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SZPILRAJN-TYPE THEOREMS IN ECONOMICS

ATHANASIOS ANDRIKOPOULOS

Abstract. The Szpilrajn “constructive type” theorem on extending bi-
nary relations, or its generalizations by Dushnik and Miller [10], is one of
the best known theorems in social sciences and mathematical economics.
Arrow [1], Fishburn [11], Suzumura [22], Donaldson and Weymark [8]
and others utilize Szpilrajn’s Theorem and the Well-ordering principle to
obtain more general “existence type” theorems on extending binary rela-
tions. Nevertheless, we are generally interested not only in the existence
of linear extensions of a binary relation R, but in something more: the
conditions of the preference sets and the properties which R satisfies to be
“inherited”when one passes to any member of some “interesting”family
of linear extensions of R. Moreover, in extending a preference relation R,
the problem will often be how to incorporate some additional preference
data with a minimum of disruption of the existing structure or how to
extend the relation so that some desirable new condition is fulfilled. The
key to addressing these kinds of problems is the szpilrajn constructive
method. In this paper, we give two general “constructive type”theorems
on extending binary relations, a Szpilrajn type and a Dushnik-Miller type
theorem, which generalize and give a “constructive type”version of all the
well known extension theorems in the literature.

JEL Classification Codes: C60, D00, D60, D71.

Key words and Phrases: Consistent binary relations, extension theorems, intersection

of binary relations.

1. Introduction

One of the most fundamental results on extensions of binary relations
is due to Szpilrajn [23] who shows that any transitive and asymmetric
relation has a transitive, asymmetric and complete extension. The orig-
inal proof of Szpilrajn uses Zermelo’s Well-Ordering theorem which is
equivalent to the Lemma of Zorn. The result remains true if asymmetry
is replaced with reflexivity, that is, any quasi-ordering has an order-
ing extension. Arrow [1, page 64] states this generalization of Szpilrajn
without a proof and Hansson [13] provides a proof on the basis of Szpil-
rajn’s original theorem. Fishburn [11] also gives a proof that utilizes
Szpilrajn’s Theorem. While the property of being a quasi-ordering is
sufficient for the existence of an ordering extension of a relation, this is
not necessary. As shown by Suzumura [22], consistency is necessary and
sufficient for the existence of an ordering extension.
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2 ATHANASIOS ANDRIKOPOULOS

Dushnik and Miller [10] strengthen the Szpilrajn theorem by proving
that every strict partial order is the intersection of its strict linear order
extensions. The Szpilrajn theorem and its strengthening by Dushnik and
Miller belong to the most quoted theorems in order theory, mathematical
logic, mathematical social sciences, mathematical economics and other
fields in pure and applied mathematics. The sufficient part of Suzu-
muras’s result, described above, was subsequently used by Donaldson
and Weymark [8] in their proof that every quasi-ordering is the intersec-
tion of a collection of orderings; this result extends Dushnik and Miller’s
fundamental observation on intersections of strict linear orders. Dug-
gan [9] proves a general extension theorem from which those mentioned
above (Dushnik-Miller and Donaldson-Weymark) results -and several
new ones- can be obtained as special cases.

The existence of extension theorems of Szpilrajn type have played an
important role in the theory of choice. One way of assessing whether a
preference relation is rational1 is to check whether it can be extended
to a transitive and complete relation (see [7] and [19]2). Another ex-
ample is the problem of the existence of maximal elements of binary
relations3. For example, if R is a binary relation on a compact space
(X, τ) and R has a continuous4 linear extension5 ≤, then the compact-
ness of (X, τ) implies that ≤ is a complete linear order. This means,
in particular, that ≤ has maximal elements. Of course, any maximal
element of ≤ is also a maximal element of R. Problems of Szpilrajn-type
also include the general continuous utility representation problem6, (see
[6] and [14]). In a very general sense, a binary relation R on a topological

1It is well known that the economic approach to rational behavior traditionally begins
with a preference relation R and determines the optimal choice function F from R. Revealed
preference theory provides another axiomatic approach to rational behavior by reversing the
above procedure.

2In particular Szpilrajn theorem is the main tool for proving a known theorem of Richter
that establishes the equivalence between rational and congruous consumers.

3The existence of maximal elements means that there exists a choice for which there exist
no strictly better choices. In the case of considering the set of alternatives as a topological
space, conditions for the existence of maximal elements are given by using topological con-
ditions on the alternative’s set as well as continuity assumptions on the relation. The usual
topological condition that have been used to provide the existence of maximal elements is
that of compactness.

4A linear order on some topological space (X, τ) is continuous if for every point x ∈ X
both sets d(x) = {y ∈ X|y ≤ x} and i(x) = {z ∈ X|x ≤ z} are closed subsets of X.

5In case that X is endowed with some topology τ one mainly is interested in continuous
linear orders instead of only linear orders. This motivates the problem of generalizing the
Szpilrajn Theorem to the continuous case.

6From a classical normative point of view, a standard key assumption in preference mod-
eling is to assume that preferences define a strict linear order. In this way, preferences can
be represented in a real line.
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space (X, τ) has a continuous utility representation if there exists some
topological space (Y, τ) that is endowed with a continuous linear order
≤ and, in addition, some continuous order preserving function u on X
the codomain of which is Y . The problem of the existence of (Y, τ,≤)
and u is equivalent to the problem of finding necessary and sufficient
conditions for the existence of some continuous linear extension of R.
In addition, the existence of Szpilrajn type Theorems are applied (i) By
Stehr [21] to characterize the global orientability; (ii) By Sholomov [20]
to characterize ordinal relations; (iii) By Nehring and Puppe [16] on a
unifying structure of abstract choice theory (iv) By Blackorby, Bossert
and Donaldson [3] in pure population problems e.t.c. Dushnik-Miller
type extension theorems have played an important role in welfare eco-
nomics. For example, on the existence of social welfare ordering for a
fixed profile in the sense of Bergson and Samuelson.7 Weymark [24]
applies Dushnik and Miller extension theorem in order to prove a gen-
eralization of Moulin’s Pareto extension theorem. Many quasi-orderings
are obtained as the intersection of a finite number of orders.8

