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Abstract

In this paper, we propose a new approach to constructing confidence sets for the
timing of structural breaks. This approach involves using Markov-chain Monte Carlo
methods to simulate marginal “fiducial” distributions of break dates from the like-
lihood function. We compare our proposed approach to asymptotic and bootstrap
confidence sets and find that it has the best overall finite-sample performance in terms
of producing short confidence sets with accurate coverage rates. Our approach has the
advantages of i) being broadly applicable to different patterns of structural breaks, ii)
being computationally efficient, and iii) requiring only the ability to evaluate the like-
lihood function over parameter values, thus allowing for many possible distributional
assumptions for the data. In our application, we investigate the nature and timing
of structural breaks in postwar U.S. Real GDP. Based on marginal fiducial distribu-
tions, we find much tighter 95% confidence sets for the timing of the so-called “Great
Moderation” than has been reported in previous studies.
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1 Introduction

In this paper, we propose a new approach to constructing confidence sets for the timing

of structural breaks in time series.1 Our proposed approach involves simulating marginal

“fiducial” distributions of break dates from the likelihood function. The practical imple-

mentation of this approach utilizes Markov-chain Monte Carlo (MCMC) methods that have

been widely used for posterior simulation in the Bayesian literature. Indeed, the resulting

confidence sets are the same as Bayesian highest-posterior-density (HPD) credible sets given

noninformative priors. However, we take a strictly classical viewpoint with respect to our

inferences about the confidence sets by considering their coverage accuracy and expected

length across repeated samples.

In order to motivate our use of “fiducial” distributions to construct confidence sets, it

is necessary to discuss fiducial inference, which was first developed by Fisher (1930) and

involves making probability statements about parameters, with the probabilities being pro-

portional to the likelihood function and having a frequentist interpretation.2 While the idea

of making probability statements directly about parameters is antithetical to the standard

classical viewpoint, it has long been understood that there can be, in certain settings, a close

relationship between fiducial confidence sets and classical confidence sets. In particular, in

the case of a single parameter for which a pivotal test statistic is available, fiducial confidence

sets and the classical confidence sets based on inverting the test statistic will be the same,

even if their interpretation is different.3 Thus, our strategy here is to use fiducial distribu-

tions as a means of generating a classical estimator for a confidence set, much in the same

way as a likelihood function is used to generate a classical estimator for a model parameter.

1 Because our approach can produce disconnected subsets of possible break dates, we prefer the termi-
nology of “confidence set” to “confidence interval”, although we still refer to “length” rather than “size” of
a confidence set to make it clear that we are considering inferences about a single parameter, rather than a
multi-dimensional confidence region.

2 For more details about fiducial inference, see Fraser (1961a,b). Barnett (1999) provides an accessible and
in-depth discussion of the issues surrounding fiducial inference in his textbook on comparative methods of
statistical inference. Recently, Hannig (2006) argues for the fiducial approach as a tool for deriving classical
inference procedures, which is the general strategy that we take in this paper.

3 A “pivotal” test statistic has a known distribution that is independent of the model parameters. For
example, a t-statistic in a simple linear regression model with exogenous regressors and serially uncorrelated
errors is pivotal because it has a Student-t distribution that only depends on sample size and the number of
regressors, not on the values of model parameters.
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Our proposed approach can be related to some existing methods for constructing con-

fidence sets. It is most directly analogous to Sims and Zha (1999), who consider Bayesian

credibility sets based on noninformative priors as a means of constructing classical “error

bands” for impulse response functions in structural Vector Autoregressive (VAR) models.

On a more general level, our approach has a similar motivation to bootstrap methods for

constructing confidence sets (see, for example, Kilian (1999) and MacKinnon (2002)).

Specifically, while bootstrap confidence sets will only be exact when based on a pivotal

quantity, they appear to perform well, and notably better than confidence bands based

on asymptotic distributions, in settings when a bootstrap distribution approximates finite-

sample distributions that are close to being pivotal. Along these lines, we consider the

possibility that a marginal fiducial distribution implicitly provides an even better approx-

imation of finite-sample distributions that are even closer to being pivotal. Meanwhile,

because our approach uses marginal distributions, it can also be related to the extensive

testing literature in which nuisance parameters are integrated out of the likelihood (see, for

example, Andrews and Ploberger (1994)).4 Indeed, our approach is directly motivated by

Elliott and Müller (2007), who propose constructing confidence sets for the timing of struc-

tural breaks by inverting a test statistic for which nuisance parameters have been integrated

out.

In the specific setting of making inferences about the timing of structural breaks, we

compare our fiducial distribution (FD) approach to a range of asymptotic and bootstrap

methods. In terms of asymptotic methods, Bai (1997) provides the standard approach

to constructing a confidence interval for a single break, Bai, Lumsdaine, and Stock (1998)

consider multivariate models, and Bai and Perron (2003) allow for multiple structural breaks.

Elliott and Müller (2007) show that Bai’s approach attains very low coverage rates when

structural breaks in parameters are small and they propose an approach, mentioned above,

that is based on inverting sequential tests over the parameter space of break dates. Their

approach attains more accurate coverage rates than Bai’s approach, but at the cost of much

4 In the statistics literature, Berger, Liseo, and Wolpert (1999) argue for the use of integrated likelihood
methods (i.e., marginal fiducial distributions) as a more practical and robust means of eliminating nuisance
parameters than considering a profile likelihood in which the nuisance parameters are maximized out of the
likelihood function.
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longer confidence sets. Meanwhile, in terms of bootstrap methods, we are motivated, in

part, by Diebold and Chen (1996)’s comparison of asymptotic and bootstrap methods for

testing the existence of structure change. They find that, especially for smaller samples and

persistent dynamics, the bootstrap approximation to the finite-sample distributions of these

tests is usually more accurate than the asymptotic approximation. Here, we use bootstrap

methods to construct confidence sets for the break dates themselves. In terms of bootstrap

methods, we consider constructing confidence sets using a “bootstrap percentile” approach, a

“bootstrap standard error” approach, a “bootstrap inverted likelihood ratio (LR)” approach,

and an approach based on a bootstrap of Bai’s (1997) asymptotically pivotal statistic.

In order to compare the finite-sample performance of various methods of constructing

confidence sets for break dates, we conduct Monte Carlo analysis of coverage accuracy and

expected length. This analysis suggests that in small samples with structural breaks of

the kind hypothesized for economic time series such U.S. real GDP, the FD and bootstrap

inverted LR approaches produce relatively short confidence sets while maintaining accurate

coverage rates compared to nominal confidence levels. Indeed, for sample sizes of 320 and

640, which can be compared with 238 observations for postwar quarterly real GDP between

1947:Q1 and 2005:Q2, the confidence sets for these two likelihood-based approaches are

approximately from about a half to one fourth as long as those of other methods, while

always attaining exact coverage rates.5 For example, while Elliott and Müller’s inverted test

approach succeeds in having accurate coverage rates, the average length of confidence sets for

the timing of a break in long-run growth is 40 periods for a sample size of 320 versus only 15

periods using the FD approach. Meanwhile, as discussed in Elliott and Müller (2007), Bai’s

confidence sets attain too low coverage rates compared to the nominal confidence levels.

The Monte Carlo analysis supports the use of likelihood-based confidence sets for the

timing of structural change. Beyond this analysis, however, there are additional practical

5Perhaps, from a Bayesian perspective, we should not be too surprised that both the FD and bootstrap
inverted LR bootstrap approaches have exact coverage in these Monte Carlo experiments. While they are
implemented in different ways, both are directly based on the shape of the likelihood function. Thus, they
are both directly linked to Bayesian credibility bands given noninformative priors. If the noninformative
priors are appropriate from an “objective” Bayesian point of view, such that the posterior probabilities in a
given experiment are correct in a “fair bet” sense conditional on the data, then it follows that the frequentist
coverage across repeated experiments will also be correct. We discuss this interpretation in more detail in
the next section.
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reasons to use likelihood-based confidence sets and the FD approach in particular.

First, the FD approach is broadly applicable in the sense that we can easily consider

structural breaks in different parameters occurring at different dates. This more complicated

pattern of structural breaks has been hypothesized for U.S. real GDP and other macroeco-

nomic time series. In particular, Kim and Nelson (1999) and McConnell and Perez-Quiros

(2000) detect the break date of the volatility deduction in 1984:Q1, while Zivot and Andrews

(1992) and others find that there is a trend break in 1972:Q2 in the unit root literature.

Stock and Watson (1996, 2002) show that most of U.S. macroeconomic data are unstable

and have volatility changes. Among the methods considered here, only the FD and bootstrap

approaches can construct confidence sets for different break dates of different parameters,

such as a mean and a variance changing at different points of the sample. However, in this

setting, the bootstrap approaches produce multi-dimensional confidence regions, rather than

confidence sets for each of the individual structural breaks. To get a confidence set for a

specific break date, we would need to integrate out other break dates, but the integration

is generally infeasible for a bootstrap.6 By contrast, integrating out break dates and other

parameters is a straightforward feature of the FD approach.

Second, although bootstrap methods are available for general settings, the FD approach

is much more computationally efficient, especially for more complicated structural changes

(e.g., respective breaks in mean and variance). Suppose, for example, we have 100 obser-

vations for an econometric model with two parameters such as a constant and a variance

and both parameters have structural breaks, but at different dates. Implementing bootstrap

methods for this model is computationally costly because for each bootstrap data set we

would need to consider 10,000 (=100×100) combinations of two break dates and estimate

break dates as well as model parameters, a mean and a variance before and after breaks,

6 In principle, one could consider an inverted LR approach based on the likelihood profile with respect
to one break at a time. That is, the likelihood could be calculated for all different possibilities of one break
date, while maximizing the likelihood with respect to the other parameters and break dates. However, in
the case of multiple break dates, there is a conceptual issue in terms of which possibilities to consider for
one break date given the possibilities for the other break dates. For example, suppose the likelihood is
maximized with structural breaks in periods 10 and 20. The likelihood profiles for each break date will have
two peaks of equal height with the given break occurring in either period 10 or in period 20 and the other
break estimated to have occurred in period 20 or period 10. Meanwhile, in the context of the bootstrap
inverted LR approach, the calculation of the likelihood profile for every break in every bootstrap sample
would be computationally impractical.
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simultaneously by maximum likelihood estimation (MLE).7 In the case of 199 bootstraps,

which is a relatively small number of artificial samples, we would need to conduct MLE

1,990,000 (=199×10,000) times. To give a sense of this number, even if it takes just one

second per estimation, 1,990,000 cases would take more than 23 days.

