schorfheide (2000), I use the Random Walk Metropolis

algorithm (RWM). Given Σ and prior g(θ), the algorithm is as follow. Starting from

an initial value θ0, for ` = 1, ..., L

1. draw a candidate θ† = θ`−1 + N(0, Σ)

2. solve the linear expectations system, equations (2)-(4), given θ†; if indeterminacy

or no-existence set L(Y |θ†;M) = 0.4

3. evaluate the likelihood of the system of equations (5)-(6) given θ† with the Kalman

filter, L(Y |θ†;M).

4. compute ğ(θ†|Y ;M) = g(θ†)L(Y |θ†;M), and the ratio

R =
ğ(θ†|Y ;M)

ğ(θ`−1|Y ;M)

5. draw u from U [0, 1]; if R > u then we accept the draw and we set θ† = θ`,

otherwise set θ`−1 = θ`

Iterated a large number of times, the RWM algorithm ensures that we get to the

limiting distribution which is the target distribution that we need to sample from (for

further details see also Canova (2007), Ch. 9). Since the state space generated by the

hp-dsge setup is not stationary, we can not use unconditional moments to start the

Kalman filter and we need to start from an arbitrary point. I picked s1|0 = [y1,0,0,0]

and Ω1|0 = 10 ∗ I, to account the uncertainty of my guess.

4In the one step approach, a candidate draw θ† = (θm
† , θf

† ) is rejected, if θm
† implies non-existence or

indeterminacy for the system (2)-(4).
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2.4 Advantages of the one step approach

The advantage of having the joint posterior distribution of structural and filtering

parameters, θ = (θm, θf ), is twofold.

First, we can evaluate which trend specifications fits the data better by calculating

the relative posterior support, i.e. Posterior Odds ratio, of various specifications. The

Posterior Odds ratio is constructed by comparing the Bayes Factor, which is the ratio

of the predictive densities of the data conditional on different models, and prior odds,

which is the ratio of prior probabilities associated to each model. The predictive density

of the data, Y , conditional on the model, M, for a given prior g(θ) is

p(Y |M) =
∫
L(Y |θ;M)g(θ)dθ

In the 1s approach, the predictive density of the data, conditional on the DSGE model,

M, and on the trend specification, F , is

p(y|M,F) =
∫
L(y|θ;M,F)g(θ)dθ

where θ = (θm, θf ). Therefore, if one wishes to test different trend specifications (say

a deterministic, F0, against a stochastic trend, F1), the 1s approach allows to compute

the Posterior Odds,

POF0,F1 =
g(M,F0)
g(M,F1)

× p(y|M,F0)
p(y|M,F1)

=
g(F0)
g(F1)

× p(y|M,F0)
p(y|M,F1)

where g(F0) and g(F1) are prior probabilities of each trend specification. With the

Posterior Odds ratio and a loss function, one can test trend specifications against each

others. In the 2s setup, the predictive density of the filtered data, yc, is

p(yc|M) =
∫
L(yc|θ;M)g(θ)dθ

with θ = θm. Therefore, one can not test different trend specifications because the

ratio between predictive density of data filtered in different way would be meaningless,

since the likelihood is computed at different data point.

The second main advantage of this formulation is that we can construct estimates

of the structural parameters that are robust to trend uncertainty. Given that we do

not know the ’true’ data generating process, trend uncertainty can be accounted for by

averaging across specifications. In particular, suppose that one does not know whether

the non-stationary component of the data is driven by various trend specifications,
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F1,F2, ...,FK (for example deterministic, stochastic, with correlation among trends,

with common trend components, etc.). Then, one can compute

g(θm|y,M) =
K∑

j=1

p(y|M,Fj)∑K
k=1 p(y|M,Fk)

∫
g(θm, θfj |y,M,Fj)dθfj

where the filtering parameters of each trend specification, θfj , are intergraded out. The

resulting structural parameters distribution, g(θm|y,M), is then robust to the trend

uncertainty.

2.5 Parameter drifts

One may suspect that, for a subset of times series, trends have changed over the sample.

There is no conceptual difficulty in extending the setup we have used to allow trend

parameters to be unstable. In the lt-dsge framework one could define the following

specification

yτ
t = At + Bt ∗ t + ηt (11)

At+1 = At + ηA
t+1 (12)

Bt+1 = Bt + ηB
t+1 (13)

To test whether the trend has changed over time, one can compute the likelihood of

the unstable system and compare it with the likelihood of the stable system using the

Posterior Odds and a loss function.

Similarly, in fd-dsge setup we could set

yτ
t = γt + Γyt−1 + ηt (14)

γt+1 = γt + ηγ
t+1 (15)

The likelihood can be computed and the stability of the trend parameters can then be

tested.

3 Simulated Data: Parameter Bias

The aim of this section is to compare performances of the two methods in a reasonable

experimental design. Using simulated data, I compare the estimates of the structural

parameters using 1s and 2s methods, and measure the bias induced by the two ap-

proaches in three different situations: (1) in small samples, (2) when the trend is
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misspecified, i.e. the ’true’ trend is deterministic and the structural parameters es-

timated as if it were stochastic, and viceversa, (3) when the assumption about the

correlation between trend and cycles is wrong. Overall, the results indicate that the

one step approach gives estimates that are less biased on average than two step ones.

Moreover, in most of the cases the one step approach is able to recover the true trend

generating process. Remarkably, the structural paremeters bias is always statistically

significant, meaning that in most of the cases ’deep’ parameters are difficult to identify

correctly, see Canova and Sala (2006).

3.1 The Data Generating Process

The model I use to generate the cyclical component of the data is the baseline version of

the New Keynesian model where, as in Calvo (1983), producers face restrictions in the

price setting process, households maximize a stream of future utility and a monetary

authority sets the nominal interest rate following a simple Taylor rule. The equilibrium

conditions of the prototype economy, where all variables are expressed in log deviations

from the steady state, are5

λt = εχ
t − σcct (16)

yt = εa
t + nt (17)

mct = ωt − (yt − nt) (18)

mrst = −λt + σnnt (19)

ωt = mrst (20)

rt = ρRrt−1 + (1− ρR)(ρππt + ρyyt) + εr
t (21)

λt = Etλt+1 + rt −Etπt+1 (22)

πt = kp(mct + εµ
t ) + βEtπt+1 (23)

εχ
t = ρχεχ

t−1 + νχ
t (24)

εa
t = ρaε

a
t−1 + νa

t . (25)

In this economy there is no capital accumulation nor government spending, thus

output, yt, is entirely absorbed by consumption, i.e. ct = yt. Equation (16) gives

the value for the marginal utility of consumption, λt, which depends negatively on

consumption since the elasticity of intertemporal substitution, σc, is positive. The

shadow value of consumption is also hit by a preference shock, εχ
t , which I assume

5For further details on the model see the Appendix.
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to follow an AR(1) process, equation (24). Equation (17) is the constant return to

scale production function, by which output is produced with labor, nt. Total factor

productivity, εa
t , is assumed to be a stationary AR(1) process, see equation (25). The

difference between real wage, ωt, and the marginal product of labor, yt − nt, defines

the marginal cost, mct, equation (18). Since labor market is perfectly competitive

and frictionless, there is no wage markup and the marginal rate of substitution, mrst,

is equal to the real wage. The marginal rate of substitution between working and

consumption depends positively on hours worked, where σn is the inverse of the Frish

elasticity of labor supply. Equation (21) is the monetary rule. Equation (22) is the

standard Euler equation and β is the time discount factor. It states that current

marginal utility of consumption depends positively on its future expected value and on

the ex-ante real interest rate, rt−Etπt+1. Equation (23) is the New Keynesian Phillips

curve obtained from the forward looking behavior of the firms. The NKP curve is hit

by a cost push shock, εµ
t . The cost push shock is determined by a stochastic parameter

that determines the time varying markup in the goods market. The slope of the Phillips

curve is kp = (1− ζp)
1−βζp

ζp
, where ζp is the probability of keeping the price fixed. The

four exogenous processes are driven by mutually uncorrelated, zero mean innovations,

i.e. νt = [νχ
t , νa

t , νr
t , νµ

t ].

I assume that the cyclical components of GDP, hours worked, real wages and inflation,

yc
t = [yt, nt, ωt, πt]

are determined by the solution to (2)-(4). The structural parameters of the model, θm,

are

θm = [β, σc, σn, ρR, ρπ, ρy, ζp, ρχ, ρa, σχ, σa, σr, σµ]

and xt is the vector of endogenous states,

xt = [λt,mct, mrst, rt].

Finally, the vectors of exogenous processes and of innovations are respectively

zt = [εχ
t , εa

t , ε
r
t , ε

µ
t ]

νt = [νχ
t , νa

t , νr
t , νµ

t ].

I specify two types of trends: a linear deterministic trend,

yτ
t = A + Bt + ηt
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and a smooth integrated trend,

yτ
t+1 = yτ

t + µt

µt+1 = µt + ζt+1

Therefore, the appropriate filters are a linear detrending filter and the unobserved

component (Hodrick-Prescott) filter.

3.2 Prior Selection

Table 1 reports the priors selection of the structural parameters. I assumed Beta

distribution for those parameters that must lie in the 0-1 interval, like ρR, ζp, ρχ, ρa. I

choose a prior mean close to 0.5 for the probability of keeping the prices fixed, whereas

the autoregressive parameters in the exogenous processes have prior mean close to 0.7.