It is clear that the results concerning the existence of linear extensions
of a binary relation R that we have been considering are useful in social
sciences and welfare economics. But, in extending a binary relation R,
it is interesting to see whether the conditions of the underlying space X
or the properties which R satisfies should be “inherited”when one passes
to any member of some family of linear extensions of R. On the other
hand, the problem will often be how to incorporate some additional
preference data with a minimum of disruption of the existing structure
or how to extend the relation so that some desirable new condition is
fulfilled. For example, we might wish to adjoin the pair (x, y) to R that
does not already relates x and y. If we are to preserve transitivity, we
must also adjoin all other pairs of the form (u, v) where (u, x) ∈ R and
(y, v) ∈ R. It is also interesting to see when a binary relation R has a

7Let (R1, R2, ..., Rn) be a fixed profile of the individual preference relations. A binary
relation Q, is called Pareto unanimity relation, if

xQy ⇔ xRiy for all i ∈ {1, 2, ..., n} and all x, y ∈ X.

Social welfare ordering in the sense of Bergson and Samuelson is an ordering R such that

xQy ⇒ xRy and xP (Q)y ⇒ xP (R)y for all x, y ∈ X

If R1, R2, ..., Rn are transitive then Q is quasi-transitive. By the corollary of Szpilrajn The-
orem proved by Fishburn we have the existence of an ordering extension R. Hence, R is a
Social Welfare Ordering for (R1, R2, ..., Rn). If R1, R2, ..., Rn are non-transitive and Q is
consistent, then by the theorem of Suzumura we have the existence of an ordering extension.

8Donaldson and Weymark [8], utilize their generalization of Dushnik-Miller extension
theorem to prove that the strong Pareto quasi-ordering on a set of alternatives X, constructed
by using a single profile U = (U1, U2, ..., Un) of real valued utility functions on X, is the
intersection of the dictatorial orderings constructed by U .
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linear extension which preserves the maximal elements. In this case we
can identify the Nash equilibria of a game with incomplete preferences to
the familiar problem of obtaining Nash equilibria of a collection of games
with complete preferences (see [2] and Theorem 9 below). Hansson [13]
uses a Szpilrajn’s type construction of a linear order, in a way, to prove
that there is an underlying preference relation for a choice structure
(V, R). In fact, he construct an extension (V ′, f ′) to (V, f), such that
V ′ is closed with respect to finite unions. In case that X is endowed
with some topology τ , Herden and Pallack [14] and Bosi and Herden
[4] utilize the “constructive”method of Szpilrajn to find the conditions
under which τ is preserved in the extended relation. In conclusion,
there are many types of conditions that one may wish to preserve, or to
achieve, in an extension process. They include:

(i) Order theoretic conditions (consistency, acyclicity, transitivity,
completeness, e.t.c.);

(ii) Topological conditions (continuity, openness or closedness of the
preference sets);

(iii) linear-space conditions (convexity, homogeneity, translation-inva-
riance).

On the other hand, the Dushnik-Miller’s theorem tell us when a binary
relation R has a realizer. This means that, there exists a collection of
linear extensions F of R whose intersection is R and for every pair of
elements x, y ∈ X with x incomparable to y (neither (x, y) nor (y, x)
is a member of R), there exists an LR ∈ F with (x, y) ∈ LR . Much of
economic and social behavior observed is either group behavior or that
of an individual acting for a group. Group preferences may be regarded
as derived from individual preferences, by means of some process of
aggregation. For example, if all voters agree that some alternative x is
preferred to another alternative y, then the majority rule will return this
ranking. In this case, there is one simple condition that is nearly always
assumed called the principle of unanimity or Pareto principle. This
declares that the preference relation for a group of individuals should
include the intersection of their individual preferences. Another example
of the use of intersections is in the description of simple games9 which
can be represented as the intersection of weighted majority games [12].10

9A simple game is a pair (N, υ) where N = {1, 2, ..., n} is called the set of players or voters.
Every S ⊆ N is a coalition, C(N) is the set of all coalitions, υ : C(N) → {0, 1}; υ(∅) = 0 is
the characteristic function, which satisfies υ(N) = 1 and υ(S) ⊂ υ(T ) if S ⊂ T . A coalition
S is winning if υ(S) = 1 and losing otherwise. The set of winning coalitions is denoted by
W and the set of losing coalitions is denoted by L.

10A simple game (N, υ) is a weighted majority game (WMG) if it admits a representation
by means of the n + 1 nonnegative real numbers [q; w1 , ..., wn ] such that
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The existence of Dushnik-Miller’s type theorems is a tool for telling us
when a binary relation can be represented as the intersection of linear
orders. But, the Dushnik-Miller’s Theorem refers to something more
specific, that is, the size of a family of linear order extensions (realizer)
of R whose intersection is R. The concept of a realizer F of R leads
to the definition of dimension of R. According to Dushnik and Miller,
the dimension of a partial order Â is defined to be the minimum size
of a realizer of Â. In fact, the Dushnik-Miller’s theorem provides a
constructive procedure that represent binary relations as an intersection
of a number of linear order extensions equal to its dimension. Using
this fact, one can obtain a binary relation R with the intersection of a
reduced number of its linear order extensions. For example, in the games
that are compositions of m individualist games11 (N, ui) (i = 1, ..., m)
via unanimity, the usual description of the game, by means of minimal
winning coalitions, requires n1 · ... · nm coalitions (with ni = |Ni |) and
each one of them has m players, i.e., m · n1 · ... · nm digits are needed to
describe the game. Using [12, Theorem 3.1],12(n + 1) · (m− p) (p < m)
digits are required to describe the game. This latter number is generally
much smaller than the former, and so, the description of the game is
much shorter. Many other interesting applications of the dimension
of a binary relation are obtained in Economics. For example, Ok [17,
Proposition 1] shows that if (X,Â) is a preordered set with X countable
and dim(X,Â) < ∞, then Â is representable by means of a real func-
tion u in such a way that x Â y if and only if u(x) > u(y). From a
multicriteria point of view, classical crisp13 dimension refers to a min-
imal representation of crisp partial orders as the intersection of linear