Third, the FD approach requires only the ability to evaluate the likelihood function over

parameter values and potential break dates. Thus, it can be applied given any econometric

model with a specified likelihood function (e.g., models with normal distributions, Student-t

distributions, Poisson distributions, and so on). While the bootstrap inverted LR approach

is also available, in principle, for any specified likelihood function, computational difficulties

become an issue again. This is because numerical optimization over the entire parameter

space can be challenging for non-normal models due to irregularities in the likelihood surface.

By contrast, the evaluation of the likelihood for the FD approach via MCMC methods can be

broken down into more manageable steps. In addition, we only need to evaluate the likelihood

for the actual data, as opposed to considering restricted and unrestricted likelihoods for the

actual data and for each bootstrap sample in the case of the bootstrap inverted LR approach.

For our application, we examine the nature and timing of structural breaks in postwar

U.S. real GDP. First, we apply sequential tests to determine the number and types of struc-

tural breaks. Then, for each break, we employ the various methods of constructing confidence

sets considered in our Monte Carlo analysis to make inferences about their timing. Under

the assumption of a unit root, we find support for the Great Moderation in the form of a

variance reduction in quarterly growth rates, with the maximum likelihood estimate of the

break in 1984:Q1 and a narrow 95% confidence set of 1982:Q1 to 1984:Q4 based on the FD

approach. Notably, this 95% confidence set is smaller than the 67% confidence set based on

Bai’s (1997) approach reported in Stock and Watson (2002). In our application, the lengths

of the confidence sets based on Bai’s method are more than twice as long as those based on

FD approach. Meanwhile, given a unit root, we find no significant evidence of a break in

the long-run growth rate, so we do not construct a confidence set for such a break in this

case. On the other hand, under the assumption of trend stationarity, we do find significant

7In practice, as discussed in greater detail in the next section, we would need to exclude some portion
of the beginning and end of the sample space to avoid a severe distortion in our inferences. However, the
number of combinations would still be large.
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evidence of a structural break in the form of a reduction in drift, with the maximum likeli-

hood estimate of the break in 1969:Q1. However, the confidence sets for the timing of the

drift break are far from precise. For example, the outer bounds of the FD confidence set

are 1963:Q2 and 1983:Q3, respectively.8 Again, we find evidence for the Great Moderation

under the assumption of trend stationarity, with maximum likelihood estimate of the break

in 1982:Q4 and a narrow FD confidence set from 1982:Q3 to 1984:Q2. Finally, we check the

robustness of our inferences for the FD approach by allowing for Student-t distributed errors

in our structural break models and we find that the resulting confidence sets for the Great

Moderation are very similar to the normal error case.

The remainder of this paper is organized as follows. Section 2 provides details for the

various methods of constructing confidence sets for structural break dates. Section 3 dis-

cusses asymptotic theory related to these methods. Section 4 reports Monte Carlo results

for coverage accuracy and length of the confidence sets for the various methods under con-

sideration. Section 5 presents estimation results for models that capture structural breaks in

postwar U.S. real GDP and reports confidence sets for the timing of the structural breaks.

Section 6 concludes.

2 Methods

In this section, we provide details of our proposed FD approach to constructing confidence

sets for the timing of structural breaks. We also review the asymptotic methods presented

in Bai (1997) and Elliott and Müller (2007) and introduce various bootstrapping methods:

a bootstrap percentile approach, a bootstrap standard error approach, a bootstrap inverted

LR approach, and a bootstrap of Bai’s statistic. Previous Monte Carlo studies of bootstrap

methods in other settings have shown that no specific approach is always superior in terms

of coverage accuracy. For example, see MacKinnon (2002) for confidence intervals of regular

parameters and Kilian (1999) for confidence intervals of impulse responses for VAR models.

Thus, we consider various methods here in order to determine which ones work best in the

8 The set consists of three disjointed intervals of [1963:2,1980:4], [1981:2,1982:3], and [1983:2,1983:3].
Thus, assuming correct coverage of the confidence set, the outer bounds provide a somewhat conservative
inference, although the gaps in the set are relatively short.
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context of structural breaks.

In terms of possible patterns of structural breaks, we consider a linear econometric model

that allows the variance and coefficients to undergo breaks at different dates.

yt =

K
∑

k=1

X ′
ktβkt + Z ′

tγ + et, et ∼ i.i.d.N (0, σ2
t ), t = 1, ..., T (1)

where

σ2
t =































σ2
0 if 1 ≤ t ≤ τK+1,1

σ2
1 if n1 < t ≤ τK+1,2

...

σ2
N if nN < t ≤ T .

The model in (1) has K subsets of regressors, Xkt’s, k = 1, ..., K. Each subset has qk

regressors, corresponding to kth group of regressors. That is, each subset of regressors

has its own change-point system. In particular, each subset may have a different number of

breaks occurring at different dates than those of other groups independently.9 The coefficient

vector βkt is βkj (kth group’s j + 1th regime parameters) if τkj < t ≤ τkj+1, j = 0, ..,Mk.

The number of breaks for kth subset is denoted by Mk. Zt and γ represent regressors and

their respective coefficients that do not change. The variance can have N breaks and nth

regime’s variance is σ2
n−1. In practice, the potential break dates are restricted between the

middle (1− 2λ) portion of the sample period, Π = [λT, (1− λ)T ], to avoid an end of sample

distortion. Two consecutive break dates are also at least a distance of λ of the total sample

size apart for a similar reason.

2.1 Confidence Sets Based on Marginal Fiducial Distributions

In order to derive the marginal fiducial distributions for break dates, let f(y|ψ, τ) denote the

probability density function (pdf) for a model with structural break date(s) τ and parameters

ψ = (β, γ, σ) ∈ Ψ in (1) evaluated at the observed data Y = y. The likelihood function for

the model is defined by L(ψ, τ |y) = f(y|ψ, τ) since the break date τ can be interpreted as

9 For example, consider an AR(3) model with structural breaks. The constant coefficient has one break
and the persistence coefficients have 2 breaks. Then, K = 2, X1t = 1, X2t = (yt−1, yt−2, yt−3)

′, q1 = 1, and
q2 = 3.
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a parameter. Then, briefly ignoring problems of interpretation, a joint pdf for ψ and τ can

always be constructed, at least in principle, by simply multiplying the likelihood function by

the inverse of its integral (or summation) with respect to model parameters:

π(ψ, τ |y) = L(ψ, τ |y) × [

(1−λ)T
∑

τ=λT

∫

Ψ

L(ψ, τ |y)dψ]−1. (2)

Interpreting these probabilities as having meaning in a frequentist sense is called fiducial

inference and is highly controversial in the statistics literature (see Barnett (1999) for a

discussion of the controversies surrounding fiducial inference).

In this paper, we do not address the debate over the general coherence of fiducial inference.

Our goal here is merely to use fiducial distributions as a means of making more traditional

classical inferences. Importantly, we do not directly consider the joint fiducial distribution in

(2) because fiducial and classical confidence intervals are generally at odds with each other

in multidimensional cases. Instead, we consider the marginal fiducial distributions for the

break dates:

π(τ |y) =

∫

Ψ

π(ψ, τ |y)dψ (3)

In particular, for a single parameter and given a pivotal test statistic for that parameter,

fiducial and classical confidence sets based on inverting the statistic are the same. Thus,

if we assume that there exists a test statistic whose distribution is related to the marginal

fiducial distribution of a parameter and it is close to being pivotal, even in finite samples,

the fiducial confidence intervals will be the similar to classical confidence intervals based on

inverting that test statistic. The key point, then, in using fiducial distributions is that we

can construct the classical confidence interval without directly having the test statistic.

As mentioned in the introduction, we see our approach as similar to bootstrap analysis. If

the finite-sample distribution of the likelihood-based test statistic were pivotal, the confidence

set based on the marginal fiducial distributions would be exact. Meanwhile, even if the finite-

sample distributions are not strictly pivotal, the FD confidence sets could reflect a better

approximation of the finite-sample distributions of the implicit test statistic than asymptotic
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or bootstrap methods.

The most obvious potential problem with using marginal fiducial distributions to con-

struct confidence sets is finding these distributions in the first place. In particular, it is

generally infeasible to use analytical methods to integrate the likelihood function with re-

spect to model parameters in order to get the denominator in (2) and then to integrate the

resulting joint fiducial distribution to get the marginal fiducial distribution (3). However,

the marginal fiducial distributions of model parameters can be easily simulated via MCMC

methods.10 In particular, suppose the parameters and break date(s) in the model are grouped

into two different blocks: ψ and τ , respectively. The parameters in one block can be sampled

conditional on data and the parameters in the other block. For model parameters, ψ,

ψ ∼ π(ψ|τ,y)

∝ π(ψ)f(y|ψ, τ)

∝ f(y|ψ, τ).

For break dates, τ ,

τ ∼ π(τ |ψ,y)

where

π(τ |ψ,y) =
π(τ)f(y|ψ, τ)

π(y|ψ)

=
π(τ)f(y|ψ, τ)

∑

τ π(τ)f(y|ψ, τ)

=
f(y|ψ, τ)

∑

τ f(y|ψ, τ) .