I employ Gamma or Inverse Gamma distributions for the parameters that must be

positive, like the elasticity of consumption and leisure (σc and σn). For the standard

deviations, I use Inverse Gamma with mean close to 0.006 and standard deviation of

0.002. The remaining parameters have normal distributions.

3.3 Bias Computation

I generate data using four different population values, see Table 2. I consider different

persistency and volatility of the shocks: ’LP’ stands for low persistence, ’HP’ for high

persistence, ’HV’ stands for high volatility, ’LV’ for low volatility. For each row of

Table 2, I generate two data sets with the types of trend mentioned. Each data set is

composed of a vector of four times series of 300 observations; I discarded the first 140

observations and keep last 160 for estimation, which represents 40 years of quarterly

data observations. The bias is calculated according to the following algorithm

1. for each simulated dataset, s = 1, ..., 8, I run a RWM algorithm as specified in

Section 2.3 until convergence is achieved6.

2. I then discard the first 300,000 draws and keep randomly one every 1,000 draws,

θs
j , and compute

biass
` =

1
L

L∑

j=1

|θ
s
j − θs

true

θs
true

|

6Convergence is achieved for all the setups roughly alter 300,000 draws, and the number of iterations is
set to 600’000.
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with L = (N − 300, 000)/1, 000 and N is the number of iterations of the RWM.

3. I repeat 2. 100 times and take the average bias, i.e. BIASs = 1
100

∑100
`=1 biass

`

I am interested only in the bias of the structural parameters estimates, θm. Throughout

these simulations, the acceptance rate played a crucial role. I observed that the larger

was the acceptance rate the larger was the bias; this is quite intuitive if we think

that the acceptance rate is inversely related with the variance of the RWM algorithm.

Indeed, with a small variance it becomes difficult for the algorithm to explore the entire

parameters space and get close to the true values. I tried to keep the acceptance rate

between 20% and 35%, as the literature suggests.

3.4 Bias in small samples

Tables 3 reports the bias of the ’deep’ parameters estimates for the two methods with

a deterministic trend. For the 2s estimates, in the first of the two steps I detrend the

data with a linear trend. For the 1s step setup, I used the lt-dsge specification.

On average, the 1s method is superior to the 2s one in terms of parameter bias. In 29

cases out of 48, it turns out that the bias of the two step estimates is larger than the

corresponding bias with the 1s setup. Looking at the average bias across DGP (last

column of Table 3), one can notice that in 8 cases out of 12 parameters estimates are

less biased in the 1s that in the 2s setup. In the 1s setup the most difficult parameters

to estimate are the standard deviations, and the corresponding bias is larger for the

1s than for the 2s framework. Despite this, the average bias across parameters (last

row of Table 3) is larger in the 2s setup in three cases out of four. When the trend

is deterministic the superiority of the one step approach can be explained as follows.

The first of the two steps involves OLS estimation of the trend parameters (slopes

and intercepts), and the residual of the regression are the cycles. Small sample bias is

absorbed by the cycles, and this distorts the structural parameters estimates. In the

one step setup, cycles are treated as unobserved states and estimated optimally with

the Kalman filter. This reduces the bias of the structural parameters estimates.

Table 4 reports the bias using the two methods, when data is generated with a stochas-

tic trend. In the 2s setup, the first of the two steps uses the Hodrick-Prescott filter with

a smoothing parameter of 1’600 to extract the stationary component of the data. The

1s approach seems to be better, in general. In 30 cases out of 48 the bias of the two

step set up is larger than the hp-dsge one. Looking at the average bias across DGP,

for eight parameters out of twelve the bias is smaller in the 1s than in the 2s setup.
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Moreover, the average bias across parameters is larger for the 2s in 3 cases out 4. The

intuition for this result is straightforward: in the two step case, the ratio between the

variance of innovations in trend and the variance of the cycles is fixed to 1’600, which

may not reflect the ’true’ ratio between trend and cycles variances. In the one step

approach, the smoothing parameter is jointly estimated with other parameters. Hence,

biases are reduced with a 1s approach.

The relative magnitude of the bias of the two approaches depends on the length

of the sample: for larger samples, the differences in bias are smaller. For example,

when I repeat the baseline exercise using times series of 500 and 1000 observations (see

Table 9), I find that biases are reduced, but they do not disappear. In fact, asymptotic

convergence is very slow. Note that, while relative biases are considerably reduced with

a deterministic trend, they are still relevant in stochastic framework.

3.5 Bias under misspecifications

One may wonder whether a wrong specification of the trend or incorrect assumptions

about its correlation with the cycles could affect the bias of the parameter estimates

obtained with the two approaches and in which direction. To examine these issues, I

performed Monte Carlo experiments where a) the ’true’ trend is deterministic and data

are estimated as if it were stochastic (and viceversa), and b) the assumption about the

correlation between trend and cycles is wrong. Two interesting results emerge. First,

in the one step setup structural parameter estimates are robust regardless of the ex-

act trend specification. Second, wrong assumption about correlation between trend

and cycles affects strongly the two step estimates, whereas it leaves one step estimates

roughly unchanged.

Table 5 reports the parameter bias when data has a deterministic trend and the one

step approach has the ’wrong’ trend specification. That is, data is linearly detrended

in the first of the two step, whereas the hp-dsge setup is used to estimate parameters in

the one step approach. Thus, the 2s setup has the correct trend specification, whereas

the 1s framework is misspecified. Despite of this, one step estimates appear to be quite

reasonable. In particular, more than half of the parameter estimates are more bias in

the 2s approach than in the 1s one. This is due mainly to the fact that the hp-dsge

setup a very flexible structure to capture smooth trends and includes as special case

a linear trend specification, see Harvey and Jaeger (1993). Similarly, when data are
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simulated with a stochastic trend and the 1s approach employs a deterministic trend

specification, structural parameters estimates do not seem affected much by the wrong

trend specifications. Table 6, which reports the bias of both methods when trend is

stochastic and 1s has a lt-dsge specification, indicates that in most of the cases param-

eter biases have not changed and are quite similar to Table 3. The reason for that is

mainly due to the fact that the simulated data has clearly upward trend. This makes

the linear deterministic trend a reasonable approximation.

As mentioned, the data I used is made of a cyclical and a non stationary component.

To identify trend and cycles from the observables one typically assumes that the two

are independent. Given that it is not known whether the two are independent or not,

I simulate times series imposing a correlation structure between the two, and estimate

the parameters as if they were uncorrelated. The aim of this exercise is to see how

the procedure performs when there is misspecification in the identifying assumptions.

To impose some correlation structure in the simulated data, I distinguish the case in

which the trend is deterministic or stochastic. For deterministic trend, I assume that

ηt = A1zt + vt (26)

where vt is white noise ad A1 is a non zero matrix. When the trend is stochastic

ζt = A1zt + vt (27)

As before, I first consider the bias in the estimates when data has deterministic trends

and then when data has stochastic ones. Tables 7 reports the bias in the structural

parameters estimates for the two methods. Misspecification strongly affects the esti-

mates of the 2s procedure whereas for the 1s case the bias do not change much relative

to baseline case. In this respect, the 2 step procedure produces huge bias in estimating

σχ: in fact, on average the order of bias is 12 times larger in absolute value than the

true parameter value. In 33 cases out of 48, 2s estimates are more biased than the

corresponding value in the 1s approach. Moreover, notice that for three DGPs out of

four the average bias across parameters in the 2s is double the corresponding value

for the 1s. The intuition of this result is as follows. Data is generated with equations

(1)-(4), (7) and (26), and parameters are estimated assuming that the true DGP is

given by (1)-(4), (7). In the 2 step set up, we first regress the data on a linear trend

and then with the residuals of the regression estimate the structural parameters. The

residuals of the regression are stationary; thus, the OLS regression gives consistent
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estimates of A and B, the slope and the intercept of the linear trend. Hence, the error

induced by the omission of equation (26) is absorbed by the residuals. This biases

the structural parameters estimates. In the lt-dsge estimates, cycles are are treated as

unobserved states and estimated jointly with the trend; thus, the bias is evenly split

between filtering parameters and ’deep’ parameters.

When data is simulated with a stochastic trend, the same conclusion applies. Table

8 suggests that in most cases parameter estimates are less biased in the 1s set up than

in the two step one; in particular, in the hp-dsge setup only 16 parameters out of 48

are estimated with a larger bias that the corresponding values estimated with the 2s

procedure. Once again the reason for this is that the ratio between the variances of

the cycles and the trend is estimated along with the structural parameters in the one

step approach.

Finally, it interesting to investigate the ability of the one step approach to recover

the ’true’ trend. Recall that this can be done using the Posterior Odds and a loss

function. To this aim, Table 10 reports the difference between the logarithm of Posterior

Odds between lt-dsge and hp-dsge specification, i.e.

ln POlt,hp = ln p(y|M,Flt)− ln p(y|M,Fhp)

where I assume that the two specifications are equally ex ante probable. For all the

setups considered I obtain positive values for ln p(y|M,Fj) with j = lt, hp. Thus,

when the true trend is deterministic (stochastic), the log of Posterior Odds should be

positive (negative). Except in one case (out of 16), the one step approach is able to

recover the true trend generating process.

4 Actual Data: Parameters Estimates

In this section, I compare estimates of the two approaches using real data. I first

present the parameter estimates I obtain for a ’small’ New Keynesian model, presented

in the section 3.1. This gives us a better understanding of what the two procedures do

to the data. In the next sections, I extend the analysis to a more densely parameterized

model.
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4.1 1s and 2s Estimates of a Small NK Model

I use quarterly values of GDP, real wages, hours worked and inflation from 1964:1 to

2007:2. Times series are from the FRED database of the Federal Reserve Bank of St.