υ(S) =


1 if W (S) ≥ q,
0 if W (S) > q.

where, for each coalition S ⊆ N , w(S) =
P

i∈S wi . The number q is called the quota and wi

the weight of player i.
11If a game with player set N = {1, ..., n} admits a partition N1 , ..., Nm in such a way

that

W = {S ⊆ N : |S ∩Ni | ≥ 1, for all i = 1, ..., m}
we shall say that this game is a composition of m individualist games via unanimity.

12Let (N,W) be a composition of m individualist games (Ni , ui ) (i = 1, ..., m) with
1 ≤ n1 ≤ ... ≤ nm via unanimity and let p < m such that either np = 1, np+1 > 1 or p = 0

if n1 > 1. Then the dimension of (N,W) is m− p.
13Given a finite set of alternatives X = {x1, x2, ..., xn}, a crisp partial order set R ⊆ X×X

is characterized by a mapping

µ : X ×X −→ {0, 1}
being

(i) irreflexive: µ(xi, xi) = 0 ∀xi ∈ X,
(ii) antisymmetric: µ(xi, xj) = 1 ⇒ µ(xj , xi) = 0,
(iii) transitive: µ(xi, xj) = µ(xj , xk) = 1 ⇒ µ(xi, xk) = 1.
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orders, in the sense that each of one of these linear orders is a possi-
ble underlying criterion. Brightwell and Scheinerman [5], on the basis
of Dushnik-Miller’s original theorem, prove that the fractional dimen-
sion14 of a partially ordered set (X,Â) arises naturally when considering
a particular two-person game on (X,Â), e.t.c.

In this paper, we give two general “constructive type”extension the-
orems: (i) if R is a binary relation on a set X and x, y any two non-
comparable elements of R, then there exists a linear order extension RL1

such that xRL1
y if and only if R is ∆-consistent and (ii) the transitive

closure of a binary relation R has as realizer the set of linear order exten-
sions of R if and only if R is ∆-consistent. It seems that the weakening
of the axiom of partial order to that of ∆-consistency is the best we can
for, as a binary relation satisfies the classical theorems of Szpilrajn and
Dushnik and Miller if and only if it is a ∆-consistent binary relation.
The above results generalize all the well known extension theorems in
the literature.

2. The extension theorems

Let X be a non-empty universal set of alternatives, and let R ⊆ X×X
be a binary relation on X. We sometimes abbreviate (x, y) ∈ R as
xRy. Let P (R) and I(R) denote, respectively, the asymmetric part
of R and the symmetric part of R, which are defined, respectively, by
P (R) = {(x, y) ∈ X×X|(x, y) ∈ R and (y, x) /∈ R} and I(R) = {(x, y) ∈
X × X|(x, y) ∈ R and (y, x) ∈ R}. Let also ∆ = {(x, x)|x ∈ X}
denotes the diagonal ox X. We say that R on X is (i) reflexive if for
each x ∈ X (x, x) ∈ R; (ii) irreflexive if we never have (x, x) ∈ R; (iii)
transitive if for all x, y, z ∈ X, [(x, z) ∈ R and (z, y) ∈ R] =⇒ (x, y) ∈ R;
(iv) antisymmetric if for each x, y ∈ X, [(x, y) ∈ R and (y, x) ∈ R]
=⇒ x = y; (v) complete if for each x, y ∈ X, x 6= y we have xRy
or yRx. (vi) strongly complete if for each x, y ∈ X, we have xRy or
yRx. The transitive closure of a relation R is denoted by R, that is
for all x, y ∈ X, (x, y) ∈ R if there exist m ∈ N and z0 , ..., zm ∈ X

It is therefore assumed that µ(xi, xj) = 1 means that alternative xi is strictly better than

xj (µ(xi, xj) = 0 otherwise).
14Brightwell and Scheinerman [5] introduce the notion of fractional dimension of a poset

(X,Â). Let F = {L1 , L2 , ..., Lt} be a nonempty multiset of linear extensions of (X,Â). The
authors in [5] call F a k-fold realizer of (X,Â) if for each incomparable pair (x, y), there are
at least k linear extensions in F which reverse the pair (x, y), i.e., —{i = 1, ..., t : y < x in
Li}| ≥ k. We call a k-fold realizer of size t a −t-realizer. The fractional dimension of (X,Â)
is then the least rational number fdim(X,Â) ≥ 1 for which there exists a k − t-realizer of

(X,Â) so that k
t
≥ 1

fdim(X,Â)
. Using this terminology, the dimension of (X,Â), is the least

t for which there exists a 1-fold realizer of (X,Â).
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such that x = z0 , (zk
, z

k+1
) ∈ R for all k ∈ {0, ...,m − 1} and zm = y.