The MCMC method simulates parameter values from their conditional distributions until

the draws behave as if drawn from their joint and marginal distributions. Because the

parameters of the denominator in (2) are uniformly integrated, π(ψ) and π(τ) should be

10 Chib and Greenberg (1995) provide a good introduction of MCMC methods by focusing on the
Metropolis-Hastings (MH) algorithm. Note that, from a Bayesian perspective, simulation from the likeli-
hood in this way would be considered to be posterior simulation given noninformative priors. This approach
is always available, at least in principle, as long as it takes place over the parameter space for which the
likelihood is finite.
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chosen to be constant over parameter values. For example, π(τ) of one break model is from

a uniform distribution on the integers:

π(τ) =







1
(1−2λ)T

for τ ∈ [λT, (1 − λ)T ]

0 otherwise.

Then, the draws behave exactly same as draws from the marginal fiducial distribution in

(3) based on integrating the other parameters and break dates out of the joint fiducial

distribution in (2). A more detailed MH algorithm used in this paper is presented in an

appendix.

Given a simulated marginal fiducial distribution for a break date, we can then construct

a confidence set at a 1 − α level in different ways. In practice, we choose to construct

the confidence set using the Bayesian highest-posterior-density (HPD) concept in order to

obtain the shortest confidence sets possible for a given confidence level.11 In particular, the

confidence set is

S(y) = {τ |π(τ |y) ≥ k(1 − α)} (4)

where k(1−α) is the largest constant satisfying π(S|y) ≥ 1−α. Since the break dates have

discrete distributions, it is straightforward to find points with highest probability because

the simulated marginal fiducial distributions produce different simulated frequencies for each

possible break date.12 When we apply this highest probability concept to constructing the

confidence set from the marginal fiducial distribution, the result is a “highest-fiducial density”

(HFD) confidence set.

Three issues should be addressed here.

11 The notion that lengths of confidence sets with the same confidence levels can differ and shorter ones
are to be preferred can be illustrated by the following simple example: Consider T observations of a scalar
random variable, {x1, . . . , xT }, normally distributed with unknown mean µ and known variance 1. We want
to construct a confidence interval of the true µ by using the observations. We can think of two different
confidence interval estimators that have a 95% confidence level: [−∞, x̄+1.65/

√
T ] and [−1.96/

√
T + x̄, x̄+

1.96/
√

T ] where x̄ is the sample mean. Both confidence intervals would include the true mean µ with
probability 0.95 when computed over repeated samples. However, the length of the former is infinite, while
that of the latter is only 3.92/

√
T . Thus, the former provides much more information about the true µ

than the latter in the sense that we can narrow the range of the true value. Thus, we would prefer shorter
confidence interval, all else equal.

12 In the case of a continuous distribution (e.g., a regular parameter in a regression model), we would have
to use kernel density estimation for a given bandwidth parameter in order to measure relative densities.
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First, in a classical context, the confidence set at any given confidence level 1 − α can

only be justified through its coverage rate in repeated samples. This means that if we could

compute confidence sets for infinitely many data sets from population, they would include the

true value of the parameter in 100×(1−α)% of the data sets. Let τ0 and C(Y ) denote a true

break date and any usual classical confidence set estimator, with Y having the distribution

f(y|τ0) that depends on the true break date τ0. Then,

E[τ0 ∈ C(Y )|τ0] =

∫

1[τ0 ∈ C(y)]f(y|τ0)dy

= 1 − α

where 1[·] is an indicator function. However, the confidence set estimate for actual data y will

not contain the true value with probability 100×(1−α)%. In a given sample, the confidence

set covers the true parameter with probability 0 or 1. By contrast, in the Bayesian context,

a posterior distribution of a break date represents a probability distribution conditional on

the actual data. Thus, a “credible” set with 1−α level has the subjective probability 1−α

that the true value lies inside of the set. For a Bayesian credible set with noninformative

priors, which is equivalent to an FD confidence set,

E[τ0 ∈ S(Y )|τ0] =

∫

Pr[τ0 ∈ S(y)]f(y|τ0)dy

=

∫

(1 − α)f(y|τ0)dy

since Pr[τ0 ∈ S(y)|τ0] = 1 − α for any y ∼ f(y|τ0)

= (1 − α)

∫

f(y|τ0)dy

= 1 − α

Thus, although conceptually different, Bayesian credible sets and, by implication, fiducial

confidence sets provide a natural enough means of constructing confidence sets in a classical

repeated-sampling sense. Of course, the frequentist performance of Bayesian estimators

varies from one setting to another, so the finite-sample coverage rates of these confidence

sets for the timing of structural breaks remains an open question to be addressed with our

Monte Carlo analysis.
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π(τ)

0 Equal tailed CI

HFD Confidence Set

k(1−α)

(a) Asymmetric distribution

Equal tailed CI

HFD Confidence Set(1) HFD Confidence Set(2)

k(1−α)

(b) Bimodal distribution

Figure 1: Equal-tailed and Highest-Fiducial-Density confidence sets

Second, given any confidence level, the HPD credible set has the shortest length while

maintaining the same expected coverage rate as the specified confidence level. The confidence

set in (4) might seem odd from a classical viewpoint. Because a Bayesian credible set is

constructed from the probability distribution of τ conditional on the observed data, one can

directly minimize its length for a given confidence level. In the same way, we are able to

minimize the length for FD confidence sets with the HFD concept. Consider, for example,

the case in which the fiducial distribution of a parameter of interest is asymmetric and

unimodal. Figure 1(a) illustrates the case of an asymmetric distribution. If the distribution

of the parameter is asymmetric but α/2 and 1− α/2 quantiles of the distribution are taken

as bounds of a confidence set (equal tailed), many unlikely (in a Bayesian or fiducial sense)

parameter values would be included. Because the distribution is asymmetric, the density at

the quantile of α/2 is greater than that at 1−α/2 in Figure 1(a). In this case, we would have

an unnecessarily wide confidence set. By contrast, we can make the set consist of most likely

points with the HFD confidence set in Figure 1(a). Meanwhile, if the posterior distribution

is bimodal and there are some values where densities between two local modes are very low,

then the standard symmetric credible set might include unnecessary area. This bimodal case
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is shown in Figure 1(b). Again, the HFD confidence set is shorter, although it consists of

two disjointed areas.

Third, despite our focus on linear regression models, the MCMC approach for construct-

ing confidence sets can be implemented for any type of time series model with structural

breaks, as long as we can draw from the likelihood function for the model. Meanwhile,

even within the context of linear regression models, variables need not follow a normal

distribution- for example, we might consider Poisson distributions, Student-t distributions,

and so on. This approach can also be used for more complicated models such that each group

of parameters is allowed to have breaks at different dates. For example, suppose there are

two parameters of interest, such as when we regress U.S. real GDP growth on a constant and

we allow it to have structural breaks in long-run growth and volatility, respectively. Deriving

asymptotic distributions for this case is very complicated or infeasible. For example, in order

to use Bai’s (1997) asymptotic approach, error terms and explanatory variables should be

covariance-stationary within each regime. If the volatility break date is different from the

long-run growth break date, as might be hypothesized for postwar U.S. real GDP, the errors

will not be covariance-stationary within one of the structural regimes for long-run growth,

because the variance changes. By contrast, because it is easy to make a pdf conditional on

different types of structural breaks at different break dates, it is straightforward to construct

a likelihood function for the model and, therefore, use the FD approach.

2.2 Confidence Sets Based on Asymptotic Methods

In the time series econometrics literature, there have been many attempts to construct

confidence intervals for structural change. For example, Bai (1997) derives the limiting dis-

tribution of a single break date in univariate linear regression models with normal errors and

stochastic regressors and/or a disjointed time trend. Bai, Lumsdaine, and Stock (1998) con-

sider multivariate models and Bai and Perron (2003) consider multiple structural changes.

Recently, Elliott and Müller (2007) have pointed out that Bai’s approach has low coverage

rates relative to the nominal confidence level when changes in coefficients are small in mag-

nitude. They propose an alternative approach that involves inverting a sequence of tests.

Under the null hypothesis of each break date among candidate dates, a test is performed.
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Given a nominal level, if the test cannot reject the null, then the null hypothesis break date is

included in the confidence set. Although Monte Carlo analysis by Elliott and Müller (2007)

shows that their approach performs well in terms of producing coverage rates close to the

nominal confidence level, it produces much longer confidence sets than Bai’s approach.

2.3 Confidence Sets Based on Bootstrap Methods

In order to discuss bootstrap methods, we explicitly consider the case of only one structural

break. This is done for ease of presentation only, as it is straightforward, at least conceptually,

to consider multiple breaks. Also, throughout this paper, we focus on parametric bootstrap

methods.

2.3.1 Confidence Sets Based on a “Bootstrap Percentile” Approach

Let τ0 and q(·) denote the true break date and a quantile function for the difference between

an estimator of the break date and the true break date, τ̂ − τ0, respectively. Then,

1 − α = Pr[q(α/2) ≤ τ̂ − τ0 ≤ q(1 − α/2)]

= Pr[−q(1 − α/2) ≤ τ0 − τ̂ ≤ −q(α/2)]

= Pr[−q(1 − α/2) + τ̂ ≤ τ0 ≤ −q(α/2) + τ̂ ] (5)

Because we do not know the true quantile function q(·) and it is unlikely to be fixed

across different τ0 in a finite sample, the quantile values are calculated based on a bootstrap

under the null hypothesis of the estimated break date τ̂ . In particular, the estimated break

date τ̂ is regarded as the true break date in bootstrap samples.13

In the first step, we find a break date and values of model parameters with which the

likelihood function is maximized in (1):

{τ̂ , ψ̂} = argmax
τ∈Π,ψ∈Ψ

L(τ, ψ|y). (6)

In the second step, we generate B bootstrap samples based on the bootstrap data generating

13 For a complete discussion of the percentile bootstrap approach, see Efron and Tibshirani (1994) Ch.13.
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process (DGP) using {τ̂ , ψ̂} from (6),

{y1, ...,yi, ...,yB}.