Louis. Hours worked are constructed by multiplying the average hours of production

workers times the ratio of total employees over the civilian population. Inflation is

calculated annualizing the quarterly growth rate of the producer price index. Prior

selection is the one reported in Table 1.

Table 11 reports estimates of the ’deep’ parameters using 2s and 1s approaches. In

the 2s setup (columns (1),(3),(5)) many parameters estimates are statically different

across different filtered data. These large differences are due to the filter used: indeed,

each filter extracts cycles with properties statistically different from each other (Canova

(1998)). Different cycles determines a different shape for the likelihood function, which

implies statistically different estimates. For example, consider the estimates of the

autoregressive coefficients. Looking at the cyclical component extracted by the filter,

we can notice that linear detrended data are very persistent (see top row of Figure

1) compared to other data transformation. This occurs because a linear detrending

filter do not remove entirely the low frequencies in the spectral density representation,

and leaves in the spectrum a portion of fluctuations with periodicity larger than 32

quarters. This pushes upward the estimates of the persistence of the exogenous driv-

ing forces. At the same time, a persistent processes distorts the agents perception of

the shocks of the economy and thus alters their optimality conditions; in particular, a

persistent preference shock affects the estimates of the elasticities in the household’s

intra-temporal optimality condition. The direction of the contamination is not clear

because behavioral parameters enters in an non-linear fashion during estimation. Sim-

ilarly, a first difference filter extracts a very noisy cyclical component (bottom row of

Figure 1), which pushes downward the estimates of the autoregressive coefficients and

has effects upon the household’s decision rules.

Moreover, the amplitude of the cycles affects the magnitude of the structural standard

deviations. Comparing the three lines, we can notice that the deepest cycles are the

ones given by a linear detrending filter, followed by a first difference filter and by the

HP filter. The latter ranking implies a similar ordering in the magnitude of the esti-

mates of structural standard deviations: in fact, the estimates of structural standard

deviations are largest using linear detrended data, followed by the estimates obtained

with first difference filtered data and by the estimates obtained with HP filtered data.
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Looking at columns (2),(4),(6) which contain 1s estimates, the first thing to notice

is that large differences in the parameter estimates of exogenous process reduce. For

example, in the 2s approach the range of the median estimates of the autoregressive

parameters is 0.51-0.98 for ρχ and 0.38-0.98 for ρa. In the 1s approach, autoregressive

coefficient median estimates vary from 0.57 to 0.79 for ρχ, and from 0.48 to 0.85 for

ρa. In general, in the one step set up median estimates of structural parameters shrink

across different trend specifications.

With different structural estimates policy implications are clearly different; for ex-

ample, impulse responses look distinct. Figure 2 reports the response of GDP, em-

ployment, real wages and inflation to a one percent increase in the preference and

technology shock using median estimates of the 2s approach. The solid (blue) line

represents the response of a variable using linear detrended data (dotted lines give the

90% confidence interval), the dash dotted (green) line the response of a variable using

first difference filtered data and the dotted (red) line the response of a variable with hp

filtered data. Responses are statistically different: in most of the cases the the median

values of the estimates with HP filtered or first differenced data do not fall in the 90%

confidence interval of the estimates with linear detrended data. Moreover, notice that

the effect of a positive demand shock to wages is completely different according to the

filter used: in fact, it induces a positive reply with first difference data or a negative

one with linear detrended data.

Given this outcome, which impulse responses should we choose ? Which estimates

should we thrust ?

With the traditional two step method we can not answer this question, since do not

have a statistical-based criterium to select among different DSGE estimates. The one

step approach can easily deal with this question: one could either test trend speci-

fications or construct robust estimates by averaging across trend specifications. The

bottom part of Table 11 presents the priors, posterior densities and Posterior Odds

for the three different specifications. Posterior Odds are computed with respect to the

lt-dsge specification, i.e.

POFk,Flt
=

g(Fk)
g(Flt)

× p(y|M,Fk)
p(y|M,Flt)

for k = hp, fd. The first term is the ratio between prior filters probability, and the

second term is the Bayes Factor; assuming equal ex ante probability to each filter,

Posterior Odds and Bayes Factors coincide. Differences in posterior density of data are

quite large across specifications. Data clearly prefers a specification with unit roots
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in the long run dynamics. The hp-dsge specification has the lowest posterior data

density; in order to choose a smooth integrated trend over a linear trend, we need a

prior probability 6.4∗1013 (= exp(31.8)) times larger for the hp-dsge specification than

the prior probability on lt-dsge setup. Comparing a linear deterministic with a unit

root specification, the log of PO clearly reveals the preference of the unit root over a

linear deterministic setup. In order to choose a linear over a unit root specification

for the trend, we need a prior probability of 3.6 ∗ 1042 time larger for the lt-dsge

specification than the prior probability on fd-dsge setup; therefore, I conclude that the

specification with unit root improves considerably the fit relative to a linear trend or a

smooth integrated trend specification. Turning to the the question of interest, Figure

3 shows the effect of an increase in the a demand and a supply shock to the variables

considered using a 1s approach. Notice that responses and dynamics look more similar

across different data transformations in the 1s than in the 2s setup. This is due to

the fact that median estimates shrink across trend specifications in the 1s procedure.

Given the results in terms of PO, the most likely impulse responses are the ones given

by the fd-dsge setup.

4.2 An extension

The extension to a more densely parameterized model is easy to implement. To this

aim, I borrow the model of Smets and Wouters (2007) (henceforth SW) with sticky

price and wages and with price and wage indexation. Despite the fact that the model

is almost identical, I depart from the SW model in two aspects. First, SW assume a

labor augmenting deterministic growth rate, γt, in the production function, i.e.

Yt(i) = εa
t Kt(i)α[γtNt(i)]1−α

This implies that the long run dynamics are entirely determined by the parameter γ,

which makes GDP, real wages, capital, consumption and investment grow at the same

rate in the model. I assume that γ = 1 and let the long run dynamics be determined by

the trend specifications presented in Section 2.2. Second, I consider a simpler version

of the Taylor rule, i.e.

rt = ρRrt−1 + (1− ρR)(ρππt + ρyyt) + νr
t
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The set of equations to be estimated are7

yt = αφpkt + (1− α)φpnt + φpε
a
t (28)

yt = εg
t + c/yct + i/yit + rk ∗ k/yzt (29)

kt = ks
t−1 + zt (30)

kt = ωt + nt − ψ

1− ψ
zt (31)

mct = α
ψ

1− ψ
zt + (1− α)ωt − εa

t (32)

ks
t = (1− δ)ks

t−1 + i/kit + i/kϕεi
t (33)

(1 + βip)πt = βEtπt+1 + ipπt−1 + kpmct + εp
t (34)

(1 + βiω)ωt = ωt−1 + βEt(ωt+1 + πt+1) + iωπt−1 + (1 + βiω)πt − kωµωt + εω
t (35)

ct =
1

1 + h
(Etct+1 − hct−1) + c1(nt − Etnt+1)− c2(rt − Etπt+1) + εb

t (36)

qt = −(rt − Etπt+1) +
σc(1 + h)
(1− h)

εb
t + Et(q1zt+1 + q2qt+1) (37)

it =
1

1 + β
it−1 +

β

1 + β
Etit+1 +

1
ϕ(1 + β)

qt + εi
t (38)

Variables without the time subscript are steady state values and with time subscript

are deviation from the steady state.

Equation (28) is linearized version of the production function, where output, yt, is

produced using capital kt, and labor nt; φp captures 1 plus the fixed cost in production,

and α the capital share in the production. Total factor productivity, εa
t , is assumed to

be an AR(1) exogenous technology process, i.e. εa
t = ρaε

a
t−1 + νa

t . Equation (29) is the

feasibility constraint of the economy: it says that the total output is assimilated by an

exogenous government spending process, εg
t , investment, it, consumption, ct, and by

a function of the capital utilization rate, zt. It is assumed that government spending

follows an AR(1) process, i.e. εg
t = ρgε

g
t−1 + νg

t + ρgaν
a
t . Current capital services

used, kt, are a function of the capital installed in the previous period, ks
t−1, and the

degree of capital utilization, equation (30). Equation (31) is derived from the firm

cost minimization, which implies that the rental rate of capital is negatively related to

capital-labor ratio and positively with the wage, i.e. rk
t = −(kt − nt) + ωt. Moreover,

the cost minimization by the household implies that the degree of capital utilization is

a positive function of the rental rate of capital, i.e. zt = 1−ψ
ψ rk

t . Equation (32) gives an

7Details on the model assumptions and its derivation can be found on the web page of the American
Economic Review.
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expression for the marginal cost, mct; indeed, marginal cost is the sum of the real cost

of the two factors in production, rk
t and ωt, with weights given by their respective share

in production, net of the total factor productivity. New installed capital is formed by

the flows of investment and the net of depreciation old capital, (1 − δ)ks
t−1, equation

(33); moreover, the capital accumulation is hit by the investment-specific technology

disturbance εi
t, which is assumed to follow an AR(1) process, i.e. εi

t = ρiε
i
t−1 + νi

t . ϕ

represents the steady state elasticity of the capital adjustment cost function. Equation

(34) is the New Keynesian Phillips curve which states that current inflation depends

positively on past and expected inflation, and on marginal cost. The NPK is also hit

by a price markup disturbance, εp
t , which is assumed to follow an ARMA(1,1) process,

i.e. εp
t = ρpε

p
t−1 + νp

t + µpν
p
t−1. The slope of the NKP curve is given by

kp =
(1− βζp)(1− ζp)
ζp((φp − 1)ep + 1)

,

where β is the time discount factor, ζp is the probability of keeping the prices fixed, ep

the curvature of the Kinball goods market aggregator, and the steady state markup,

which in equilibrium is itself related to the share of fixed cost in production, φp − 1,

thought a zero profit condition. Equation (35) gives the dynamics of the real wage

that moves sluggishly because of the wages stickiness and partial indexation assump-

tion; wages responds to past and future expected real wage, to the (current, past and

expected) movements of inflation. Real wage depends also on the wage markup, µωt,

with slope

kω =
(1− ζω)(1− ζωβ)
ζω((φω − 1)eω + 1)

,

where (φω − 1) is the steady state labor market markup, eω the curvature of the labor

market Kinball aggregator. The wage markup is itself the difference between the real

wage and the marginal rate of substitution between working and consumption, i.e.