Clearly, R is transitive and, because the case m = 1 is included, it
follows that R ⊆ R. Acyclicity says that there do not exist m and
z0 , z1 , ..., zm ∈ X such that x = z0 , (z

k
, z

k+1
) ∈ R for all k ∈ {0, ..., m−1}

and zm = x. The relation R is consistent, if for all x, y ∈ X, for all
m ∈ N, and for all z0 , z1 , ..., zm ∈ X, if x = z0 , (zk

, z
k+1

) ∈ R for
all k ∈ {0, ..., m − 1} and zm = y, we have that (y, x) /∈ P (R). In
case where (y, x) ∈ P (R) we say that R contains a P (R)-cycle. A
consistent binary relation R is called ∆-consistent if I(R) ⊆ ∆. The
following combination of properties are considered in the next theorems.
A binary relation R on X is (i) quasi-order if R is reflexive and transitive;
(ii) order if R is a strongly complete quasi-order; (iii) partial order if
R is an antisymmetric quasi-order; (iv) linear order if R is a strongly
complete partial order; (v) strict partial order if R is irreflexive and
transitive. (vi) strict linear order if R is a complete strict partial order.
A binary relation RL is an extension of a binary relation R if and only
if R ⊆ RL and P (R) ⊆ P (RL). In other words, an extension RL of
R subsumes all the pairwise information provided by R, and possibly
further information. Let inc(R) = {(x, y) ∈ X × X|(x, y) /∈ R and
(y, x) /∈ R} be the set of incomparable pairs of R. The set of all of
the linear extensions of R is denoted by L(R). Any subset F ⊆ L(R)
is a realizer of R if, for every (x, y) ∈ inc(R), we have xRLi

y in some
RLi

∈ F and yRLj
x in some RLj

∈ F . The minimum cardinality of a
realizer of R is called the dimension of R and is denoted by dim(R).

In order to prove the results of this paper, we need the following
proposition which is a simplification of Suzumura’s definition (see [9]).

Proposition 1. Let R be a consistent binary relation on X. Then
P (R) ⊆ P (R).

The following theorem generalize the Szpilrajn’s extension Theorem.

Theorem 2. Let R be a binary relation on X and x, y are any two
non-comparable elements of R. Then, R has a linear order extension
RL1

in which xRL1
y and a linear order extension RL2

in which yRL2
x

if and only if R is ∆-consistent.

Proof. Let R be a ∆-consistent binary relation and x and y are any two
non-comparable elements of R. We put R∗ = R ∪∆ ∪ {(x, y)}. Clearly,
R∗ is an extension of R such that xR∗y. Proposition 1 implies that
R∗ is an extension of R∗. Clearly, R∗ is a ∆-consistent extension of R

such that xR∗y. Suppose that R̃ = {R̃i|i ∈ I} denote the set of ∆-
consistent extensions of R such that xR̃iy. Since R∗ ∈ R̃ we have that
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R̃ 6= ∅. Let Q = (Qi)i∈I be a chain in R̃, and let Q̂ =
⋃

i∈I

Qi . We show

that Q̂ is a ∆-consistent extension of R. First, we prove that Q̂ is an
extension of R. To verify that P (R) ⊆ P (Q̂), take any (s, t) ∈ P (R) and
suppose (s, t) /∈ P (Q̂) = P (

⋃

i∈I

Qi). Clearly, s 6= t and for each i ∈ I,

(s, t) ∈ Qi . Since (s, t) /∈ P (
⋃

i∈I

Qi) we conclude that (t, s) ∈
⋃

i∈I

Qi .

Hence, (s, t) ∈ I(Q
i
∗ ) ⊆ I(Q

i
∗ ) ⊆ ∆ for some i∗ ∈ I, a contradiction

to s 6= t. It remains to prove that Q̂ is ∆-consistent. First, we observe
that Q̂ is consistent, for suppose otherwise there exist a natural number
m, λ ∈ X and alternatives z0 , z1 , ..., zm ∈ X such that

λ = z0Q̂z1 ...zm−1Q̂zmP (Q̂)z0 = λ.

Consider the largest i for which there exist such λ,m, z0 , ..., zm . It follows
that Qi is non consistent, a contradiction. We now prove that I(Q̂) ⊆ ∆.

Indeed, let (s, t) ∈ I(Q̂). Then, there must exist natural numbers m,n,
alternatives s0 , s1 , ..., sm , t0 , t1 , ..., tm ∈ X and Qs1

, ..., Qsm
, Qt1

, ..., txn
∈

Q such that

s = s0Qs1
s1 ...Qsm

sm = t and t = t0Qt1
t1 ...Qtn

tn = s

If |Q| = max{Qs1
, ..., Qsm

, Qt1
, ..., Qtn

} with respect to set inclusion,

then (s, t) ∈ I(|Q|) ⊆ ∆. Hence, s = t which implies that I(Q̂) ⊆ ∆.
Therefore, Q̂ is ∆-consistent. Since (x, y) ∈ Q̂ we conclude that Q̂ ∈
R̃. By Zorn’s lemma R̃ possesses an element, say Q∗, that is maximal
with respect to set inclusion. Since Q∗ is ∆-consistent, Proposition 1
implies that P (Q∗) ⊆ P (Q∗). Hence, Q∗ is a ∆-consistent extension
of R such that xQ∗y. Hence, by maximality of Q∗, we conclude that
Q∗ = Q∗. Thus, Q∗ = RL1

is a transitive extension of R. To prove
that RL1

is complete, take any (s, t) /∈ RL1
. Then, (s, t) /∈ Q∗. Define

Q′ = Q∗ ∪ {(s, t)}. Since (x, y) ∈ Q∗, we have (x, y) 6= (s, t). Therefore,
by maximality of Q∗, it must be that Q′ contains a P (Q′)-cycle, so there
exist a natural number m and alternatives z0 , ..., zm ∈ X such that

ν = z0Q
′z1 ...zm−1Q

′zmP (Q′)z0 = ν

Since Q∗ is consistent, there must exists k = 0, ..., m − 1 such that
(z

k
, z

k+1
) = (s, t) and for all i ∈ {0, ...,m− 1} with i 6= k, (zi , zi+1) ∈ Q′

if and only if (zi , zi+1) ∈ Q∗. It follows that (t, s) ∈ Q∗ = Q∗ = RL1
.
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Finally, since Q∗ is ∆-consistent we deduce that RL1
∩ R−1

L1
= I(Q∗) =

I(Q∗) ⊆ ∆. Hence, RL1
is a linear order extension of R∗. Clearly, RL1

is also a linear order extension of R such that xRL1
y.