For each bootstrap sample, we detect the break date denoted by τ ∗(b) from bth bootstrap

sample by using MLE as in (6). That is, we store estimated break dates for the bootstrap

samples,

{τ ∗(1), ..., τ ∗(b), ..., τ ∗(B)}, (7)

sort break dates in (7) in ascending order and find (α/2)(B + 1)th and (1 − α/2)(B + 1)th

break dates:

{τ ∗α/2, τ ∗1−α/2}. (8)

We replace the quantile values in (5) by the bootstrapped quantile values, {τ ∗α/2−τ̂ , τ ∗1−α/2−τ̂}
from (8). Thus, the bootstrap percentile confidence set is

[−(τ ∗1−α/2 − τ̂) + τ̂ , −(τ ∗α/2 − τ̂ ) + τ̂ ]

= [2τ̂ − τ ∗1−α/2, 2τ̂ − τ ∗α/2] (9)

Note that the confidence set (9) is different from that in Efron (1979) because the quantile

values are “flipped.” The unflipped confidence interval could have poor coverage properties

under an asymmetric distribution for the statistic of interest (see MacKinnon (2002) on this

point). Of course, if the distribution of statistic in interest is symmetric (i.e. q(1 − α/2) =

−q(α/2)), then there is no difference between Efron’s and the flipped percentile confidence

set.

2.3.2 Confidence Sets Based on a “Bootstrap Standard Error” Approach

We follow the same initial steps as in the calculation of the percentile bootstrap confidence

set and compute the standard error of bootstrapped break dates in (7). The standard error
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of bootstrapped break dates is

s.e.(τ ∗) =

√

√

√

√

1

B

B
∑

b=1

(τ ∗(b) − τ ∗)2

where

τ ∗ =
1

B

B
∑

b=1

τ ∗(b).

A standard error confidence set at 95% confidence level is

[τ̂ − 1.96 × s.e.(τ ∗), τ̂ + 1.96 × s.e.(τ ∗)]

Although there is no reason to believe the distribution of the break date estimator can be

approximated by a normal distribution in a finite sample, we arbitrarily choose 1.96 for a

95% confidence level. Note that this confidence set is a contiguous and symmetric interval

around the estimated break date. Its main benefit in practice is a relative computational

simplicity. It also appears to work surprisingly well in some other settings (for example,

see MacKinnon (2006)).

2.3.3 Confidence Sets Based on a “Bootstrap Inverted LR” Approach

To use a likelihood ratio statistic for constructing a confidence set, we need to know its

distribution. However, even the asymptotic distribution for testing an estimated break date

against a null date is nonstandard and depends on the nuisance parameter of the size of the

break (see Hinkley, 1970). Thus, we approximate the distribution based on bootstrapping.

Given an estimated break date τ̂ from data, we compute the likelihood ratio value conditional

on τ̂ and τ ∗(b) from the bth bootstrap data set:

LR∗(b) = −2[logL(ψ̂∗(b), τ̂ |y(b)) − logL(ψ∗(b), τ ∗(b)|y(b))].

We store the log-likelihood ratio values from bootstraps,

{LR∗(1), ..., LR∗(b), ..., LR∗(B)}, (10)
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and sort them to determine the α(B + 1)th LR value, LR∗(τ ∗α) as the critical value at 1−α

confidence level. Then, a bootstrapped inverted LR confidence set is

SLR = {τ |LR(τ) ≤ LR∗(τ ∗α)}

where LR(τ) is calculated from the data over each date, τ ∈ [λT, (1−λ)T ]. Note that because

the same critical value is applied to both tails of the inverted LR statistic, a bootstrapped

inverted confidence set could be asymmetric and disjointed. This is directly analogous to

the calculation of a confidence set based on the HFD concept. Here, it is a “highest-relative-

likelihood” concept that is used for including break dates in the confidence set. Also, because

the bootstrap inverted LR approach is directly based on the shape of the likelihood, the

resulting confidence set should be similar to that of the FD approach, although the practical

method of calculation is quite different and the confidence sets can be different in a given

sample.

2.3.4 Confidence Sets Based on a Bootstrap of Bai’s Asymptotically Pivotal

Statistic

For any bootstrap distribution to be exact, the distribution should not depend on any un-

known parameters. At least, in order to provide a better approximation of finite-sample

distributions than the asymptotic distribution (i.e., asymptotic refinements), the asymptotic

distribution should be pivotal. Bai (1997) derives an asymptotic distribution for construct-

ing a confidence set. This distribution is asymptotically pivotal if errors are second-order

stationary and serially uncorrelated and explanatory variables are second-order stationary.

Because Bai (1997)’s approach considers only one break of one regressor group in a linear

regression, K = 1 for the number of groups and M1 = 1 for the number of breaks in (1),

and we can drop the subscript k for indicating group. Bai (1997) constructs the following

statistic,
δ′Qδ

σ2
(τ̂ − τ0), (11)

where

Q = E[XtX
′
t].

17



Under standard conditions (see Bai (1997) for details), the statistic in (11) converges asymp-

totically in distribution to a non-standard, but fixed distribution. We bootstrap the non-

standard distribution and construct confidence intervals by using equal tailed quantile values

in (11) as

[τ̂ − σ̂2

(δ̂′Q̂δ̂)2
× q(1 − α/2) − 1, τ̂ − σ̂2

(δ̂′Q̂δ̂)2
× q(α/2) + 1].

3 Asymptotic Validity

For confidence set estimators S(Y ) given a nominal confidence level 1−α, suppose we define

a loss function which increases in the length of confidence set and the absolute value of

difference between the expected coverage rate and the nominal confidence level:

L(S(Y ); 1 − α) = L(d(S(Y )), |Pr[τ0 ∈ S(Y )] − (1 − α)|)

where d(S(Y )) is the expected length of confidence set, L(0, 0) = 0, and infL = 0. Then,

given this loss function, the likelihood-based confidence set estimators will be admissible in

the sense that their coverage rates converge to the nominal confidence level and the lengths

of their confidence sets are shorter than those of other methods as the sample size increases.

The break date is estimated consistently by minimizing the sum of squared residuals or

equivalently maximizing likelihood (see, for details, Bai (1997)). Having the consistent esti-

mators of other parameters as well as break dates, we can construct confidence sets for the

timing of break dates. While the coverage rates of confidence sets asymptotically converge

to the nominal confidence level, the lengths of the confidence sets are different over various

estimators of confidence sets. In this subsection, we show the asymptotic length of confidence

sets presented in the previous sections.

3.1 Pivotal quantity of τ̂ − τ0

In linear regression settings, Bai (1997) shows that the difference between the estimate of

the break date and the true break date is a pivotal quantity when scaled by the function

of the magnitude of the change, the expectation of regressors, and variance such as in (11).
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Then, the asymptotic expected length of the confidence set, when the coefficient has a break

and regressors and errors are stationary across regimes, is

2
σ2

δ′Qδ
× q(1 − α/2) + 3.

For example, the length of the confidence set at 95% confidence level is 22 σ2

δ′Qδ
+ 3. Our

Monte Carlo simulations also confirm that the lengths of confidence sets based on this piv-

otal quantity such as in Bai, bootstrap of Bai’s statistic, and bootstrap percentile methods

converge to the expected length as the sample size increases.

3.2 Elliott and Müller’s Confidence Set

Bai (1997) relies on the relatively the large magnitude of change so that the true break date

is consistently estimated. In other words, as the sample size increases, the magnitude of the

change shrinks but he assumes that it decreases slow enough (δ = dT−1/2+ǫ, 0 < ǫ < 1/2)

to reject the null hypothesis of no break. However, Elliott and Müller (2007) consider a

relatively small magnitude of change, δ = dT−1/2. Thus, their inverting test approach

constructs the confidence set with the length as a fraction of the sample size given a fixed

relative magnitude of change d. Thus, the length is proportional to the sample size under

the assumption of a fixed d and the proportion decreases in the fixed d. However, if we fix

the magnitude of change δ rather than the relative magnitude of change d, the length of

confidence set does not converge but increases as the sample size increases. We think this

property is undesirable. In reality and our application to economics, the magnitude of the

change is fixed. So, any desirable estimator of the confidence set for the timing of structural

breaks should provide more accurate information about the timing (i.e., shorter confidence

set) as we collect more information about the economy. (i.e., as the sample size increases

unless another structural change happens)
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3.3 Likelihood-based confidence sets

Siegmund (1988) analytically calculates and compares expected lengths of confidence sets

for various methods. For analytical tractability, he assumes that the distributions before and

after the break are N (0, 1) and N (δ, 1) and the true parameter values are assumed to be

known. When the nominal confidence level is close to 1 (i.e., α is close to 0), the expected

size of the confidence set is approximately

4δ−2log(α−1).

In such a case, the expected lengths of confidence sets from likelihood-based approaches

are asymptotically equal. We can easily extend this result for linear regression models by

scaling the magnitude of the change by the variance and the expectation of regressors as

in Bai (1997). The intuition is that we normalize regressors and variance of errors in order

to transform our regression model to mean shift model with a unit variance in Siegmund

(1988).

{yt = x′tβ + 1[t > τ0]x
′
tδ + et} ⇐⇒ {(yt − x′tβ)/σ = 1[t > τ0]x

′
tδ/σ + et/σ}

Then, the square of modified magnitude of the change is

δ∗
′

δ∗ = δ
′

E[xtx
′
t]δ/σ

2

and the expected length of confidence set is

[
δ
′

Qδ

σ2
]−14log(α−1).

The expected length of likelihood based confidence sets at 95% confidence level is about

12[ δ
′

Qδ
σ2 ]−1 and it is half of the length of confidence sets based on a scaled pivotal quantity

δ
′

Qδ
σ2 (τ̂ − τ) such as Bai and bootstrap percentile methods in the present paper.
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4 Monte Carlo Analysis

In order to investigate the finite-sample performance of the various methods for constructing

confidence sets discussed in the previous section, we perform various Monte Carlo experi-

ments: a break in mean, a break in variance, and a break in drift, multiple breaks in mean

and/or variance, and a break in mean for serially correlated data. Each experiment examines

the coverage accuracy and expected length of the confidence sets based on different methods.