µωt = ωt − (σnnt +
1

1 + h
(ct − hct−1))

Wage equation is hit by a wage markup disturbance which is assumed to follow an

ARMA(1,1) process, i.e. εω
t = ρωεω

t−1 + νω
t + µωνω

t−1. Equation (36) is the Euler

equation where c1 = (σc−1)ωhn/c
σc(1+h) and c2 = 1−h

σc∗(1+h) . The Euler equation controls the

dynamics of consumption, where current consumption depends on a weighted average

of past and expected consumption, expected growth in hours worked, nt−Etnt+1, and

the ex-ante real interest rate, rt − Etπt+1. The dependence on past consumption is

controlled by the habit in consumption parameter, h. A disturbance term is assumed
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to hit the Euler equation and it should be interpreted as a wedge between the interest

rate controlled by the central bank and return on asset held by household. Equation

(37) is the Q equation that gives the value of capital stock, qt, where q1 = rk

rk+1−δ
ψ

1−ψ

and q1 = 1−δ
rk+1−δ

. It say that the current value of capital stock depends negatively on

the real interest rate and positively on expected future value of the capital stock itself

and of the real rental rate on capital, Etq1zt+1 = Et
rk

rk+1−δ
rk
t . Finally, the last equation

is the investment equation, (38), by which current value of investment depends on past

and expected future value of capital and on current value of the stock of capital.

4.2.1 Observables and priors

As in SW, I assume that we observe quarterly values for GDP, hours worked, consump-

tion, investment, real wages, inflation and the nominal interest rate, i.e.

yt = [GDPt, Nt, Ct, It, Wt,Πt, Rt]

The cyclical component, yc
t , of the vector of observed times series evolves according to

the system of equations (2)-(4) where the vector of endogenous state8 is defined as

xt = [kt, z
k
t , kp

t , ct, it,mct, ωt, πt, rt, qt]

The system is driven by vectors of exogenous processes and innovation, respectively

zt = [εa
t , ε

g
t , ε

i
t, ε

r
t , ε

p
t , ε

ω
t , εb

t ]

νt = [νa
t , νg

t , νi
t , ν

r
t , νp

t , νω
t , νb

t ]

As in SW, I fix some parameters that might be difficult to identify: depreciation

rate, δ, is fixed at 0.025, the exogenous government spending-GDP ratio is set at

18%. Three other parameters are hard to identify: the steady state markup in the

labor market, φω, which is set to 1.5 and the curvature of the Kinball aggregator

in the goods and labor market, ep and ew, which are both fixed at 10. Remaining

parameters are estimated. Table 12 shows the set of parameters to be estimated:

18 behavioral parameters, 10 autoregressive and moving average coefficients and 7

standard deviations. In additions, I also estimate a number of filtering parameters;

8ct, it and ωt are included in the endogenous states vector because the Uhlig (1999) algorithm recognize
as endogenous states variables all the variables that appear out of the expectation equations at time t and
t− 1.
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7 for the hp-dsge setup and 14 for the lt-dsge and fd-dsge setup. Priors selection is

similar to SW with two exceptions. I assume a rather larger prior standard deviation

for price and wage indexation, 0.28 instead of 0.15. Moreover, standard deviations

priors have an Inverse Gamma with mean and standard deviation of 0.5.

I use the same database of SW, which is available on the American Economic Review

website, and the sample estimated goes from 1966:1 to 2004:4. I run 1,000,000 draws

and I tune up the RWM variance in order to achieve a 30%-40% acceptance rate. All

the routines are in MATLAB, and it takes about 12 hours to obtain one million draws.

4.2.2 Model implications discussion

The main point I want to stress is that model implications are quite sensitive to data

transformations. Figure 4 presents the effects of changes in the exogenous processes

to output, hours worked, consumption and investment using 2s estimates. The re-

sponse of hours worked to technology shock (first row) has been lively debated. Gaĺı

(1999) argued that due to the presence of nominal price rigidities positive productivity

shocks leads to an immediate fall in hours. Indeed, the immediate drop in hours is

common across trend specifications9, but dynamics are pretty different. While with

first difference data hours need 25 quarters to revert to the steady state, with HP filter

data hours worked almost immediately returns to the steady state and is positive for

some quarters. The second row reports the responses to a government spending shock.

The response of consumption confirms the difficulty of representative agent models10

to replicate VAR results, where consumption increases after a positive fiscal shock (see

Canova and Pappa (2007) or Mountford and Uhlig (2005)). Even thought the immedi-

ate reaction of consumption is similar across different data transformations, dynamics

are different: in fact, with first difference data it seems that a positive government

shock leads to a permanent drop in consumption, which is not the case for linear de-

trended data. Third raw displays the impulse responses to an investment shock. As

in Justiniano and Primiceri (2008), investment specific shock produces positive co-

movements of output, investment and hours worked and a complementary behavior of

consumption. Even thought the signs of the response are common across data trans-

formation, different dynamics are implied by different trend specifications. Finally, the

last row presents the response to a positive preference shock. In this case, not only the

9Consistent with SW, Francis and Ramey (2005), Gali and Rabanal (2004)
10Different results for heterogenous agents setups, see Gaĺı, López-Salido and Vallés (2007)
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dynamics also signs change completely.

Given this outcome, again the two step approach lacks a statistical-based criterion to

choose, whereas the one steps approach provides posterior weights to each trend speci-

fication, which are reported in Table 13. As before, data strictly prefers a specification

with unit root in the trend dynamics. Figure 6 reports the effects of changes in the

exogenous processes with the one step approach. Notice that impulse responses are

different from the 2s setup; this is because one and two step parameter estimates are

different. Given the posterior densities, I conclude that responses with a unit root

specification are by far the most likely.

One important implication of the estimated SW model is the little role of technology

shocks as a driving forces of business cycles fluctuations. In general, estimated DSGE

models tend to explain the volatility of output manly in terms of mark-up shocks11,

giving thus more importance to nominal innovation rather than real ones. However, in

the case of investment-specific shocks a striking contradiction emerges. With a VAR

with a long run restriction on the relative price of capital equipment, Fisher (2006)

estimates that the investment-specific shock may explain 40-60% of the volatility of

output. The two step estimates confirms the predominant role of mark-up shocks

in explaining the GDP volatility. Figure 5 reports the k-step ahead forecast error

of GDP in terms of structural shocks; clearly, either price or wage mark-up shocks

are the driving forces of GDP fluctuations. This implication changes in the one step

setup. According to the way in which we treat the data, the relative importance of

structural shocks in explaining output volatility is distinct. In fact, Figure 7 shows

that with the hp-dsge setup the main source of output volatility is given by the price

mark-up, whereas with the fd-dsge specification shocks to total factor productivity and

investment specific shocks explain almost all the variance od GDP. Since data strictly

prefers a specification with a unit root in the long run dynamics, I conclude that it

is more likely that the GDP volatility can be explained mainly by investment-specific

shocks, in line with the recent finding of Justiniano et al. (2008).

11In this respect, the only exception is Justiniano, Primiceri and Tambalotti (2008) where they found that
investment specific shock explain 50% of the unconditional volatility of GDP.
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5 Conclusion

In this paper, I propose an alternative approach to estimate DSGE structural param-

eters. Current DSGE estimates involve a two step procedure, where the cyclical com-

ponent is first extracted from the data and then structural parameters are estimated.

The method combines a reduced form representation for the long run dynamics of the

data and a structural representation for the cycles so that structural and non structural

parameters are jointly estimated.

The methodology has been confronted with current 2 step procedure in reasonable

Monte Carlo experiments. Simulation results indicated that the one step approach has

desirable properties in small samples. Moreover, the procedure showed to be robust

to two types of misspecifications: (a) when the trend specification is wrong, i.e. ’true’

trend is deterministic and estimated as if it were stochastic (and viceversa), (b) when

there is correlation among trend and cycles and structural parameters are estimated

as if they were independent. Moreover, in almost all the cases the one step approach

is able to recover the ’true’ trend generating process.

When the two approaches are compared with real data, interesting results emerge.

Structural parameters estimates and model implications are quite sensitive to the cycli-

cal component extraction. While two step methods lacks a statistical-based criterion

to select the most likely data transformation, the one step approach provides a natural

benchmark to choose among different trend specification. Finally, applying the two

approaches to a medium scale DSGE model different implications arise in terms of

sources of GDP volatility at business cycles frequencies. I found that the most likely

contribution to GDP volatility is given by investment-specific shocks.
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A New Keynesian model

The model is a sticky price model where as in Calvo (1983) producers face restriction

in the price setting process. An accurate description about price-setting assumption

can be found in Smets and Wouters (2003), or for a comprehensive overview of New

Keynesian models see Gaĺı (2008).