Conversely, suppose that R has a linear order extension RL1
. Suppose

to the contrary that R is non ∆-consistent. Then, either I(R) ⊃ ∆ or R
contains a P (R)-cycle. In the first case, there exist s, t ∈ X, such that
(s, t) ∈ I(R) = I(RL1

) and (s, t) /∈ ∆, which contradicts the fact that
RL1

is antisymmetric. For the second case, there must exist an integer
m ≥ 1 and z0 , ..., zm ∈ X such that

µ = z0Rz1 ...zm−1RzmP (R)z0 = µ.

Then, we have

µP (RL1
)µ

which is impossible. ¤

An irreflexive variant of Theorem 2 is the following corollary.

Corollary 3. Let R be a binary relation on X and x, y are any two non-
comparable elements of R. Then, R has a strict linear order extension
RL1

in which xRL1
y and a strict linear order extension RL2

in which
yRL2

x if and only if R is acyclic.

Proof. If R is acyclic, then R is consistent and I(R) = ∅ ⊂ ∆. Hence,
Theorem 2 implies that R has a linear order extension S such that xSy.
Clearly, RL1

= S \ ∆ is a strict linear order extension of R satisfying
xRL1

y. Conversely, suppose that R has a strict linear order extension
RL1

. Suppose to the contrary that R is non-acyclic. Hence, there must
exist an integer m ≥ 1 and z0 , ..., zm ∈ X such that

λ = z0Rz1 ...zm−1RzmRz0 = λ.

Then, we have

λ = z0RL1
z1 ...zm−1RL1

zm = z0 = λ

which contradicts the fact that RL1
is irreflexive and transitive. ¤

As Corollary to Theorem 2, we obtain the following well known ex-
tension theorem.
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Corollary 4. (Szpilrajn’s Extension Theorem [23]). Every (strict) par-
tial order R possesses a (strict) linear order extension RL . Moreover, if
x and y are any two non-comparable elements of R, then there exists a
(strict) linear order extension RL1

in which xRL1
y and a (strict) linear

order extension RL2
in which yRL2

x.

Corollary 5. Let R be a binary relation on X and x, y are any two
non-comparable elements of R. Then, R has an ordering extension RL1

in which xRL1
y and a linear order extension RL2

in which yRL2
x if and

only if R is consistent.

Proof. We prove the “sufficiency”part. The proof of necessity is similar
to that of the proof of necessity in Theorem 2. Let X be a non-empty
set, x, y ∈ X and let R be a consistent binary relation. For all s ∈ X, let
[s] = {t ∈ X|(s, t) ∈ I(R ∪∆)}. Let X = {[s]|s ∈ X}. X is non-empty
because X is non-empty and R ∪∆ reflexive. Define the relation R∗ on
X as follows:

For all [s], [t] ∈ X
([s], [t]) ∈ R∗ if and only if there exist s′ ∈ [s] and t′ ∈ [t] such that

(s′, t′) ∈ P (R).

Clearly, if (s, t) ∈ P (R) for some s, t ∈ X, then ([s], [t]) ∈ R∗. Now,
by way of contradiction, we prove that the relation R∗ is ∆-consistent.
Suppose that

[z1 ]R
∗[z2 ]...R

∗[zn ]P (R∗)[z1 ] for some z1 , z2 , ..., zn ∈ X.

Therefore, there exist, z′
1
, z′′

1
, z′

2
, z′′

2
, ..., z′

n
, z′′

n
∈ X such that

z′
1
P (R)z′

2
I(R)z′′

2
P (R)z′

3
, ..., P (R)z′

n
I(R)z′′

n
P (R)z′′

1
.

Since z1I(R)z′
1

and z′′
1
I(R)z1 , by Proposition 1, we obtain z1P (R)z1 ,

a contradiction. On the other hand, I(R∗) = ∅ ⊆ {([s], [s])|s ∈ X}.
Hence, by Theorem 2, R∗ has a linear extension R̂ such that [x]R̂[y].

Define the relation RL1
on X by letting, for all s, t ∈ X,

(s, t) ∈ RL1
if and only if (s, t) ∈ I(R) or ([s], [t]) ∈ R̂.

By construction, we conclude that (x, y) ∈ RL1
. It remains to prove

that RL1
is an ordering extension of R. Clearly, RL1

is an ordering. To
complete the proof, it is sufficient to prove that R ⊆ RL1

and P (R) ⊆
P (RL1

).
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Let (s, t) ∈ R. If (s, t) ∈ I(R) ⊆ I(R), then (s, t) ∈ RL1
. If (s, t) ∈

P (R), it follows that ([s], [t]) ∈ R∗ and, because R̂ is a linear extension of
R∗, ([s], [t]) ∈ R̂ . Hence, (s, t) ∈ RL1

. Finally, let (s, t) ∈ P (R) ⊆ P (R).
Therefore, (s, t) ∈ R and, by the above argument, (s, t) ∈ RL1

. Because

(s, t) /∈ I(R), the definition of RL1
implies ([s], [t]) ∈ R̂. Since (s, t) ∈

P (R), it must be that ([t], [s]) /∈ R∗. Otherwise, there exist t′ ∈ [t] and
s′ ∈ [s] such that (t′, s′) ∈ P (R) ⊆ P (R). But then (t, s) ∈ P (R), which
is impossible. Hence, ([s], [t]) ∈ P (R∗) ⊆ P (R̂). Hence, ([t], [s]) /∈ R̂.
Since (t, s) /∈ I(R), it follows that (t, s) /∈ RL1

. Hence, (s, t) ∈ P (RL1
),

which completes the proof. ¤

Corollary 5 also generalizes Suzumura’s existence extension theorem.
It is worth to note that Suzumura’s proof utilizes Szpilrajn’s result.