The coverage rate is measured as the percentage frequency that confidence sets of different

methods include the true break date across 5,000 simulations and its accuracy is based on

comparing it to a specified nominal confidence level. The expected length of the confidence

sets is measured by the average length across the Monte Carlo simulations. The nominal

confidence level is 95% and the sample sizes are set to 40, 80, 160, 320, and 640, respectively.

We use 199 bootstrap samples for each bootstrap method. For the FD approach, we employ

the MH algorithm with a multivariate Student-t proposal distribution. The marginal fiducial

distributions of parameters of interest are constructed using 2,000 draws from the joint fidu-

cial distribution after a burn-in sample of 500 draws. The trimming value for possible break

dates, λ, is 0.15. For comparison, we also consider constructing confidence sets using the

asymptotic methods developed by Bai (1997) and Elliott and Müller (2007). Because their

methods are based on some restrictive assumptions in terms of regressor distributions - e.g.,

covariance stationarity within each regime - and Elliott and Müller’s approach is not usable

for confidence sets of a change in variance, they are included in the Monte Carlo experiments

only when applicable. Readers are referred to the original articles for the practical details

of implementing these asymptotic methods. The results of the Monte Carlo experiments are

presented in the next subsections.

4.1 A Structural Break in Mean

For a break in mean, the model in (1) can be simplified as follows:

yt = µ0 + µ11[t > rT ] + et, et ∼ i.i.d.N (0, σ2), (12)
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where 1[·] is an indicator function. We set µ0 = 1, µ1 = −0.5, and σ = 0.5. For the

experiment, the true break point fraction r is 0.5. The results are presented in Figures 2(a)

and 2(b).

The results show that confidence sets for the Elliott and Müller approach, the boot-

strapped inverted LR approach, and the FD approach have good coverage accuracy across

different sample sizes. However, the expected length of the Elliott and Müller confidence set

is greater than the expected length for the FD or bootstrap inverted LR approaches. Also,

note that the ratio of lengths of the Elliott and Müller confidence sets to those of the like-

lihood based methods gets larger as the sample size increases. Strikingly, when the sample

size is 640, the Elliott and Müller confidence set is more than three times as long as that

of likelihood-based confidence sets. Bootstrap percentile and standard error confidence sets

have good coverage accuracy for large sample sizes such as 320 and 640, but they are also

longer than the FD and bootstrap inverted LR confidence sets. Meanwhile, the bootstrap

percentile and bootstrap standard error confidence sets do not have good coverage accuracy

for smaller sample sizes. Bai’s confidence intervals achieve relatively low coverage rates and

longer lengths, whereas the approach based on a bootstrap of Bai’s statistic brings out much

longer lengths without much improvement in terms of coverage rates.

4.2 A Structural Break in Variance

For a break in the variance of the error term, the model can be written simply as

yt = µ+ et, et ∼ i.i.d.N (0, σ2
t ) (13)

where

σ2
t =







σ2
0 if 1 ≤ t ≤ rT

σ2
1 if rT < t ≤ T ,

We set µ = 1, σ0 = 1, and σ1 = 0.5. The true break point fraction r is 0.5. The results are

presented in Figures 3(a) and 3(b).

Since an asymptotic distribution for a structural break in variance is not rigorously devel-

oped in the literature, we employ Bai’s method and construct confidence sets of break dates in
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Figure 2: Coverage rates and average lengths of confidence sets for the timing of a break in
mean
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mean of the absolute values of errors from the regression model in (13) as in Stock and Watson

(2002) and Sensier and van Dijk (2004):

√

π

2
|et| = σ0(1 − 1[t > rT ]) + σ11[t > rT ] + ǫt.

The coverage rates of FD confidence sets are close to 95% over different sample sizes.

The bootstrap percentile and bootstrap inverted LR confidence sets have good coverage

accuracy for sample sizes larger than 160. However, the bootstrap percentile confidence sets

become much longer than those of the bootstrap inverted LR and FD methods as the sample

size increases. Meanwhile, the bootstrap standard error approach attains coverage rates well

below 95%, with relatively longer confidence sets compared to the FD and bootstrap inverted

LR approaches. The coverage rates of confidence sets based on Bai’s approach get close to

95% as the sample size increases, but the lengths are greater than those of confidence sets

based on other approaches, including being approximately twice as long as the confidence

sets based on the FD and bootstrap inverted LR approaches.

4.3 A Structural Break in Drift

For a break in drift in an otherwise trend stationary process, the model can be written as

yt = α + β0(t/T ) + β1(t/T )1[t > rT ] + et, et ∼ i.i.d.N (0, σ2)

We set α = 1, β0 = 2, β1 = −0.5, and σ = 0.3. The true break point fraction r is 0.5. The

results are presented in Figures 4(a) and 4(b).

The bootstrap standard error approach and the likelihood-based approaches work well

with good coverage accuracy. The FD confidence sets have relatively short lengths for each

sample size. The confidence sets based on Bai’s asymptotic approach, the bootstrap of Bai’s

statistic, and the bootstrap percentile approach have coverage rates far below the nominal

95% level, with levels around 60% to 80% in sample sizes of 40 to 160. The confidence

sets based on the bootstrap of Bai’s statistic have relatively large expected lengths for each

sample size. The bootstrap standard error approach achieves quite stable coverage rates
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Figure 3: Coverage rates and average lengths of confidence sets for the timing of a break in
variance
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drift

26



Table 1: Coverage rates and average lengths of confidence sets for the timing of two structural
breaks in mean from Fiducial distribution approach based on Monte Carlo simulations

Fiducial Dist. 40 80 160 320 640
First Break 0.981 0.971 0.966 0.956 0.944

[16.09] [28.39] [45.46] [59.37] [65.53]
Second Break 0.984 0.973 0.958 0.949 0.947

[16.03] [28.26] [45.84] [61.14] [64.70]

Notes: The coverage rates for confidence sets are constructed using a nominal 95%
confidence level, with average lengths of the confidence sets reported in square brackets.

close to 95%, but it also produces confidence sets with relatively large expected lengths.

The bootstrap inverted LR approach has just below 95% coverage rate with relatively short

confidence sets.

4.4 Multiple Structural Breaks

For multiple structural breaks, we consider two cases: (i) two breaks in mean and (ii) one

break in mean and one break in variance, possibly at different break points. We examine the

performance of the FD approach only, as the Monte Carlo simulations for bootstrap methods

are computationally infeasible and Bai’s method has already been shown to perform poorly

in the case of only one break. In terms of implementation, the two break dates are sampled

from different blocks of the MH algorithm.

For case (i), the true DGP is as follows:

yt = µ0 + µ11[t > r1T ] + µ21[t > r2T ] + et, et ∼ i.i.d.N (0, σ2),

We set µ0 = 1, µ1 = −0.5, µ2 = 0.5, and σ = 0.5. For the experiment, the true breakpoint

fractions r1 and r2 are 0.3 and 0.7, respectively. The results of Monte Carlo simulation are

summarized in Table 1. In finite samples, the true break dates are over-covered since the

minimum distance between two break dates increases the relative probabilities of allowable

break dates from what they would otherwise be. However, this effect disappears and the

coverage rates converge to the nominal 95% when the sample size is larger.

For case (ii), the magnitudes of breaks in mean and variance are the same as in the case
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Table 2: Coverage rates and average lengths of confidence sets for the timing of one break in
mean and one break in variance from Fiducial distribution approach based on Monte Carlo
simulations

Fiducial Dist. Sample size 40
Breakpoint fraction r1 0.3 0.4 0.5

r2 0.7 0.6 0.5
Break in mean 0.964 0.955 0.948

[22.82] [21.93] [21.10]
Break in variance 0.941 0.947 0.961

[20.51] [18.88] [17.92]

Notes: The coverage rates for confidence sets are constructed using a nominal 95%
confidence level, with average lengths of the confidence sets reported in square brackets.

of one break in mean or variance. The true DGP is as follows:

yt = µ0 + µ11[t > r1T ] + et, et ∼ i.i.d.N (0, σ2
t )

where

σ2
t =







σ2
0 if 1 ≤ t ≤ r2T

σ2
1 if r2T < t ≤ T ,

We set µ0 = 1, µ1 = −0.5, σ0 = 1, and σ1 = 0.5. We perform three experiments by varying

true breakpoint fractions: a) 0.3 and 0.7, b) 0.4 and 0.6, and c) 0.5 and 0.5.14 The first break

fraction in each experiment is for break in mean and the second is for break in variance. We

consider the sample size 40 only since the results of Monte Carlo simulations are similar to

those from one break in mean or variance. The results are summarized in Table 2. The

coverage rates are close to the nominal level 95%. Thus, when using the FD approach,

the existence of a break in mean does not materially affect the inference about a break in

variance and vice versa.

14 Even when the true break dates are the same, we think of the breaks as being independent in the sense
that they can be different in our estimation. Imposing a common break date for the two parameters would,
of course, increase power and reduce the expected length of the confidence set in the case of c)
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Figure 5: Coverage rates of confidence sets for the different timing of a break in mean

4.5 Robustness

Next, we examine whether the performance of FD approach is robust to the location of break

date or the presence of serially correlation.

First, we vary the location of true breakpoint as a fraction of the sample from r = 0.3 to

0.5 in (12) for the case of a break in mean.15 The sample size is 40. Figure 5 presents the

results. The coverage rates of confidence sets are robust to locations of true break dates. FD,

bootstrap inverted LR, and Elliott and Müller’s approaches result in coverage rates close to

95%.

Second, we generate serially correlated data with a structural break in mean. The true

DGP is as follows:

yt = µ0 + µ11[t > rT ] + ρyt−1 + et, et ∼ i.i.d.N (0, σ2),

15 In the cases of r > 0.5, the Monte Carlo simulation results should be symmetric to the results when
r < 0.5. Thus, we consider r ≤ 0.5 only.
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where µ0 = 1, µ1 = −0.5, σ = 0.5, r = 0.5 and ρ = 0.3. Figure 6 presents the results.

The coverage rates based on all the methods converge to 95% as the sample size increases.