A.1 Model

The representative household has a preference for variety: the consumption index is

Ct =
( ∫ 1

0 Ct(j)
εt−1

εt dj

) εt
εt−1 (39)

where Ct(j) is the consumption of the good produced by firm j. As in Smets and

Wouters (2003), we assume that εt is a stochastic parameter that determines the time

varying markup in the goods market. Shock to this parameter will be interpreted as

’cost-push’ shock to inflation equation. We assume thatMt ≡ εt
εt−1 is the price markup

and

Mt = µeεµ
t

where εµ
t ∼ N(0, σ2

µ). The maximization of Ct w.r.t. Ct(j) for a given total expenditure

leads to a set of demand function of the type

Ct(j) =
(

Pt(j)
Pt

)−εt

Ct (40)

where Pt(j) is the price of the good produced by firm j. Moreover, the appropriate

price deflator is given by

Pt =
( ∫ 1

0 Pt(j)1−εtdj
) 1

1−εt

Conditional on such optimal behavior, it will be true that PtCt = [
∫ 1
0 Pt(j)Ct(j)dj].

The representative household faces standard intertemporal decisions by choosing a

stream of consumption and leisure.

E0

∞∑

t=0

βt
[

Xt
1

1−σc
C1−σc

t − 1
1+σn

N1+σn
t

]
(41)

A demand shifter is assumed: Xt affects the consumption-leisure intertemporal trade-

off. We assume that the process is exogenous and (in logs) follows AR(1), i.e.

εχ
t = ρχεχ

t−1 + εχ
t
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where εχ
t = lnXt and εχ

t ∼ N(0, σ2
χ). Household maximizes its objective function

subject to the intertemporal budget constraint,

PtCt + btBt = Bt−1 + WtNt (42)

Household holds its financial wealth in the form of bonds, Bt. Bonds are one period

securities with price bt. Wt is nominal wage and Nt is hour worked; current income is

the sum of labor income and bond income. Current income can be either consumed

either used to buy bonds. Once having transformed the nominal budget constraint

into real terms (dividing by Pt), the first order conditions are:

0 = XtC
−σc
t − Lt (43)

0 = −N−σn
t − Lt

Wt

Pt
(44)

1 = Et

[
β Lt+1

Lt

Pt+1

Pt
Rt

]
(45)

where Lt is the lagrange multiplier associated to the budget constraint and Rt is the

gross nominal rate of return on bonds (Rt = 1 + it = 1/bt).

We assume a continuum of firms, indexed by j ∈ [0, 1], each of which produces a

differentiated good. They all face the same technology,

Yt(j) = AtNt(j) (46)

where At is an exogenous technology process which (in logs) follows AR(1), i.e.

εa
t = ρaε

a
t−1 + νa

t

where εa
t = ln At and νa

t ∼ N(0, σ2
a). Following the formalism proposed by Calvo

(1983), each firm may reset its price only with probability 1− ζp in any given period,

independently of time elapsed since last adjustment. The above environment implies

that the aggregate price dynamics are described by

Π1−εt
t = ζp + (1− ζp)(P ∗

t /Pt−1)1−εt (47)

The latter equation implies that in a zero inflation steady state (Π = 1), we must have

P ∗
t = Pt−1 = Pt. A firm reoptimizing in period t will choose a price P ∗

t that maximizes

the current market value of the profits generated while that price remains effective.

Formally, it solves

max
P ∗t

∞∑

k=0

ζk
p EtQt,t+k

[
P ∗

t Yt+k|t − TCt+k(Yt+k|t)
]

33



subject to the sequence of demand constraints

Yt+k|t =
(

P ∗t
Pt+k

)−εt+k

Yt+k

for k = 0, 1, 2, ... where Qt,t+k ≡ βk(Ct+k/Ct)(Pt/Pt+k) is the stochastic discount factor

for nominal profits, TC(.) is the total cost function, and Yt+k|t denotes output in period

t+k for a firm that last reset its price in period t. The first order conditions associated

with the above program is

∞∑

k=0

ζk
p EtQt,t+kYt+k|t

[
P ∗

t −Mt+kMCn
t+k|t)

]
= 0

where MCn(.) is the nominal marginal cost; recall that εt is the elasticity of substitution

between varieties and Mt ≡ εt
εt−1 is the price markup. Rewriting in real terms and

with Πt,t+k ≡ Pt+k/Pt

∞∑

k=0

ζk
p EtQt,t+kYt+k|t

[
P ∗t

Pt−1
−Mt+kMCt+k|tΠt−1,t+k)

]
= 0 (48)

Market clearing conditions in the goods and labor market require

Yt(j) = Ct(j)

Nt =
∫ 1

0
Nt(j)dj

Moreover, letting the aggregate output be defined as Yt ≡
( ∫ 1

0 Yt(j)
εt−1

εt dj

) εt
εt−1 we

have that

Ct = Yt

A.2 Log linearized Equilibrium Conditions

In what follows we shall denote small letter variables as log deviations from the steady

state. The household’s optimality conditions, (43)-(45), are linearized by taking first

order Taylor approximation around the steady state.

0 = εχ
t − σcct − λt

0 = ωt + σnnt − λt

0 = Et[λt+1 − λt + rt − πt+1]
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where ωt ≡ ln Wt/Pt − lnW/P is the log deviation of the real wage from its steady

state. From the market clearing condition we have that ct = yt. The log linearization

of the production function leads to

yt = εa
t + nt

The firm’s marginal cost is defined as the difference between the real wage and the

marginal product of labor, MPLt = At = Yt/Nt

mct ≡ ωt −mplt = ωt − yt + nt

The log linearization of the optimal behavior of the firms, (48), leads to

p∗t − pt−1 = (1− βζp)
∞∑

k=0

(βζp)kEt[ε
µ
t+k + mct+k|t + pt+k − pt−1]

where we used the fact that at the steady state M = 1/MC, Qt+k,t = βk, P ∗t
Pt−1

= 1

and Πt−1,t+k = 1. Since there are constant return to scale,

mct+k|t = mct+k

Plugging the latter and rearranging terms we obtain

p∗t − pt−1 =
∞∑

k=0

(βζp)kEt(1− βζp)[ε
µ
t+k + mct+k] + πt+k

Given that (1− βζp) < 1, the latter equation can be rewritten as a difference equation

p∗t − pt−1 = βζpEt(p∗t+1 − pt) + (1− βζp)[ε
µ
t + mct] + πt (49)

The log linearization of law of motion of price, (47), leads to

πt = (1− ζp)(p∗t − pt−1)

Combining the latter equation with (49) we obtain the new Keynesian Phillips curve,

πt = βEtπt+1 + κp[mct + εµ
t ]

where

κp =
(1− βζp)(1− ζp)

ζp

Finally, we assume that there is a monetary authority that sets the nominal interest

rate following a simple Taylor rule, i.e.

rt = ρRrt−1 + (1− ρR)(ρππt + ρyyt) + εr
t

where εr
t ∼ N(0, σ2

r )

35



B State Spaces

Equations (1), (2)-(4) and (7) can be cast into the linear state space representation

(5)-(6), by setting

Yt = yt

st =
(

1 t xt−1 zt

)′

F =




0 0 0 0
0 0 0 0
0 0 PP QQ
0 0 0 NN




G =
(

0 0 0 I
)′

H =
(

A B RR SS
)

ωt+1 = νt+1

Equations (1),(2)-(4) and (8) fit the state space representation (5)-(6) by setting

Yt = yt − Γyt−1

st =
(

1 xt−1 zt

)′

F =




0 0 0
0 PP QQ
0 0 NN




G =
(

0 0 I
)′

H =
( −γ RR SS

)

ωt+1 = νt+1
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Equations (1),(2)-(4) and (9)-(10) can be cast into the linear state space representation

(5) and (6), by setting

Yt = yt

st =
(

yτ
t µt xt−1 zt

)

F =




I I 0 0
0 I 0 0
0 0 PP QQ
0 0 0 NN




G =




0 0
I 0
0 0
0 I




H =
(

I 0 RR SS
)

ωt+1 =
(

ζt+1 νt+1

)

Equations (1),(2)-(4), (11)-(13) fit the state space representation,(5)-(6), by setting

st =
(

At Bt xt−1 zt

)′

F =




I 0 0 0
0 I 0 0
0 0 PP QQ
0 0 0 NN




G =




I 0 0
0 I 0
0 0 0
0 0 I




Ht =
(

I tI RR SS
)

ωt+1 =
(

ηA
t+1 ηB

t+1 νt+1

)
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Finally, equations (1),(2)-(4), (14)-(15) can be cast in a state space representation by

setting

Yt = yt − Γyt−1

st =
(

γt xt−1 zt

)′

F =




I 0 0
0 PP QQ
0 0 NN




G =




I 0
0 0
0 I




H =
(

I RR SS
)

ωt+1 =
(

ηγ
t+1 νt+1

)
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θm Description Distribution Mean Standard Deviation