Corollary 6. (Suzumura’s Extension Theorem [22]). A binary relation
R has an ordering extension if and only if R is consistent.

Since a quasi-ordering is a reflexive and consistent binary relation,
the following corollary is obvious.

Corollary 7. (Arrow [1]; Hanson [13]; Fishburn [11]). Every quasi-
ordering has an ordering extension.

We now give a proposition, as an example, which shows the usefulness
for the Szpilrajn’s constructive procedure of extending binary relations.

Proposition 8. Let R be a ∆-consistent binary relation on some non-
empty set X, and let x∗ be a maximal element of R in X. Then, there
exists a complete extension Q of R such that x∗ is a maximal element
of Q in X.

Proof. Let R be a ∆-consistent binary relation and let x∗ be a max-
imal element of R in X. Clearly, R is a ∆-consistent extension of
R. To show that x∗ is a maximal element of R, suppose to the con-
trary that (y, x∗) ∈ P (R) ⊆ R for some y ∈ R. It then follows
that, there exists a natural number n and alternatives t1 , t2 , ..., tn−1 , tn

such that yRt1 ...tn−1RtnRx∗. Since (tn , x∗) /∈ P (R), we conclude that
(tn , x∗) ∈ I(R) ⊆ I(R). Hence, because of ∆-consistency, we conclude
that tn = x∗. Similarly, (tn−1 , x

∗) ∈ R, and an induction argument
based on this logic yields y = x∗, a contradiction to (y, x) ∈ P (R).
Hence, x∗ is a maximal element of R. Suppose that R̃ = {R̃i|i ∈ I}
denote the set of ∆-consistent extensions of R which has x∗ as maxi-
mal element. Since R ∈ R̃ we have that R̃ 6= ∅. Let Q = (Qi)i∈I be
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a chain in R̃, and let Q̂ =
⋃

i∈I

Qi . We show that Q̂ ∈ R̃. As in the

proof of Theorem 2, we conclude that Q̂ is a ∆-consistent extension of
R. To verify that x∗ is a maximal element of Q̂, take any y ∈ X and
suppose (y, x∗) ∈ P (Q̂) = P (

⋃

i∈I

Qi). Clearly, y 6= x∗ and (y, x∗) ∈ Q
i
∗

for some i
∗ ∈ I. Since (x∗, y) /∈

⋃

i∈I

Qi we conclude that (x∗, y) /∈ Qi

for each i ∈ I. Hence, (y, x∗) ∈ P (Q
i
∗ ), a contradiction to Q

i
∗ ∈ R̃.

Therefore, Q̂ ∈ R̃. By Zorn’s lemma R̃ possesses an element, say Q∗,
that is maximal with respect to set inclusion. Since Q∗ is consistent,
we have P (Q∗) ⊆ P (Q∗). Hence, Q∗ is an extension of R which has x∗

as maximal element. By maximality of Q∗ we conclude that Q∗ = Q∗.
Hence, Q∗ is a transitive extension of R. We prove that Q∗ is complete.
Indeed, take any s, t ∈ X such that (s, t) /∈ Q∗ and (t, s) /∈ Q∗. Clearly,
one of t and s is different from x∗. Let s 6= x∗. Define Q = Q∗ ∪{(t, s)}.
Since x∗ is a maximal element of Q, by maximality of Q∗, it must be
that Q contains a P (Q)-cycle, so there exist a natural number m and
alternatives z0 , ..., zm ∈ X such that

s = z0Qz1 ...zm−1QzmP (Q)z0 = s

Since Q∗ is consistent, there must exists k = 0, ..., m − 1 such that
(z

k
, z

k+1
) = (t, s) and for all i ∈ {0, ...,m − 1} with i 6= k, (zi , zi+1) ∈

Q if and only if (zi , zi+1) ∈ Q∗. It follows that (s, t) ∈ Q∗ = Q∗, a
contradiction. Hence, Q∗ is a complete extension of R which has x∗ as
maximal element. ¤

As consequence of the previous result we have a generalization of So-
phie Bade’s result in [2, Theorem 1](she uses transitive binary relations)
which shows that the set of Nash equilibria of any game15 with incom-
plete preferences can be characterized in terms of certain derived games
with complete preferences. More general, it is shown a fundamental
similarity between the theory of games with incomplete preferences and
the existing theory of games with complete preferences. I put in mind
the following definition:
Definition. We say that a game G′ = {(Ai , R

′
i
)|i ∈ I} is a completion

of a game G = {(Ai , Ri)|i ∈ I} if R′
i

is a complete extension of Ri for

15In this case, G = {(Ai , Ri )|i ∈ I} is an arbitrary (normal-form) game. Where I is a set
of players, player i’s nonempty action space is denoted by Ai and Ri is player i’s preference

relation on the outcome space A =
Y

i∈I

Ai .
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each i. In what follows, we denote the set of all Nash equilibria16 of a
game G by N(G). In the following theorem, each preference relation Ri

is assumed to be ∆-consistent.

Theorem 9. Let G = {(Ai , Ri)|i ∈ I} be any game. Then
N(G) =

⋃{N(G′)|G′ is a completion of G}.
Proof. Clearly,

⋃{N(G′)|G′ is a completion of G} ⊆ N(G). Conversely,
let a∗ ∈ N(G), that is, a∗ is a Nash equilibrium of G. Let us define
Bi = {(ai, a

∗
−i)|ai ∈ Ai} for all players i. Then, for any player i, a∗

is a maximal element of Ri in Bi. By Proposition 8, there exists a
completion R′

i
of Ri for each player i such that a∗ is maximal point

of R′
i

in Bi. Consequently a∗ is a Nash equilibrium of the completion
G′ = {(Ai , R

′
i
)|i ∈ I}. Hence, N(G) ⊆ ⋃{N(G′)|G′ is a completion of

G}. ¤

3. Refinements of Szpilrajn’s type theorems

In this paragraph, we give a general extension theorem in which all
the well known extended theorems of Dushnik-Miller type are obtained
as special cases.