However, in finite samples such as 40 and 80, only the FD and Elliott and Müller confidence

sets attain 95% coverage rates.

4.6 Summary of Monte Carlo Results

The main findings for the Monte Carlo analysis can be summarized as follows.

First, corresponding to their admissibility in the simple case of a break in mean with

known parameters, the likelihood-based confidence sets - i.e., those based on the FD and

bootstrap inverted LR approaches - produce the most accurate coverage rates and shortest

expected lengths in most cases. Furthermore, the ratios of the lengths of confidence sets

based on other approaches to lengths of the likelihood-based confidence sets become larger

as the sample size increases.

Second, the FD approach constructs confidence sets based on marginal distributions of
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break dates. The fact that the coverage is so accurate directly implies that, in some way, the

marginal fiducial distributions provide good approximations of finite-sample distributions

that are close to being pivotal. Part of this accuracy could be because the nuisance param-

eters other than breakpoint parameters of our interest are integrated out of the likelihood

(for example, see Andrews and Ploberger (1994), Berger, Liseo, and Wolpert (1999), and

Elliott and Müller (2007)). However, the deeper question is what is it about the marginal

fiducial distributions that is essentially pivotal. Perhaps surprisingly, additional Monte Carlo

analysis reveals that various features of the marginal fiducial distributions are quite sensitive

to different parameter values. For example, we find that the relative height of the mode of

the fiducial distribution to the cut-off, k(1 − α), for including break dates in the confidence

set (a feature of the fiducial distribution that can be thought of as analogous to an LR

statistic), has a distribution across repeated samples that is highly dependent on the size

of the structural break. Instead, what appears to be more stable and explains the success

of the FD approach is the relative value of the cut-off k(1 − α) to the fiducial probability

of the true break date Pr[τ = τ0]. In particular, the distribution of k(1 − α) − Pr[τ = τ0]

appears to always have an (1 − α) quantile equal to zero. To the extent that this quantile

is zero and higher quantiles are strictly positive, the FD confidence sets will have exactly

correct coverage. Of course, if the (1 − α) quantile were positive, the FD confidence sets

would under-cover because the cut-off k(1−α) would be above the Pr[τ = τ0] in more than

α samples. On the other hand, if the (1 − α) quantile is zero, but some higher quantiles

are also zero, then the FD confidence sets would over-cover. Figure 7 reports Monte Carlo

results for the distributions of the difference k(1−α)−Pr[τ = τ0] for different size structural

breaks in mean and for 1 − α = 0.95, 0.80, and 0.68. We find that, regardless of the size

of the break, the (1 − α) quantile is always exactly zero. When structural breaks are large,

some higher quantiles are also zero, so there is a tendency to over-cover in such cases. How-

ever, over-coverage in the case of very large structural changes is not particularly troubling

given that the only way to attain correct coverage in such a setting would be to have empty

confidence sets in α samples.

Third, some bootstrap methods perform very well in a sense of exact coverage in large

sample sizes. However, when the sample sizes are small or the estimated break dates for
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Figure 7: Empirical cumulative distribution function of k(1 − α) − Pr[τ = τ0]
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the actual data are closer to the beginning or end of sample, the flipping in the percentile

bootstrap method produces very low coverage rates. This is because the parameter space

of interest (i.e., the possible break dates) is limited to 100 ×(1 − 2λ)% centered dates by

trimming as Π = [λT, (1 − λ)T ] and some dates among potential break dates might not be

considered in the procedure to construct confidence set. In particular, suppose the true break

date is close to the first possible break date considered, λT ∈ Π. The number of periods

between the true break date and the first possible break date is very small and the number

of periods between the true break date and the ending break date (1 − λ)T is large. Then,

the two subsample periods before and after the estimated break date will be asymmetric. By

flipping, break dates that are estimated in the first subsample period area from bootstrapped

data sets will be used for bootstrapped distribution in the second subsample period, so that

the first subsample period cannot fully cover the second sub-interval, which is longer than

the first-sample period. By contrast, the second subsample period is flipped to cover the first

sub-interval, but some portion of the second subsample period might be out of the bounds

for possible break dates in Π. Thus, the bootstrap percentile methods may produce very

low coverage rates.16 When the sample size is very small, this problem arises even for the

structural change at the middle point of the sample, r = 0.5.

Fourth, because Elliott and Müller (2007) use sequential tests to attain an exact coverage

rate, their test statistic is constructed in order to focus on producing the exact size of the test

rather than having high power to reject false break dates. Thus, their confidence sets may be

unnecessarily long.17 By contrast, since the FD approach relies on break date distributions

conditional on the actual data, the confidence set for the FD method can be constructed

to be as short as possible, while maintaining an accurate coverage rate. In addition, if the

magnitude of the parameter change is very large, Elliott and Müller’s test easily rejects the

16 To illustrate, suppose the sample size is 40, the estimated break (τ̂ ) is 10, and we have a 15% trimming
rule for candidate break dates. Because we exclude the first 6 and last 6 points based on trimming, Π=[7,34].
Suppose the lower and upper bootstrap quantiles for τ∗b − τ̂ are -3 and 24, respectively. The lower quantile
is determined by the trimming rule. Then, the confidence set based on flipped quantiles would be [-14,13].
Thus, the trimming implicitly means that [14,34] will also be excluded from Π in practice and the coverage
of the confidence sets based on flipping will be far below the nominal confidence level.

17In methods of inverting sequential tests, having a test with the exact size equal to the nominal significance
level means having a confidence set estimator with the exact coverage rate equal to the nominal confidence
level.
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false hypotheses of break dates. Thus, in order to maintain correct coverage, all hypotheses

of break dates including the true break date will be rejected in α samples. That is, their

method can produces empty confidence sets, which are not particularly helpful inferences

when found or reported in a given empirical application (i.e., they are usually interpreted as

an indicator of model misspecification, even though this is not necessarily the case).

5 Application to Postwar U.S. Real GDP

5.1 Model Specification

We estimate break dates and model parameters by maximum likelihood estimation and apply

the various methods presented in section 2 in order to construct confidence sets for structural

breaks in postwar U.S. real GDP. In terms of our general model specification, we consider

the two possibilities that real GDP follows i) a nonstationary process with a unit root and

ii) a trend stationary process.

Under the assumption of a unit root, the model for M growth breaks and N variance

breaks is given as follows:

∆yt = c0 +
M

∑

m=1

cmD(Tm) +

p
∑

j=1

φj∆yt−j + et, et ∼ i.i.d.N (0, σ2
t ) (14)

where

σ2
t =































σ2
0 if 1 ≤ t ≤ τσ2

1

σ2
1 if τσ2

1
< t ≤ τσ2

2

...

σ2
N if τσ2

N
< t ≤ T ,

and D(Tm) = 1 if t > τcm and 0 otherwise and τcm is mth break point for constant. The

lagged first differences account for serial correlation. We determine the number of first

difference terms, p, by the Schwarz Information Criterion (SIC).

We consider sequential asymptotic tests to determine the number and types of structural

breaks.18 The testing proceeds as follows: We begin with the null hypothesis of no structural

18In principle, we could consider Bayesian model selection to determine the number and types of structural
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breaks and the alternative of one break in constant or variance. If we can reject the null

hypothesis of no break, we assume one more break in the constant or variance and the

alternative hypothesis in the previous test becomes the null hypothesis in the new test. The

estimates of break dates in the alternative hypothesis from the previous test are maintained

and given in the null and the alternative for the new test and an additional break at an

unknown date is considered in the alternative. We keep performing these tests sequentially

until a null hypothesis cannot be rejected. In order to determine the number of breaks

and model specification, we consider LR statistics based on maximum likelihood estimates

under the null and alternative.19 The LR statistic is calculated from the log-likelihood

values for the regression in (14). For example, suppose the null hypothesis regression has M

breaks for constant and N breaks for variance and the alternative has M + 1 breaks and N

breaks, respectively. Then, given the number of break dates for the constant and variance

parameters, the particular break dates are chosen to make the LR test statistic from (14) as

large as possible and we reject the null hypothesis if this supLR test statistic is larger than

a specified critical value. Thus,

LR(τc0 , . . . , τcM+1
, τσ2

0
, . . . , τσ2

N
)

= −2 × [ logL(c0, . . . , cM , σ
2
0, . . . , σ

2
N , φ1, ..., φp|y)

−logL(c0, . . . , cM+1, σ
2
0, . . . , σ

2
N , φ1, ..., φp|y) ]

{τ̂c1, ..., τ̂cM+1
, τ̂σ2

1
, . . . , τ̂σ2

N
}

= arg Max
τc1 ,...,τcM+1

∈Π, τ
σ2
1
,...,τ

σ2
N
∈Π
LR(τc1 , . . . , τcM+1

, τσ2
1
, . . . , τσ2

N
)

supLR statistic = val Max LR(τ̂c1 , . . . , τ̂cM+1
, τ̂σ2

1
, . . . , τ̂σ2

N
)

Andrews (1993, 2003) provides tables of critical values for a supLR test of an unknown break

breaks. Levin and Piger (2007) use Monte Carlo analysis to show that this approach has good frequentist
properties in finite samples. However, for simplicity, we focus on new techniques for making inferences about
the timing of structural breaks, rather than inferences about their number and type.

19 Bai (1999) proposed an LR-type test for multiple structural breaks. However, while his test can be
applied to partial structural changes with some parameters changing and others remaining constant, all of
the parameters that change are restricted to have same break dates. By contrast, our approach allows for
different parameters to break at different break dates.
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date. We use these critical values for our test, although we note that our test is generally

more complicated than the simple case of a one-time structural break for which the critical

values were derived. Once a structural break model is selected, we re-estimate break dates

simultaneously, rather than conditioning on some breaks as was done when testing a null

break versus alternatives with additional breaks. Thus, the estimated break dates could be

different from those in the tests for the number of breaks. We adopt this kind of two-step

procedure in order to be able to use Andrews’ critical values in the first step, as the critical

values would only be strictly correct if we knew and imposed the break date under the null

when estimating the model under the null and alternative.

