
MPRA
Munich Personal RePEc Archive

Nyquist Frequency in Sequentially
Sampled Data

Nezameddin Faghih and Ali Faghih

Shiraz University, University of Maryland

2008

Online at http://mpra.ub.uni-muenchen.de/14311/
MPRA Paper No. 14311, posted 27. March 2009 03:22 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213908353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/14311/


 
 
 
 
 
 
 

Nyquist Frequency in Sequentially Sampled Data 
 
 

Nezameddin Faghih* and Ali Faghih** 
 
 
 
 
 

ABSTRACT 
  
             This paper studies the sequential sampling scheme as a solution to 
the problem of aliasing, where the sampling interval is restricted to a 
minimum allowable value T. In sequential sampling, the signal is sampled 
at intervals of T, T+, T+2, T+3, ...; where   T and  
may be selected as desirable. Sequential sampling is, however, analyzed and 
it is proved that when the ratio T/ is an integral number, the associated 

spectral estimates give a Nyquist frequency 1
2

. This sampling scheme 

can, therefore, be employed to yield a required cut- off frequency.  
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                                    INTRODUCTION 
 Some data acquisition systems have a minimum allowable sampling 
interval and do not provide a desired sampling period less than a minimum 
allowable value. This may be due to some restrictions set by the measuring 
instrument that has to be used [1-7]. 
 Let the minimum allowable sampling time be T; if the uniform 
sampling scheme is employed then, the Nyquist or cut-off frequency is 
known [8] to be given as: 

 f
Tc 

1
2

       (1) 

 This would mean that if frequencies higher than fc are present, 
aliasing will occur. Otherwise, the signal would have to be filtered so that 
only frequencies below fc are passed and, therefore, the spectral analysis 
will be restricted [8]. 
 The sequential sampling scheme can, however, be employed to 
obtain an autocorrelation function with estimates  apart, where  T, 
with the exception of coefficients lying inside the range R(0)R(T). In 
this sampling scheme, the signal would be sampled at intervals of: 
  T, T+, T+2, T+3, ... 
From the sampled signal, an autocorrelation function can be obtained with 
the coefficients: 
 R(0), R(T), R(T+), R(T+2), ... 
 While T is restricted, the value of  may be chosen as desirable. It 
will be proved, in this paper, that the sequential sampling can give an 
increased cut-off frequency as: 

 fcs 
1

2
      (2) 

The sequential sampling can, therefore, be employed to overcome aliasing  
and the restrictions of spectral analysis, by selecting a sufficiently small 
value for . 
  
 
 

THE CUT OFF FREQUENCY IN THE SEQUENTIAL 
SAMPLING 

 The cut- off frequency provided by the sequential sampling scheme 
is considered in this section. The analysis employs the impulse 
representation of a continuous signal as an approach to discretization [9-14]. 
 In the sequential sampling, the signal is sampled at intervals of: 
 T, T+, T+2, T+3, ... 
The sampling instants are, therefore, given by: 
 ti= 0,  T, 2T+, 3T+3, 4T+6, ... (3) 
This can be written as: 
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( ) , then equation (4) gives: 

 t i T i ii    
2

1( )      (5) 

 When a continuous signal x(t) is sampled, the sample values x(ti) are 
acquired. A discrete autocorrelation function, with coefficients R(j), may 
be obtained from the discrete signal, by contributions of the products 
x(ti)x(ti+j). Equation (5) can be used to give the time delay j  as: 

  j i j it t T j j ij j         [ ( ) ( ) ]
2

1 1   (6) 

        i= o, 1, 2, ... 

        j= o, 1, 2, ... 

where  is a constant given by: 

 T/       (7) 

 It is seen from equation (6) that for j=0, the time delay is zero and 
for j=1, the time delay is T+i (where i=0, 1, 2,3, ...). An autocorrelation 
function is, therefore, obtainable at discrete values of the time delay given 
as: 

 n =o, T+n n= 0, 1, 2, 3, ...   (8) 

 If the ratio  is an integral number, then higher values of j would 
also provide more contributions to the autocorrelation estimates at the above 
time delays n. This is because j(j-1)/2 is always even, and any value of j 
would hence add a multiple of  to T. 

 The discrete autocorrelation function may be represented as: 

 R R b
* ( ) . ( ) ( )          (9) 

where R() is the continuous autocorrelation function and b() is the 
following form of the delta comb: 

         b T T T( ) ( ) ( ) ( ) ( )             2 L    (10) 
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It is established [9-10] that the Fourier transform of equation (10) can be 
written as: 

  
b

j T j ne e( )     
1
0

     (11) 

which by manipulation [9-10] can be re-written as: 

  b
j j

j
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    (12) 

where substitution has also been made for T from equation (7). 
 The Fourier transformation of R*() gives the spectral density S*() 
corresponding to the sampled signal and that of R() would yield the 
spectral density S() of the original continuous signal. The approach 
adopted for the Fourier transformation of equation (9) is based on the 
convolution and residue theorems [9]. By evaluating the residue terms [9] 
and using the convolution property [9], for substitution into equation (9), the 
Fourier transform of this equation ca be obtained as: 

 S e S nj n
cs cs*( ) ( ) , /       




 2 2    (13) 

 However, if the ratio =(T/) is an integral number then, 
  e j n2 1    
noting that n is also an integer. Substituting this into equation (13) gives: 

 S S n cs cs* ( ) ( ) , /      



 2     (14) 

 Now, consider the periodicity of S*(); this can also be examined by 
applying the corresponding methods [9-14]. Using equations (9), (10), (11) 
and the rules established for discrete Fourier transformation [9-10], it can be 
written: 

      [ ( ) ( ) ] [ ( ) ( ) ]R e R T n e R e R n ej T j n j j n0 0
00

       

     (15) 

and then for an integer m: 
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since m and n are integers. If  is also an integral number, this would reduce 
to: 

    [ ( ) ( ) ]R e R T n ej j n0
0

  
     

from which it follows that: 
 S m Scs

* *( ) ( )   2      (17) 
This is the mathematical statement for S*() to be periodic with period 
2cs. Otherwise, if  is not an integral number, 
 S m Scs

* *( ) ( )   2      (18) 
and the requirement for periodicity is not met. 
 It is, therefore, seen that when the ratio  is an integral 
number, the periodic pattern, conforming with the Nyquist theorem,[9-14] is 
obtained. That is, the sequential sampling gives a cut-off frequency 

 cs  /  or fcs 
1

2
.  On the contrary, when  is not a whole number, 

S * ( )  is related to the true spectral density by equation (13); it includes a 
complex term and is not periodic. 
 
 
  

CONCLUSIONS 
 This paper has considered the sequential sampling scheme, as a 
solution to the problem of aliasing, where the sampling interval is restricted 
to a minimum allowable valueT . In the sequential sampling, the signal is 
sampled at intervals of      T, , , ,...  2 3 ; where 
 p and may be selected as desirable. 
 The sequential sampling was considered analytically and it was 
proved that, when the ratio  / is an integral number, the corresponding 

spectral estimates give a cut- off frequency of 1
2

. On the contrary, when 

the ratio is not a whole number, the associated spectrum of the sequentially 

(16) 
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sampled data was found to comprise a complex term in its relation to the 
true spectrum and would not be periodic in terms of the cut-off frequency. 
 . 
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