Theorem 10. The transitive closure of a binary relation R has as real-
izer the set of linear order extensions of R if and only if R is ∆-consistent.

Proof. Suppose that R is a ∆-consistent binary relation on X and let
x, y ∈ X such that (x, y) ∈ inc(R). Let Q be the set of all linear order
extensions of R. By Theorem 2, Q is non-empty. We prove that Q is
a realizer of R. We first show that R ⊆ Q and P (R) ⊆ P (Q) for all
Q ∈ Q. Clearly, the transitivity of Q implies that Q = Q ⊇ R. To verify
that P (R) ⊆ P (Q), take any (s, t) ∈ P (R) and suppose (s, t) /∈ P (Q).
Clearly, s 6= t. Since (s, t) ∈ R ⊆ Q, this means that (t, s) ∈ Q. Hence,
(t, s) ∈ I(Q) which is impossible because of antisymmetry of Q. Hence,
Q is a linear order extension of R.

We now prove that R =
⋂

Q∈Q
Q. To prove the sufficient part, note

that R ⊆
⋂

Q∈Q
Q follows from R being a subrelation of each Q ∈ Q.

Thus, we have only to show that
⋂

Q∈Q
Q ⊆ R. Suppose that there exists

16An action profile a = (a1 , ..., a|I| ) is a Nash equilibrium if for no player i there exists

an action a′
i
∈ Ai such that (a′

i
, a−i )Ri (ai , a−i ).
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an (s, t) ∈
⋂

Q∈Q
Q with (s, t) /∈ R. Hence, (s, t) /∈ R. It follows that

(t, s) /∈ R. Indeed, suppose to the contrary that (t, s) ∈ R, so that
(t, s) ∈ P (R). Since each Q ∈ Q is an extension of R, we must then
have (t, s) ∈ P (Q) which is in contradiction with (s, t) ∈ Q for all Q ∈ Q.
Hence, s and t are not ranked by R. Now consider R′ = R ∪ {(t, s)}.
Clearly, (t, s) ∈ P (R′). Then, as in the proof of Theorem 2, we can prove
that R′ is ∆-consistent. By Theorem 2, R′ has a linear order extension
R̂. Since (t, s) ∈ P (R′), we must then have (t, s) ∈ P (R̂). Note that
R′ is an extension of R. Hence, R̂ is also a linear order extension of R.
Therefore R̂ ∈ Q. Noting that (s, t) /∈ R̂, this is a contradiction with the
assumption that (s, t) ∈

⋂

Q∈Q
Q. Hence,

⋂

Q∈Q
Q ⊆ R which implies that

R =
⋂

Q∈Q
Q. Since (x, y) ∈ inc(R) ⊆ inc(R), Theorem 2 implies that Q

is a realizer of R.
Conversely, suppose that R has as realizer the set of all linear order

extensions of R, let Q. We prove that R is ∆-consistent. Indeed, since⋂

Q∈Q
Q = R we have P (R) ⊆

⋂

Q∈Q
P (Q) ⊆ P (

⋂

Q∈Q
Q) = P (R). By [9,

Definition 4], we conclude that R is consistent. It remains to prove that
I(R) ⊆ ∆. Suppose to the contrary that I(R) ⊃ ∆. This implies that,
for all Q ∈ Q there exist s, t ∈ X, s 6= t, such that

(s, t) ∈ I(R) ⊆ I(Q) and (s, t) 6∈ ∆

which contradicts the antisymmetry of Q. ¤

In light of the proof of Theorem 10, the following theorem is now
obvious.

Theorem 11. Let R be a ∆-consistent binary relation on a set X. If
X is finite, then the dimension of R is finite. If |X| = m, where m is a
transfinite cardinal, then the dimension of R is ≤ m.

The following corollary is an irreflexive variant of Theorem 10.

Corollary 12. The transitive closure of a binary relation R has as
realizer the set of strict linear order extensions of R if and only if R is
acyclic.

Proof. If R is acyclic, then R∪∆ is ∆-consistent. Hence, R ∪∆ = R∪∆
is the intersection of all linear order extensions of R. Let Q be the
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class of linear order extensions of R such that R ∪ ∆ =
⋂

Q∈Q
Q. Then,

R =
⋂

Q∈Q
Q \ ∆, where Q \ ∆ is a strict linear order extension of R.

Conversely, suppose that R is the intersection of all strict linear order
extensions of R. Then it follows that R is irreflexive from which we
conclude that R is acyclic. ¤

Next is a result due to Dushnik and Miller [10, Theorem 2.32].

Corollary 13. If R is any (strict) partial order on a set X, then there
exists a collection Q of (strict) linear orders on X which realize R.

Proof. This follows immediately from Theorem 10, by letting R to be
(strict) partial order. ¤

The following corollary strengthen Suzumura’s fundamental Theorem
in a “constructive type”version (see Corollary 5).

Corollary 14. The transitive closure of a binary relation R has as
realizer the set of ordering extensions of R if and only if R is consistent.

Proof. Let X be a non-empty set and let R be a consistent binary relation
on X. Let also x, y ∈ X be such that (x, y) ∈ inc(R). Define X and
R∗ as in the proof of Corollary 5. Then, R∗ is a ∆-consistent binary
relation. Let R̂ be the set of linear order extensions of R∗ in X . By
Theorem 10, the transitive closure of R∗ is the intersection of all the
members of R̂ such that [x]R̂L [y] for some R̂L ∈ R̂. For every R̂ ∈ R̂,
we define the relation R′(R̂) on X as follows:

(s, t) ∈ R′(R̂) if and only if (s, t) ∈ I(R) or ([s], [t]) ∈ R̂.