Under the assumption of trend stationarity, our model includes a constant, a drift, a

lagged level, and p lagged first differences. The model for M breaks in drift and N breaks

in variance is as follows.

yt = α + β0(t/T ) +

M
∑

m=1

βiDTm + ρyt−1 +

p
∑

j=1

φj∆yt−j + et, et ∼ i.i.d.N (0, σ2
t ) (15)

where DTm = (t − τβm
)/T if t > τβm

and 0 otherwise, and τβm
and τσ2

n
are mth and nth

break points for the drift and for the variance, respectively. Including DTm allows for two

segmented trends to be connected.20 For the model (15), the number of extra first difference

regressors, p, is again determined by SIC. The remaining steps (finding break dates and

calculating the test statistic) are also exactly the same as in the previous case.

5.2 Empirical Results for Postwar U.S. quarterly Real GDP

5.2.1 Estimating Break Dates

To estimate structural breaks, we use postwar quarterly U.S. real GDP data from 1947:Q1

to 2005:Q2, corresponding to 234 observations. Thus, based on a symmetric 15% trimming

value, the candidate break dates are from 1956:Q1 to 1996:Q2. The data are seasonally

20 Note that the kinked (or connected) time trend specification in our application is different from the
disconnected one considered in Bai (1997). For the reference for a kinked time trend break, see Perron (1989)
and Zivot and Andrews (1992).
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Figure 8: Postwar U.S. real GDP

adjusted and based on Billions of Chained 2000 Dollars from U.S. Department of Commerce:

Bureau of Economic Analysis.

Figure 8(a) depicts the natural logarithm of postwar U.S. real GDP. It may be hard to

identify a drift or variance break from a casual glance. Figure 8(b) shows growth rates of

real GDP. In this case, the volatility decline seems fairly apparent, even if the exact timing

of the break is unclear.

First, we consider the assumption that real GDP has a unit root. Based on SIC, we

find that one lag of first differences is sufficient to capture any serial correlation in growth

rates. Detailed results are given in Table 3. Based on our testing, we find support for a

model of real GDP growth with one variance break, which is estimated to occur in 1984:Q1.

The estimated ratio of standard deviations of shocks after the break compared to before the

break is 0.43. This supLR test statistic against the null of no structural breaks is 62.20.

Based on Andrews (2003)’s test statistics for one unknown break of a parameter over the

middle 70% of a sample period, the critical value at 5% significance level is 8.68. Meanwhile,

the null hypothesis of no break in growth model cannot be rejected against the alternative

hypothesis of the break in mean at a 5% significance level. Likewise, the null hypothesis of

one break in variance cannot be rejected against the alternatives of an additional break in

the mean or an additional break in variance.21

21 Consistent with the fact that the model with one break in mean and one break in variance is not chosen
by our test procedure, the confidence set for a break in mean for such an alternative model covers about
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Table 3: Structural break estimates for the growth rate of U.S. real GDP

Break Dates c0 c1 Growth rate φ σ2
0 σ2

1 Vol.Ratio(SD) lnL
No Break 2.26 3.38 0.33 14.00 -635.34

(0.32) (0.06) (1.30)
One Br. in Con. 1966:Q1 2.81 -0.77 4.14/3.01 0.32 13.87 -634.27

(0.49) (0.13) (0.06) (1.29)
One Br. in Var. 1984:Q1 2.19 3.21 0.32 20.03 3.63 0.43 -604.23

(0.27) (0.06) (2.34) (0.56)
One Br. in Con. & 1987:Q1 2.58 -0.64 3.89/2.93 0.34 20.31 3.66 0.42 -603.14
One Br. in Var. 1983:Q2 (0.37) (0.10) (0.06) (2.40) (0.55)

Second, we consider the assumption that real GDP is trend stationary. In this case,

based on SIC, one lagged difference is, again, necessary to capture serial correlation. The

results for the trend stationary model are reported in Table 4. The estimated break date for

a one-time break in drift is 1968:Q2 and its test statistic is 9.37. Thus, we can reject the null

hypothesis of no structural change at the 5% level. The estimated variance break is 1983:Q2

and the test statistic is 62.06. Thus, the null hypothesis of no breaks is also rejected for the

alternative of one break of variance. Because the null hypothesis of no breaks is rejected

in favor of two different alternatives, we proceed to test for an additional break in drift or

variance, with each previous alternative serving as a new null. The null of one break in

variance cannot be rejected against the alternative of an additional break in variance, even

without a restriction on the date of the null break. In this case, the supLR statistic is

4.26. However, the null of one break in variance can be rejected against the alternative of

additional break in drift given the variance break date of 1983:Q2, with a supLR statistic of

10.11. Without the restriction of the variance break date, the LR statistic would have been

11.88 with the estimated drift break date of 1969:Q1 and variance break date of 1982:Q4.

It should be noted that the estimated drift break date of 1969:Q1 based on simultane-

ous estimation differs from the drift break date of 1968:Q2 based on restricted estimation.

Meanwhile, the coefficient of the drift decreases by about 22% (0.37 to 0.29) from before

and after the break and the estimated ratio of standard deviations of shocks after the break

compared to before the break is 0.43, which is exactly same as in the unit root case. Also,

the null of one break in drift cannot be rejected against the alternative of an additional break

90% of the parameter space of possible break dates. This wide confidence set reflects the lack of empirical
support for a sudden break in the long-run growth rate.
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Table 4: Structural break estimates for the level of U.S. real GDP

Break Dates β0 β1 β2 ρ φ σ2
0 σ2

1 σ2
3 Vol.Ratio(SD) lnL

No Break 0.14 0.96 0.35 13.47 -630.88
(0.07) (0.02) (0.06)

One Br. in Drift 1968:Q2 0.36 -0.07 0.91 0.37 12.94 -626.20
(0.09) (0.02) (0.02) (0.06)

One Br. in Var. 1983:Q2 0.14 0.96 0.36 19.54 3.62 0.43 -599.85
(0.05) (0.01) (0.06)

One Br. in Drift & 1969:Q1 0.37 -0.08 0.90 0.37 19.00 3.45 0.43 -593.91
One Br. in Var. 1982:Q4 (0.08) (0.02) (0.02) (0.06)
Two Br.s in Drift 1958:Q1 0.34 0.14 -0.15 0.89 0.37 12.71 -624.08

1966:Q4 (0.09) (0.05) (0.04) (0.02) (0.06)
Two Br.s in Var. 1960:Q4 0.14 0.96 0.35 26.29 15.69 3.59 0.77 -597.72

1982:Q2 (0.05) (0.01) (0.06) 0.48

in drift, with a supLR statistic 4.24. Thus, under trend stationarity, we choose a model with

one break in drift, estimated to be in 1969:Q1, and one break in variance, estimated to be

in 1982:Q4.

To sum up, for postwar real GDP data, there is strong evidence of structural break in

volatility in the early 1980s, but more mixed evidence for a structural break in long-run

growth that may have occurred in the late 1960s. The timing of the possible break in long-

run growth in the late 1960s is, perhaps, surprising given the emphasis on a possible break

in 1973 in the unit root literature (e.g., see Perron (1989) and Zivot and Andrews (1992)).

However, it is consistent with the timing found by Bai, Lumsdaine, and Stock (1998) when

they estimate break dates in a variety of multivariate models using real per capita demand

components related to consumption and investment. The reason for different estimates of

break dates is that, in the unit root testing literature, a break date is chosen based on

maximizing the evidence against a unit root, while here it is chosen based on maximizing

the likelihood function with respect to the break date.

5.2.2 Confidence Sets for Break Dates in Postwar U.S. real GDP

Based on the various methods for constructing confidence sets discussed in section 2, we

find confidence sets for break dates in U.S. real GDP. It should be mentioned that all the

confidence sets based on bootstrap methods require the computation of likelihood values. In

particular, because we consider structural breaks in drift and variance respectively at different

dates, it is necessary to compute likelihood values through maximization simultaneously
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with respect to coefficients and variance, rather than estimating models via OLS. However,

bootstrapping with two different break dates is computationally infeasible given the present

technology. Thus, we construct confidence sets for one break date by fixing the other break

date at its maximum likelihood estimate. The number of bootstraps is also limited to 199.

It is important to emphasize, however, that multiple breaks do not pose any problem for the

FD approach because MCMC simulation from the likelihood requires only the addition of

one more block in the sampler for an additional break. Thus, this problem for the bootstrap

methods nicely illustrates the computational benefits of the FD approach.

The confidence sets for a break date in variance for the unit root and trend stationarity

assumptions are very similar. These results are displayed in Figures 9(a) and 9(c). Across

assumptions and methods, the break dates range between 1981 to 1990. The confidence sets

under the assumption of trend stationarity are relatively tighter, with their lengths about

one year shorter than those of confidence sets under the assumption of a unit root. Because

likelihood-based confidence sets were shown to be the most accurate in the Monte Carlo

analysis, we focus on them. The FD confidence sets include, at a 95% confidence level,

dates between 1982:Q1 to 1984:Q4 under the unit root assumption and between 1982:Q3

to 1984:Q2 under the trend stationary assumption. The bootstrap inverted LR method

produces confidence sets between 1982:Q1 to 1985:Q1 under the unit root assumption and

between 1982:Q3 to 1984:Q1 under the trend stationarity assumption. Notably, these nar-

row confidence sets are as short or shorter than the 67% confidence interval of 1982:Q4 to

1985:Q3 reported in Stock and Watson (2002) that was based on Bai’s method.22 When

we apply Bai’s method to our dataset, the confidence set ranges from 1983:Q2 to 1990:Q2.