σc elasticity of intertemporal substitution Γ(20, 0.1) 2.00 0.45
σn elasticity of labor supply Γ(30, 0.1) 3.00 0.55
ρR AR in the monetary rule B(6, 6) 0.50 0.14
ρπ response to inflation in monetary rule N(1.5, 0.1) 1.50 0.10
ρy response to GDP in monetary rule N(0.4, 0.1) 0.40 0.10
ζp prob of keeping the price fixed B(6, 6) 0.50 0.14
ρχ AR in the preference process B(18, 8) 0.69 0.09
ρa AR in the technology process B(18, 8) 0.69 0.09
σχ sd preference Γ−1(10, 0.05) 0.0056 0.002
σa sd technology Γ−1(10, 0.05) 0.0056 0.002
σr sd monetary policy Γ−1(10, 0.05) 0.0056 0.002
σµ sd markup Γ−1(10, 0.05) 0.0056 0.002

θlt

Aj intercept N(0, 0.09) 0 0.09
Bj slope N(0, 0.09) 0 0.09
ση

j trend sd Γ−1(10, 0.05) 0.0056 0.002

θhp

σζ
j trend sd Γ−1(10, 0.05) 0.0056 0.002

θfd

γj drift N(0, 0.09) 0 0.09
ση

j trend sd Γ−1(10, 0.05) 0.0056 0.0020

Table 1: Prior Distribution for the parameters θ

θ σc σn ρr ρπ ρy ζp ρχ ρz σχ σz σr σµ

LP 1.00 1.00 0.50 1.10 0.50 0.80 0.40 0.40 0.90 0.60 0.70 0.80
HP 3.00 2.00 0.40 1.70 0.33 0.61 0.90 0.70 0.78 0.54 0.20 0.57
HV 2.50 2.20 0.35 2.00 0.40 0.40 0.60 0.60 0.95 0.98 0.75 0.89
LV 3.00 3.00 0.40 2.20 0.30 0.70 0.80 0.70 0.85 0.56 0.21 0.38

Table 2: Structural parameters: Population values. ’LP’ stands for low persistence, ’HP’ for
high persistence, ’HV’ stands for high volatility, ’LV’ for low volatility.
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TV LP HP HV LV Average
2s 1s 2s 1s 2s 1s 2s 1s 2s 1s

σc 439 381 161 64 172 87 124 47 224 145
( 0.11) ( 0.14) ( 0.03) ( 0.05) ( 0.05) ( 0.06) ( 0.03) ( 0.05)

σn 57 22 30 33 19 46 38 61 36 41
( 0.12) ( 0.14) ( 0.05) ( 0.07) ( 0.06) ( 0.07) ( 0.04) ( 0.04)

ρr 88 79 84 73 85 67 85 77 85 74
( 0.05) ( 0.05) ( 0.04) ( 0.08) ( 0.07) ( 0.07) ( 0.06) ( 0.07)

ρπ 43 55 16 4 24 17 38 19 30 24
( 0.02) ( 0.03) ( 0.01) ( 0.02) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

ρy 21 12 103 70 79 15 74 87 69 46
( 0.05) ( 0.06) ( 0.06) ( 0.09) ( 0.06) ( 0.07) ( 0.08) ( 0.09)

ζp 14 7 49 16 129 77 30 4 55 26
( 0.02) ( 0.04) ( 0.03) ( 0.05) ( 0.04) ( 0.07) ( 0.03) ( 0.04)

ρχ 10 33 41 37 46 15 47 26 36 28
( 0.06) ( 0.07) ( 0.02) ( 0.03) ( 0.04) ( 0.05) ( 0.03) ( 0.03)

ρa 69 58 29 24 10 21 18 20 32 31
( 0.06) ( 0.07) ( 0.03) ( 0.04) ( 0.04) ( 0.04) ( 0.04) ( 0.04)

σχ 70 13 36 228 44 262 39 48 47 138
( 0.19) ( 0.50) ( 0.34) ( 2.84) ( 0.77) ( 2.94) ( 0.37) ( 1.05)

σa 79 41 36 80 9 173 46 50 42 86
( 0.13) ( 0.41) ( 0.38) ( 1.21) ( 0.39) ( 1.59) ( 0.29) ( 0.84)

σr 71 21 28 113 9 184 20 239 32 139
( 0.18) ( 0.56) ( 0.49) ( 1.45) ( 0.40) ( 1.72) ( 0.72) ( 2.01)

σµ 35 118 332 411 932 566 925 728 556 456
( 0.91) ( 2.38) ( 2.57) ( 4.03) ( 6.78) ( 5.32) ( 6.37) ( 8.21)

Average 83 70 79 96 130 127 124 117 0 0

Table 3: Bias comparison between 2 step and 1 step. Data is generated with the population
values of Table 2 and with a deterministic trend. The bias values are expressed in % terms,
with the standard deviations in parenthesis in % as well.
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TV LP HP HV LV Average
2s 1s 2s 1s 2s 1s 2s 1s 2s 1s

σc 336 248 120 42 132 98 145 50 184 110
( 0.13) ( 0.11) ( 0.04) ( 0.03) ( 0.05) ( 0.04) ( 0.04) ( 0.04)

σn 54 14 29 40 19 36 16 55 29 36
( 0.13) ( 0.10) ( 0.05) ( 0.05) ( 0.06) ( 0.04) ( 0.04) ( 0.03)

ρr 83 71 83 73 81 62 84 71 83 69
( 0.04) ( 0.04) ( 0.05) ( 0.05) ( 0.06) ( 0.06) ( 0.06) ( 0.05)

ρπ 44 37 15 13 17 19 24 29 25 24
( 0.02) ( 0.02) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

ρy 28 5 121 89 74 76 50 98 68 67
( 0.05) ( 0.04) ( 0.07) ( 0.05) ( 0.05) ( 0.05) ( 0.07) ( 0.06)

ζp 4 10 34 41 80 106 16 22 34 45
( 0.03) ( 0.02) ( 0.03) ( 0.03) ( 0.05) ( 0.06) ( 0.03) ( 0.02)

ρχ 10 83 23 8 6 9 13 8 13 27
( 0.07) ( 0.05) ( 0.02) ( 0.02) ( 0.04) ( 0.03) ( 0.03) ( 0.02)

ρa 28 118 24 26 42 48 6 27 25 55
( 0.06) ( 0.05) ( 0.04) ( 0.03) ( 0.03) ( 0.03) ( 0.03) ( 0.03)

σχ 75 77 89 74 89 77 89 76 86 76
( 0.15) ( 0.23) ( 0.06) ( 0.22) ( 0.07) ( 0.20) ( 0.06) ( 0.20)

σa 90 82 89 81 93 89 89 82 90 83
( 0.07) ( 0.12) ( 0.07) ( 0.14) ( 0.05) ( 0.09) ( 0.06) ( 0.13)

σr 90 86 70 53 76 62 70 56 77 64
( 0.06) ( 0.10) ( 0.16) ( 0.33) ( 0.13) ( 0.24) ( 0.21) ( 0.31)

σµ 76 30 51 22 71 45 20 46 55 36
( 0.18) ( 0.44) ( 0.30) ( 0.54) ( 0.19) ( 0.42) ( 0.45) ( 0.88)

Average 77 72 62 47 65 61 52 52 0 0

Table 4: Bias comparison between 2 step and 1 step. Data is generated with the population
values of Table 2 and with a stochastic trend. The bias values are expressed in % terms,
with the standard deviations in parenthesis in % as well.
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TV LP HP HV LV Average
2s 1s 2s 1s 2s 1s 2s 1s 2s 1s

σc 439 383 161 42 172 62 124 39 224 131
( 0.11) ( 0.09) ( 0.03) ( 0.03) ( 0.05) ( 0.04) ( 0.03) ( 0.03)

σn 57 41 30 42 19 47 38 65 36 49
( 0.12) ( 0.08) ( 0.05) ( 0.04) ( 0.06) ( 0.04) ( 0.04) ( 0.03)

ρr 88 78 84 73 85 59 85 64 85 69
( 0.05) ( 0.04) ( 0.04) ( 0.05) ( 0.07) ( 0.05) ( 0.06) ( 0.04)

ρπ 43 32 16 22 24 26 38 35 30 29
( 0.02) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

ρy 21 15 103 88 79 60 74 95 69 64
( 0.05) ( 0.04) ( 0.06) ( 0.05) ( 0.06) ( 0.05) ( 0.08) ( 0.06)

ζp 14 10 49 40 129 118 30 26 55 48
( 0.02) ( 0.02) ( 0.03) ( 0.03) ( 0.04) ( 0.04) ( 0.03) ( 0.03)

ρχ 10 96 41 36 46 18 47 4 36 38
( 0.06) ( 0.05) ( 0.02) ( 0.02) ( 0.04) ( 0.03) ( 0.03) ( 0.02)

ρa 69 122 29 14 10 47 18 31 32 53
( 0.06) ( 0.04) ( 0.03) ( 0.03) ( 0.04) ( 0.03) ( 0.04) ( 0.02)

σχ 70 35 36 90 44 121 39 13 47 65
( 0.19) ( 0.59) ( 0.34) ( 1.76) ( 0.77) ( 1.83) ( 0.37) ( 0.49)

σa 79 63 36 13 9 71 46 11 42 40
( 0.13) ( 0.27) ( 0.38) ( 0.57) ( 0.39) ( 1.13) ( 0.29) ( 0.41)

σr 71 56 28 20 9 54 20 84 32 53
( 0.18) ( 0.37) ( 0.49) ( 0.81) ( 0.40) ( 1.13) ( 0.72) ( 1.31)

σµ 35 164 332 541 932 847 925 996 556 637
( 0.91) ( 1.14) ( 2.57) ( 3.90) ( 6.78) ( 5.29) ( 6.37) ( 6.26)