Let R′ be the collection of relations {R′(R̂)|R̂ ∈ R̂}. By Corollary 5,
R′(R̂) is an ordering extension of R for all R̂ ∈ R̂. To complete the
proof, it is sufficient to show that R is the intersection of all orderings
in R′ and xR′(R̂)y for some R′(R̂) ∈ R′. By transitivity of R′(R̂), we
conclude that R ⊆ R′(R̂) for all R̂ ∈ R̂. Hence, R ⊆

⋂

bR∈ bR
R′(R̂). To

prove the converse, let (s, t) ∈
⋂

bR∈ bR
R′(R̂). This implies that (s, t) ∈ I(R)

or ([s], [t]) ∈ R̂ for all R̂ ∈ R̂. If (s, t) ∈ I(R), (s, t) ∈ R follows
immediately. If (s, t) /∈ I(R), we have ([s], [t]) ∈ R̂ for all R̂ ∈ R̂.
Because the transitive closure of R∗ is the intersection of all orderings
in R̂, this implies ([s], [t]) ∈ R∗. Hence,
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[s]R∗[z1 ]R
∗[z2 ]R

∗...R∗[zn−1 ]R
∗[zn ]R∗[t] for some z1 , z2 , ..., zn−1 , zn ∈ X.

Therefore, there exist s′, z′
1
, z′′

1
, z′

2
, ..., z′′

n−1
, z′

n
, z′′

n
, t′ ∈ X such that

s′P (R)z′
1
I(R)z′′

1
P (R)z′

2
...z′′

n−1
P (R)z′

n
I(R)z′′

n
P (R)t′.

Since sI(R)s′ and t′I(R)t, we conclude that (s, t) ∈ R. Finally, it is easy
to check that xR′(R̂L)y. The proof of the converse is similar to that of
the proof of the converse in Theorem 10. ¤

The next result, proved by Donaldson and Weymark [8], strengthens
Fishburn’s Lemma 15.4 in [11] and Suzumura’s Theorem A(4) in [22].

Corollary 15. Every quasi-ordering is the intersection of a collection
of orderings.

Proof. It is an immediate consequence of the sufficient part of Corollary
14. ¤

We recall the following definitions from [9].

Definition 16. A class R is closed upward if, for all chains C in R,⋃{R|R ∈ C} ∈ R.

Definition 17. A class R is arc-receptive if, for all distinct s and t and
for all transitive R ∈ R, (t, s) /∈ R implies R ∪ {(s, t)} ∈ R.

Corollary 18. (Duggan’s General Extension Theorem [9]). Assume R
is closed upward and arc-receptive. If R is consistent and R ∈ R, then
R =

⋂{R′ ∈ R|R′ is a strongly complete, transitive extension of R}.
Proof. To prove the corollary, let R be a consistent binary relation such
that R ∈ R. It follows from Corollary 14 that,

R =
⋂{R′ |R′ is a strongly complete, transitive extension of R}.

It remains to prove that R′ ∈ R. Because R ⊆ R′ by transitivity of R′,
we obtain R ⊆ R′. If R′ = R, then R′ ∈ R. Suppose that R ⊂ R′.
We first show that there exists a transitive extension of R, let Q, such
that Q ∈ R and R ⊂ Q ⊆ R′. Indeed, assume that s, t ∈ X are such
that (s, t) ∈ R′ \R. There are two cases to consider: (i) (t, s) ∈ R′; (ii)
(t, s) /∈ R′.

Case (i). (t, s) ∈ R′. In this case, since R is arc-receptive, R ∈ R and
(s, t) /∈ R we conclude that Q = R ∪ {(t, s)} ∈ R. We now prove that Q
is a transitive extension of R. Since Q is transitive, by Proposition 1, it
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suffices to show that Q is an extension of R. Clearly, R ⊂ Q. To verify
that P (R) ⊂ P (Q), take any (p, q) ∈ P (R) and suppose (p, q) /∈ P (Q).
Since (p, q) ∈ R ⊂ R ∪ {(t, s)}, this means that (q, p) ∈ R ∪ {(t, s)}.
Hence, there exists z0 , z1 , ..., zm ∈ X such that

q = z0R ∪ {(t, s)}z1 ...R ∪ {(t, s)}zm = p.

Thus, there exists at least one k ∈ {0, 1, ..., m−1} such that (z
k
, z

k+1
) =

(t, s), for otherwise (q, p) ∈ R, a contradiction. Let z
λ

be the first
occurrence of t and let zµ the last occurrence of s. Then, since (p, q) ∈
P (R) ⊆ R,

s = zµRzµ+1 ...Rzm = pRqRz0 ...Rz
λ

= t.

Hence, (s, t) ∈ R, a contradiction. Since R′ is transitive, R ⊂ Q ⊆ R′.

Case (ii). (t, s) /∈ R′. In this case, we must have (t, s) /∈ R, since
otherwise, we must have (t, s) ∈ R′, a contradiction.
Let Q = R ∪ {(s, t)}. Then, as in the case (i), we obtain Q ∈ R and
R ⊂ Q ⊆ R′.

Let Q̂ = (Q̂i)i∈I be the set of transitive extensions of R such that
R ⊂ Q̂i ⊆ R′ and Q̂i ∈ R. Let C be a chain in Q̂, and Ĉ =

⋃ C. Clearly,
R ⊂ Ĉ ⊆ R′. Since R is closed upward, Ĉ ∈ R. Therefore, by Zorn’s
lemma, Q̂ has an element, say Q̃, that is maximal with respect to set
inclusion. Then, R′ = Q̃ ∈ R. Otherwise, there exists (s, t) ∈ R′ \ Q̃

such that Q′ = Q̃ ∪ {(s, t)} or Q′ = Q̃ ∪ {(t, s)} is a transitive extension
of R satisfying R ⊂ Q̃ ⊂ Q′ ⊆ R′, which is impossible by maximality of
Q̃. This completes the proof. ¤

Clearly, Theorem 10 concludes all the extension theorems referred to
Duggan [9, pp. 13-14].
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