The length is more than twice as long as that of the confidence sets for the likelihood-based

approaches. Meanwhile, the narrowness of the confidence sets for the likelihood-based ap-

proaches supports the idea that the volatility reduction was sudden rather than gradual, as

a gradual decline would presumably have corresponded to a relatively flat likelihood with

respect to break dates and, therefore, would have resulted in a wide confidence set rather

22 Stock and Watson (2002) consider four quarter growth of U.S. real GDP, rather than annualized quar-
terly growth, as considered here. They discuss that because they use Bai’s (1997) method by regressing
the absolute value of residuals from an autoregression of real GDP growth on a constant and allowing a
break in the constant from the auxiliary regression, the break estimator has a non-normal and heavy-tailed
distribution, and 95% confidence interval would be very wide, hence their reporting of the 67% interval.
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Figure 9: Confidence Sets for the Timing of Structural Breaks in Postwar U.S. real GDP

Note: The vertical dotted lines denote the outside bounds on potential break dates,
Π = [λT, (1 − λ)T ] and the number in the right side of each confidence set is its length.

than a narrow one.

Under the assumption of trend stationarity, the confidence sets for the break in drift

range as wide as the late 1950s to late 1980s, as displayed in Figure 9(b). The bootstrap

percentile and bootstrap standard error confidence sets are shifted relatively earlier in the
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sample. For the bootstrap percentile approach, the confidence set covers 1956:Q2 to 1979:Q4.

For the bootstrap standard errors approach, the confidence set covers 1958:Q3 to 1979:Q3.

The bootstrapped inverted LR confidence set is the widest from 1960:Q4 to 1987:Q4.23

Meanwhile, the FD confidence set consists of three disconnected intervals, which are 1963:Q2

to 1980:Q4, 1981:Q2 to 1982:Q3, and 1983:Q2 to 1983:Q3, although the gaps between the

disconnected periods are very short, so we could, without too much loss of power, consider a

slightly conservative 95% confidence set of 1963:Q2 to 1983:Q3. Just as the narrow confidence

sets for the variance suggested that the structural change was sudden rather than gradual,

these wide confidence sets for the drift lead to doubts about whether any structural change

in long-run growth was sudden.

It may be worth noting that because, from a Bayesian perspective, the fiducial distribu-

tion for a break date is equivalent to its posterior distribution given noninformative priors,

we could easily compute the Bayesian probability that the break exists before a specific date

τ ⋆:

Pr(τ < τ ⋆|y) =
1

G

G
∑

g=1

1[τ (g) < τ ⋆]

where G is the number of draws in MCMC procedure and τ (g) is gth sampled break date. For

example, it might be of interest to calculate the probability that the drift break happened

before the 1973 oil price shock since our estimated break date is earlier. The probability

that the break date is before 1973:Q1 based on drift model with one drift break and one

variance break is Pr(τ < 1973 : Q1|y) = 68.78%. The median date τ 0.5 in the distribution

such as Pr(τ ≤ τ 0.5|y) = 50% is 1970:Q4. Thus, the computed probability suggests that,

at least from a Bayesian perspective, the source of drift break is less likely the first oil price

shock than is typically assumed in the literature (e.g., Perron (1989)). Of course, from the

classical perspective, 1973 lies within our confidence sets, so we cannot reject the oil shock

hypothesis for the productivity growth slowdown.

Finally, as described in the section 2, our FD approach can be applied given any distri-

23 Our Monte Carlo analysis in section 3 showed that the bootstrapped inverted LR confidence set generally
produced shorter average lengths, while this particular confidence set for a break in drift in postwar U.S. real
GDP data turns out to be the longest. However, in the Monte Carlo simulations, about 10% of simulated
data sets resulted in the bootstrap inverted LR approach producing the longest confidence set. Thus, the
results for the U.S. data might be thought of as an example of one of these 10% cases.
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butional assumption. Thus, we also construct confidence sets under the assumption that the

model errors follow a Student-t distribution. In order to consider the degrees of freedom in

Student-t distribution, we simply add one more block for the degrees of freedom parameter

in the MCMC simulation. Our results are robust in the sense that confidence sets from

Student-t errors are exactly same as or slightly tighter than those based on normal errors.

Notice that the confidence set for the break in drift under the assumption of trend station-

arity is shifted 3 years earlier in the sample, although its length is quite similar to the length

of confidence set from normal errors.

6 Conclusion

In this paper, we have proposed a fiducial distribution (FD) approach to constructing confi-

dence sets for the timing of structural breaks in economic time series. In terms of practical

implementation, the FD approach employs Markov chain Monte Carlo (MCMC) methods

to simulate marginal fiducial distributions from the likelihood function. From a Bayesian

perspective, this approach is equivalent to constructing Bayesian credible sets with noninfor-

mative priors. However, we take a classical interpretation of the confidence sets and evaluate

them based on their performance in repeated samples. In particular, our criteria for evalu-

ating confidence sets are that they should be short and have accurate coverage rates given a

confidence level.

We have also considered various bootstrap approaches to constructing confidence sets

for the timing of structural breaks. In particular, we discussed the implementation of con-

structing confidence sets using a bootstrap percentile approach, a bootstrap standard error

approach, a bootstrap inverted likelihood ratio (LR) approach, and a bootstrap of Bai’s

(1997) statistic. We conducted Monte Carlo analysis of the coverage accuracy and expected

length of confidence sets for different methods.

Our Monte Carlo analysis shows that the FD approach and the bootstrap inverted LR

approach generally perform best in terms of accurate coverage rates and shorter expected

length of confidence sets under a given confidence level. Notably, both methods are based

on the likelihood function, although they are implemented in very different ways and can
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produce different inferences in a given setting.

We argue for using the FD approach in practice because it has several practical ad-

vantages in addition to coverage accuracy and shorter length. First, the FD approach is

more broadly applicable in the sense that we can consider different parameters undergo-

ing structural breaks at different break dates, as has been hypothesized for U.S. real GDP

and other macroeconomic time series. Second, although bootstrap methods are available

for complicated models of structural breaks, the FD approach is more computationally ef-

ficient, especially in settings such as respective breaks in mean and variance. Third, the

FD approach requires only the ability to evaluate likelihood function over parameter values

and potential break dates. Thus, it can be applied to any econometric model with a fully

specified likelihood function (i.e. models with Student-t distributions, Poisson distributions,

and so on).

Based on the various methods proposed in this paper, we examine the nature and timing

of structural breaks in U.S. real GDP. We find support for the Great Moderation, with

the maximum likelihood estimate for the break date of 1984:Q1 and a narrow confidence

set from 1982:Q1 to 1984:Q4 for the FD approach under the assumption of a unit root.

Meanwhile, there is no evidence of a break in the long-run growth rate under a unit root.

By contrast, under the assumption of trend stationarity, we find evidence of a break in drift,

with 1969:Q1 as the estimated break date. However, the confidence sets for the timing of a

break in drift are quite wide, even for the FD approach, ranging from the early 1960s to the

early 1980s. Meanwhile, if we take a Bayesian interpretation of the FD approach as providing

a posterior under noninformative priors, the probability that a break occurred before the

often hypothesized date of 1973:Q1 (e.g., Perron (1989)) is about 69% given normal errors.

In terms of the Great Moderation under the assumption of trend stationarity, it is estimated

to have occurred in 1982:Q4 and the FD confidence set is quite similar to the confidence set

under assumption of a unit root.
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Appendix 1

MCMC algorithm for a fiducial distribution

For the purpose of illustration, we explain a MCMC algorithm for a model with two groups of

parameters that have breaks at different dates. For simulation from the likelihood function,

we use the Metropolis-Hastings algorithm. In order to generate model parameters ψ, we

maximize the likelihood function conditional on break dates τ1 and τ2 at every iteration.

This reoptimization gives us mean and variance-covariance for an independent chain proposal

density based on a multivariate Student t-distribution.

Step 1: Choose initial values for ψ(0), τ
(0)
1 , and τ

(0)
1 .

Step 2: Repeat for j = 1, ...,M . In the (j + 1)th iteration,

1. For generating ψ(j+1),

(i) Propose

ψ′ ∼ q(ψ(j), ψ′|τ (j)
1 , τ

(j)
2 ) = t

|τ
(j)
1 ,τ

(j)
2

(ψ̂, Σ̂, ν)

where ψ̂ = argmaxL(ψ|τ (j)
1 , τ

(j)
2 ) and Σ̂ = −[

∂2lnL(ψ|τ
(j)
1 ,τ

(j)
2 )

∂ψ∂ψ′
|ψ=ψ̂]−1.

(ii) Calculate

α(ψ(j), ψ′|τ (j)
1 , τ

(j)
2 ) = min{ π(ψ′, τ

(j)
1 , τ

(j)
2 )q(ψ′, ψ(j)|τ (j)

1 , τ
(j)
2 )

π(ψ(j), τ
(j)
1 , τ

(j)
2 )q(ψ(j), ψ′|τ (j)

1 , τ
(j)
2 )

, 1}

(iii) Draw U0 from U(0, 1). If

U0 ≤ α(ψ(j), ψ′|τ (j)
1 , τ

(j)
2 ), ψ(j+1) = ψ′.

Otherwise, ψ(j+1) = ψ(j).

2. For generating τ
(j+1)
1 ,

τ
(j+1)
1 ∼ π(τ1|ψ(j+1), τ

(j)
2 ,y)

where

π(τ1|ψ(j+1), τ
(j)
2 ,y) =

π(τ1)f(y|ψ(j+1), τ1, τ
(j)
2 )

π(y|ψ(j+1), τ
(j)
2 )

=
π(τ1)f(y|ψ(j+1), τ1, τ

(j)
2 )

∑

τ1
π(τ1)f(y|ψ(j+1), τ1, τ

(j)
2 )

=
f(y|ψ(j+1), τ1, τ

(j)
2 )

∑

τ1
f(y|ψ(j+1), τ1, τ

(j)
2 )
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Since the break date τ is generated from a full conditional density, a proposal density and

a target density are exactly same and the acceptance rate for the break date proposal,

α(τ
(j+1)
1 , τ

(j)
1 |ψ(j+1), τ

(j)
2 ), is always 1.

3. For generating τ
(j+1)
2 , similarly

τ
(j+1)
2 ∼ π(τ2|ψ(j+1), τ

(j+1)
1 ,y)
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