Average 83 91 79 85 130 128 124 122 0 0

Table 5: Bias comparison under misspecification. Data is generated with the population
values of Table 2 and with a deterministic trend. For the 1s I consider the stochastic trend
specification, for the 2s a linear trend specification is used. The bias values are expressed in
% terms, with the standard deviations in parenthesis in % as well.
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TV LP HP HV LV Average
2s 1s 2s 1s 2s 1s 2s 1s 2s 1s

σc 336 357 120 49 132 94 145 67 184 142
( 0.13) ( 0.19) ( 0.04) ( 0.06) ( 0.05) ( 0.07) ( 0.04) ( 0.06)

σn 54 13 29 13 19 20 16 42 29 22
( 0.13) ( 0.16) ( 0.05) ( 0.09) ( 0.06) ( 0.09) ( 0.04) ( 0.06)

ρr 83 76 83 63 81 66 84 79 83 71
( 0.04) ( 0.08) ( 0.05) ( 0.09) ( 0.06) ( 0.09) ( 0.06) ( 0.09)

ρπ 44 51 15 7 17 36 24 35 25 32
( 0.02) ( 0.03) ( 0.01) ( 0.02) ( 0.01) ( 0.02) ( 0.01) ( 0.02)

ρy 28 19 121 55 74 175 50 97 68 87
( 0.05) ( 0.07) ( 0.07) ( 0.10) ( 0.05) ( 0.07) ( 0.07) ( 0.13)

ζp 4 8 34 6 80 54 16 8 34 19
( 0.03) ( 0.05) ( 0.03) ( 0.06) ( 0.05) ( 0.09) ( 0.03) ( 0.04)

ρχ 10 60 23 2 6 63 13 20 13 36
( 0.07) ( 0.09) ( 0.02) ( 0.04) ( 0.04) ( 0.04) ( 0.03) ( 0.04)

ρa 28 33 24 26 42 16 6 17 25 23
( 0.06) ( 0.09) ( 0.04) ( 0.05) ( 0.03) ( 0.06) ( 0.03) ( 0.04)

σχ 75 59 89 56 89 56 89 49 86 55
( 0.15) ( 0.04) ( 0.06) ( 0.05) ( 0.07) ( 0.04) ( 0.06) ( 0.04)

σa 90 69 89 69 93 82 89 63 90 71
( 0.07) ( 0.06) ( 0.07) ( 0.06) ( 0.05) ( 0.04) ( 0.06) ( 0.06)

σr 90 73 70 11 76 34 70 26 77 36
( 0.06) ( 0.05) ( 0.16) ( 0.17) ( 0.13) ( 0.15) ( 0.21) ( 0.17)

σµ 76 45 51 34 71 61 20 11 55 38
( 0.18) ( 0.04) ( 0.30) ( 0.06) ( 0.19) ( 0.04) ( 0.45) ( 0.09)

Average 77 72 62 33 65 63 52 43 0 0

Table 6: Bias comparison under misspecification. Data is generated with the population
values of Table 2 and with a stochastic trend. For the 1s I consider the deterministic trend
specification, for the 2s data is HP filtered. The bias values are expressed in % terms, with
the standard deviations in parenthesis in % as well.
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TV LP HP HV LV Average
2s 1s 2s 1s 2s 1s 2s 1s 2s 1s

σc 224 261 20 22 52 34 35 16 83 83
( 0.11) ( 0.17) ( 0.00) ( 0.06) ( 0.05) ( 0.06) ( 0.04) ( 0.05)

σn 226 66 97 11 74 24 51 33 112 33
( 0.12) ( 0.16) ( 0.00) ( 0.08) ( 0.05) ( 0.08) ( 0.03) ( 0.06)

ρr 89 72 88 72 87 66 86 72 88 70
( 0.04) ( 0.06) ( 0.00) ( 0.08) ( 0.06) ( 0.09) ( 0.05) ( 0.08)

ρπ 49 35 41 11 27 21 54 27 43 23
( 0.02) ( 0.03) ( 0.00) ( 0.02) ( 0.01) ( 0.02) ( 0.01) ( 0.02)

ρy 62 31 95 42 112 15 114 39 96 32
( 0.05) ( 0.07) ( 0.00) ( 0.10) ( 0.05) ( 0.08) ( 0.05) ( 0.12)

ζp 39 22 48 6 68 60 10 9 41 24
( 0.03) ( 0.05) ( 0.00) ( 0.05) ( 0.04) ( 0.08) ( 0.03) ( 0.04)

ρχ 19 58 10 19 32 9 17 18 20 26
( 0.06) ( 0.08) ( 0.00) ( 0.03) ( 0.03) ( 0.06) ( 0.02) ( 0.04)

ρa 32 18 27 22 14 19 11 31 21 22
( 0.06) ( 0.08) ( 0.00) ( 0.06) ( 0.03) ( 0.05) ( 0.03) ( 0.05)

σχ 355 24 1700 371 2672 351 330 153 1264 225
( 1.20) ( 0.09) ( 0.08) ( 0.36) ( 5.40) ( 0.40) ( 1.78) ( 0.16)

σa 79 35 51 93 9 202 46 59 46 97
( 0.15) ( 0.11) ( 0.06) ( 0.35) ( 0.35) ( 0.64) ( 0.34) ( 0.29)

σr 68 10 32 136 10 215 21 312 33 168
( 0.20) ( 0.15) ( 0.06) ( 0.45) ( 0.44) ( 0.52) ( 0.63) ( 0.72)

σµ 65 58 465 406 65 450 219 701 203 404
( 0.18) ( 0.15) ( 0.08) ( 0.39) ( 1.01) ( 0.62) ( 1.96) ( 0.71)

Average 109 58 223 101 269 122 83 123 0 0

Table 7: Correlation Assumption. Data is generated with the population values of Table 2
and with a deterministic trend and allowing for correlation between trend and cycles. The
bias values are expressed in % terms, with the standard deviations in parenthesis in % as
well.
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TV LP HP HV LV Average
2s 1s 2s 1s 2s 1s 2s 1s 2s 1s

σc 304 299 171 41 115 83 103 40 173 116
( 0.13) ( 0.11) ( 0.03) ( 0.03) ( 0.05) ( 0.04) ( 0.04) ( 0.03)

σn 52 26 133 33 36 31 5 51 56 35
( 0.12) ( 0.10) ( 0.06) ( 0.05) ( 0.05) ( 0.05) ( 0.03) ( 0.03)

ρr 85 70 84 65 84 62 84 71 84 67
( 0.04) ( 0.04) ( 0.06) ( 0.05) ( 0.06) ( 0.06) ( 0.05) ( 0.05)

ρπ 49 29 10 9 23 24 21 32 26 23
( 0.02) ( 0.02) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01) ( 0.01)

ρy 19 24 63 40 78 17 52 79 53 40
( 0.05) ( 0.04) ( 0.07) ( 0.06) ( 0.06) ( 0.05) ( 0.08) ( 0.07)

ζp 4 8 21 41 83 102 2 24 27 44
( 0.02) ( 0.03) ( 0.03) ( 0.03) ( 0.05) ( 0.05) ( 0.03) ( 0.03)

ρχ 19 104 11 8 5 41 14 17 12 42
( 0.06) ( 0.06) ( 0.02) ( 0.02) ( 0.04) ( 0.03) ( 0.03) ( 0.02)

ρa 57 114 17 24 50 47 14 28 35 53
( 0.05) ( 0.05) ( 0.03) ( 0.03) ( 0.03) ( 0.03) ( 0.03) ( 0.03)

σχ 79 74 87 74 90 77 91 76 87 75
( 0.12) ( 0.25) ( 0.08) ( 0.22) ( 0.06) ( 0.19) ( 0.05) ( 0.20)

σa 90 82 89 81 93 89 89 82 90 84
( 0.06) ( 0.14) ( 0.08) ( 0.14) ( 0.04) ( 0.08) ( 0.06) ( 0.12)

σr 90 86 69 55 76 63 68 56 76 65
( 0.07) ( 0.10) ( 0.21) ( 0.30) ( 0.15) ( 0.26) ( 0.23) ( 0.37)

σµ 79 36 74 23 75 51 52 53 70 41
( 0.16) ( 0.54) ( 0.18) ( 0.49) ( 0.16) ( 0.40) ( 0.30) ( 0.98)

Average 77 79 69 41 67 57 50 51 0 0

Table 8: Correlation Assumption. Data is generated with the population values of Table 2
and with a stochastic trend and allowing for correlation between trend and cycles. The bias
values are expressed in % terms, with the standard deviations in parenthesis in % as well.
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θ T=160 T=500 T=1000

2s 1s 2s 1s 2s 1s

Deterministic
σc 439( 0.11) 343( 0.16) 69( 0.02) 40( 0.00) 16( 0.00) 18( 0.01)
σn 57( 0.12) 14( 0.13) 10( 0.02) 40( 0.00) 1( 0.00) 7( 0.01)
ρr 88( 0.04) 81( 0.05) 10( 0.01) 6( 0.00) 3( 0.00) 2( 0.00)
ρπ 43( 0.02) 47( 0.03) 1( 0.00) 0( 0.00) 0( 0.00) 0( 0.00)
ρy 21( 0.05) 17( 0.06) 5( 0.01) 4( 0.00) 1( 0.00) 1( 0.00)
ζp 14( 0.02) 10( 0.03) 10( 0.00) 2( 0.00) 6( 0.00) 3( 0.00)
ρχ 10( 0.06) 18( 0.07) 5( 0.01) 1( 0.00) 5( 0.00) 2( 0.00)

Stochastic
σc 336( 0.13) 248( 0.10) 80( 0.03) 27( 0.01) 14( 0.01) 8( 0.00)
σn 54( 0.13) 14( 0.10) 18( 0.03) 4( 0.01) 2( 0.01) 1( 0.00)
ρr 83( 0.04) 71( 0.04) 34( 0.01) 14( 0.01) 5( 0.00) 1( 0.00)
ρπ 44( 0.02) 37( 0.02) 5( 0.00) 0( 0.00) 2( 0.00) 1( 0.00)
ρy 28( 0.05) 5( 0.04) 7( 0.01) 2( 0.01) 0( 0.00) 1( 0.00)
ζp 4( 0.03) 10( 0.02) 2( 0.01) 3( 0.00) 1( 0.00) 2( 0.00)
ρχ 10( 0.07) 83( 0.05) 2( 0.01) 4( 0.01) 1( 0.00) 2( 0.00)
ρz 28( 0.06) 118( 0.05) 5( 0.01) 5( 0.01) 3( 0.00) 3( 0.00)

Table 9: Bias comparison using different samples length. Data is simulated using the first
population value.

True DGP LP HP HV LV

Deterministic with corr(yc
t , y

τ
t ) = 0 72 81 71 77

Stochastic with corr(yc
t , y

τ
t ) = 0 -8 11 -44 -38

Deterministic with corr(yc
t , y

τ
t ) 6= 0 143 95 140 83

Stochastic with corr(yc
t , y

τ
t ) 6= 0 -7 -147 -99 -73

Table 10: Difference between the (log) Posterior Odds of lt-dsge and hp-dsge specifications.
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F lt hp fd
2s (1) 1s (2) 2s (3) 1s (4) 2s (5) 1s (6)

σc 1.57 3.82 5.28 4.78 5.56 4.55
( 1.12) ( 0.48) ( 0.80) ( 0.83) ( 1.09) ( 0.50)

σn 0.57 1.69 2.34 1.93 1.49 1.31
( 0.67) ( 0.28) ( 0.33) ( 0.38) ( 0.38) ( 0.26)

ρr 0.14 0.22 0.28 0.15 0.18 0.11
( 0.07) ( 0.06) ( 0.06) ( 0.05) ( 0.08) ( 0.05)

ρπ 1.77 1.63 1.73 1.64 1.53 1.71
( 0.17) ( 0.12) ( 0.16) ( 0.12) ( 0.16) ( 0.15)

ρy 0.17 0.22 0.12 0.47 0.43 0.46
( 0.16) ( 0.16) ( 0.13) ( 0.11) ( 0.10) ( 0.08)

ζp 0.69 0.78 0.58 0.65 0.59 0.65
( 0.03) ( 0.03) ( 0.03) ( 0.04) ( 0.03) ( 0.03)

ρχ 0.91 0.79 0.98 0.79 0.51 0.57
( 0.10) ( 0.10) ( 0.11) ( 0.08) ( 0.09) ( 0.07)

ρa 0.98 0.55 0.38 0.87 0.93 0.48
( 0.14) ( 0.11) ( 0.08) ( 0.08) ( 0.13) ( 0.08)

σχ 0.08 0.58 0.38 0.23 0.44 0.31
( 0.08) ( 0.14) ( 0.10) ( 0.05) ( 0.12) ( 0.05)

σa 0.07 0.17 0.09 0.10 0.08 0.16
( 0.03) ( 0.16) ( 0.02) ( 0.02) ( 0.02) ( 0.02)

σr 1.22 0.21 0.10 0.10 0.11 0.17
( 0.15) ( 0.14) ( 0.02) ( 0.02) ( 0.02) ( 0.02)

σµ 1.44 0.78 0.25 0.27 0.74 0.34
( 0.55) ( 0.15) ( 0.15) ( 0.09) ( 0.22) ( 0.07)

g(Fj) - 1/3 - 1/3 - 1/3
ln p(y|M,Fj) - 1203 - 1171 - 1301

ln(PO) w.r.t lt-dsge - 0.00 - -31.80 - 98.47

Table 11: Structural estimates comparison between 2 step and 1 step with real data. Median
and standard deviations in parenthesis. Structural standard deviations are expressed in
percentage terms.
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θ Description Prior mean sd

Behavioral
100(1/β − 1) β time discount factor Γ(6.25, 0.04) 0.25 0.10

σc intertemporal elasticity of substitution N(1.5, 0.27) 1.50 0.27
σn elasticity of labor supply N(2, 0.75) 1.99 0.75
α capital share N(0.3, 0.03) 0.30 0.05
φp 1 plus the share of fixed cost in production N(1.25, 0.12) 1.25 0.12

100(π − 1) π steady state inflation Γ(38, 0.01) 0.62 0.10
h habit in consumption B(14, 6) 0.70 0.10
ψ elasticity capital utilization adjustment costs B(5.05, 5.05) 0.50 0.15
ϕ st. st. elasticity of capital adjustment costs N(4, 1.5) 4.00 1.50
ζp price stickiness B(12, 12) 0.50 0.10
ζω wage stickiness B(12, 12) 0.50 0.10
ip price indexation B(1, 1) 0.50 0.29
iω wage indexation B(1, 1) 0.50 0.29
ρR monetary policy autoregressive coeff. B(13, 4) 0.75 0.10
ρπ monetary policy response to π N(1.5, 0.25) 1.50 0.25
ρy monetary policy response to y N(0.12, 0.25) 0.12 0.05

AR Coeff
ρa technology autoregressive coeff. B(2.6, 2.6) 0.50 0.20
ρg gov spending autoregressive coeff. B(2.6, 2.6) 0.50 0.20
ρi investment autoregressive coeff. B(2.6, 2.6) 0.50 0.20
ρr monetary innovation autoregressive coeff. B(2.6, 2.6) 0.50 0.20
ρp price markup autoregressive coeff. B(2.6, 2.6) 0.50 0.20
ρω wage markup autoregressive coeff. B(2.6, 2.6) 0.50 0.20
ρb risk premium autoregressive coeff. B(2.6, 2.6) 0.50 0.20
ρga cross coefficient tech-gov B(2.6, 2.6) 0.50 0.20

Sd
σa sd technology Γ−1(3, 1) 0.50 0.25
σg sd gov spending Γ−1(3, 1) 0.50 0.25
σi sd investment Γ−1(3, 1) 0.50 0.25
σr sd mp Γ−1(3, 1) 0.50 0.25
σp sd price markup Γ−1(3, 1) 0.50 0.25
σw sd wage markup Γ−1(3, 1) 0.50 0.25
σb sd preference Γ−1(3, 1) 0.50 0.25

MA Coeff
µp MA coeff. on price markup innovation B(2.6, 2.6) 0.50 0.20
µω MA coeff. on wage markup innovation B(2.6, 2.6) 0.50 0.20

Table 12: Parameters Description and Priors of the Smets and Wouters (2007) model.
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lt-dsge hp-dsge fd-dsge

g(Fj) 1/3 1/3 1/3
ln p(y|M,Fj) -1135 -1417 -1049

ln PO w.r.t lt-dsge 0.0 -282.3 85.8

Table 13: Posterior Odds across specifications.
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Figure 1: Plots of filtered data; from left to right GDP, hour worked, real wages and inflation.
Form top, linear detrended data, hp filtered data and first differenced data.
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Figure 2: Impulse response of a 1 % increase in the preference (top line) and technology
(bottom line) processes for GDP, hour worked, real wages and inflation with 2s approach.
The solid blue line represents the response using the median values for the parameters
estimates with linear detrended data, the red dashed line the response using the median
values for the parameters estimates with hp filtered data, the green dash dotted line the
response using the median values for the parameters estimates with first difference data.
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Figure 3: Impulse response of a 1 % increase in the preference (top line) and technology
(bottom line) processes for GDP, hour worked, real wages and inflation with 1s approach.
The solid blue line represents the response using the median values for the parameters
estimates with linear detrended data, the red dashed line the response using the median
values for the parameters estimates with hp filtered data, the green dash dotted line the
response using the median values for the parameters estimates with first difference data.
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Figure 4: Impulse response of a 1 % increase in the exogenous processes for GDP, employ-
ment, consumption, investment with two step approach. The solid blue line represents the
response using the median values for the parameters estimates with linear detrended data,
the red dashed line the response using the median values for the parameters estimates with
HP filtered data, the green dash dotted line the response using the median values for the
parameters estimates with first difference data.
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Figure 5: Variance decomposition of GDP in terms of the exogenous processes with the two
step approach. The x-axis indicates the k-steps ahead error. The top left plot represents the
decomposition using the median values for the parameters estimates with HP filtered data,
the top right plot the decomposition using the median values for the parameters estimates
with linear detrended data, the bottom plot the decomposition using the median values for
the parameters estimates with first difference data.
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Figure 6: Impulse response of a 1 % increase in the exogenous processes for GDP, employ-
ment, consumption, investment with one step approach. The solid blue line represents the
response using the median values for the parameters estimates with linear detrended data,
the red dashed line the response using the median values for the parameters estimates with
HP filtered data, the green dash dotted line the response using the median values for the
parameters estimates with first difference data.
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Figure 7: Variance decomposition of GDP in terms of the exogenous processes with the one
step approach. The x-axis indicates the k-steps ahead error. The top left plot represents the
decomposition using the median values for the parameters estimates with HP filtered data,
the top right plot the decomposition using the median values for the parameters estimates
with linear detrended data, the bottom plot the decomposition using the median values for
the parameters estimates with first difference data.

56


